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ABSTRACT  

Multipath decreases the accuracy of the GNSS 

positioning by distorting the correlation function. Based 

on this observation it is possible to detect abnormally 

large multipath error by monitoring the correlation 

function. Indeed for the tracking of the code delay, 

several correlator outputs that correspond to specific 

locations on the correlation function are observable. 

Based on the available observables that are combined to 

form a metric, one can design a test detection to quantize 

the distortion. The potential metric candidates are selected 

based on noise resilience considerations. Afterwards, 

using a simplified correlator output model, two methods 

are compared for the determination of the detection 

thresholds. The value of the thresholds is related to the 

expected Probability of False Alarm. An analytic way to 

assess the performance of the coherent tests in term of 

sensitivity is given. The efficiency of the test can be 

widely improved by smoothing the correlator outputs or 

the test variable itself. The discussed metrics are 

implemented on a realistic GNSS tracking simulator 

processing the Land Mobile Satellite Channel model 

developed by the DLR. The correlation between the 

multipath error and the signal to noise ratio (SNR) is well 

known. Performances of test based on metrics and SNR 

are finally compared. 

 

INTRODUCTION  

Multipath is a well-known phenomenon that affects radio-

wave propagation in urban environment. It originates 

from the interaction of a travelling radio-frequency signal 



with urban objects present between the emitting and 

receiving antenna such as buildings, lamp poles or 

vehicles. These interactions can be reflection and 

diffusion by surfaces or diffraction by edges. For the 

GNSS case, this phenomenon distorts the autocorrelation 

function which generates a bias on the pseudo-range 

measurements, which in turn transforms into an error in 

the position domain. For critical terrestrial applications 

such as train control or GNSS based electronic toll 

collection, these biases on the pseudorange may not be 

acceptable. The use of multipath mitigation techniques 

such as Narrow Correlator [1], Double-delta techniques 

[2] or open loop multipath estimation such as A Posteriori 

Multipath Estimation (APME) [3] can reduce the 

amplitude of the code tracking error and limit the impact 

of multipath interference. However important residual 

biases may still remain in the code delay estimation after 

the mitigation. For most critical navigation in urban area, 

the use of an augmentation system is necessary to fulfill 

the operational integrity requirements. Satellite Based 

Augmentation Systems (SBAS) and Ground Based 

Augmentation Systems (GBAS) are not sufficient in 

urban environment because they can detect Signal in 

Space (SiS) failures but cannot detect failures due to the 

receiver environment and in particular multipath. The 

implementation of a Receiver Autonomous Integrity 

Monitoring (RAIM) algorithm is necessary to assure the 

integrity monitoring in these constraint scenarios. 

However, in urban environment, several pseudoranges 

may be biased simultaneously and traditional RAIMs 

algorithms usually assume only a single faulty 

pseudorange. A possible approach to overcome this 

limitation consists in focusing on the detection of the 

failures prior to the integrity monitoring algorithm.  

In urban areas, pseudorange biases can be observed due to 

the reception of a Non Line of Sight (NLOS) which leads 

to an over estimation of the satellite to receiver distance. 

This phenomenon may be detected at the signal 

processing level if it involves a loss in term of 𝐶 𝑁0⁄  due 

to the loss of power during the diffraction/reflection. But 

this strategy does not detect NLOS that are not associated 

with important 𝐶 𝑁0⁄  variations. The use of a constant 

elevation mask for the satellite based on a priori studies is 

a feasible solution. However, this solution is not optimal 

in terms of geometry because the actual mask of the 

environment may be lower at some instant and an 

unnecessary exclusion of satellites may reduce the quality 

of the geometry. Techniques based on a fisheye camera 

mounted on the top of the vehicle could be used in order 

to detect the elevations of the different buildings and 

either underweight or provides exclusion flag in order not 

to consider the satellites that are masked [4]. Other 

techniques called shadowmatching based on an accurate 

3D model of the city can be used and, even if they do not 

require any additive sensors, a costly calibration step and 

mapping is required.  

This paper focuses on the scenario where the received 

signal is a linear combination of a Line-of-Sight (LOS) 

signal and several echoes. The correlation function of the 

resulting signal is distorted. The aim is to quantize the 

distortion of the correlation function due to multipath to 

detect abnormal measurement and exclude them before 

the integrity monitoring module. The techniques used to 

quantify the distortion due to multipath are inspired from 

the research done for the detection of evil waveforms 

which are anomalies observed on the waveform that 

model the PRN code [4]. Inspired from this approach, [5] 

proposed a technique to detect the presence of multipath 

by monitoring these indicators.  

The approach is that of a classical hypothesis testing. A 

set of hypotheses to test is defined: 

 𝐻0: no multipath is present 
 𝐻1: presence of multipath 

Distortion metrics which are linear combinations of 

correlator outputs are used as test variables to detect those 

distortions. In this paper, existing metrics and a new 

metric are investigated. A new rigorous approach to 

calculate the decision thresholds under 𝐻0 and to adjust 

the Probability of False Alarm (𝑃𝐹𝐴) is proposed and 

compared to the prior art. The 𝑃𝐹𝐴 is defined as: 

 

𝑃𝐹𝐴 = 𝑃(𝐻1|𝐻0) (1) 

The theoretical concept of multipath sensitivity under 𝐻1 

and associated to a value of Probability of Missed 

Detection (𝑃𝑀𝐷) is defined and discussed in this paper. 

The 𝑃𝑀𝐷  is defined as: 
 

𝑃𝑀𝐷 = 𝑃(𝐻0|𝐻1) (2) 

Then, the performances of the detection tests are assessed 

on time series generated by an urban channel model 

processed by a realistic GNSS receiver simulator.  

I. Existing and new metrics 

Test Metrics are defined as linear combinations of 

correlator outputs which enable to quantize the distortion 

of the autocorrelation function. Usual metrics are detailed 

in the literature and the two of them that perform the best 

according to prior art for multipath detection are the so 

called simple ratio and the differential ratio [5] given in 

Table 1. Septentrio’s APME [6], that performs well for 

the mitigation of short delay multipath, relies on an 

estimator which is a simple ratio test that is centered and 

multiplied by an empirical likelihood factor (0.42). 

Existing metrics are coherent and therefore can only be 

used when the carrier is tracked by a Phase Lock Loop 

(PLL). Let’s denote 𝐼𝑋 the in-phase correlator output 

located in 𝑋 on the correlation function. 

 

 

 

 



Type of Test  Expression 

Simple Ratio 

Tests (𝑴𝟏) 

𝐼𝑋

𝐼𝑌

 

Differential 

Ratio Tests (𝑴𝟐) 

𝐼𝑋 − 𝐼𝑌

𝐼𝑍

 

Non Coherent 

Simple Ratio 

Tests (𝑴𝟑) 

𝐼𝑋
2 + 𝑄𝑋

2

𝐼𝑌
2 + 𝑄𝑌

2 

Table 1 Metrics of interest  

In urban environments, the tracking of the carrier phase 

by a PLL is less robust than the tracking of the carrier 

frequency by a Frequency Locked Loop (FLL). However, 

tracking the frequency leads to a bias on the carrier phase 

estimate. If this bias is close to π/2, the useful signal at the 

in phase correlator output is dominated by thermal noise 

and computing the ratio between correlator outputs 

becomes meaningless. Non coherent metrics are proposed 

in this article because they are compatible with the use of 

a FLL. The drawback of such metric is the difficulty to 

accurately characterize its distribution. Coherent metrics 

will be studied in Chapter II, while non-coherent metrics 

will be studied in Chapter III. 

II. Determination of the detection thresholds for 

coherent metrics 

In this chapter, 𝐻0 holds which means that the receiver is 

only affected by thermal noise. The general correlator 

output model at the 𝑘th
 integration index when assuming a 

linear variation of the phase tracking error during the 

integration interval is the following: 

 
𝐼𝑋(𝑘) = 

√
𝐶

2
𝑑(𝑘)𝐾𝑐𝑐(𝑋 + 𝜀𝜏) cos(𝜀𝜑) 𝑠𝑖𝑛𝑐(𝜋𝜀𝑓𝑇𝑖) + 𝑛𝑋(𝑘) 

 

(3) 

 

 

Where  

 𝑋 is the location of the correlator in chip 

 𝐶 is the power of the carrier 

 𝑑(𝑘) is the data component 

 𝐾𝑐𝑐  is the autocorrelation function of the PRN 

filtered by the front end 

 𝜀𝜏, 𝜀𝜑 and 𝜀𝑓 are respectively the delay, phase 

and Doppler estimation error by the tracking 

loops 

 𝑇𝑖  is the integration duration 

 𝑛𝑋 is the thermal noise 

 

In this study the tracking is assumed to be sufficiently 

precise to neglect 𝜀𝜏, 𝜀𝜑 and 𝜀𝑓 in the nominal case (i.e. 

Multipath free). This assumption is valid when the carrier 

is tracked by a PLL. The data are also not considered in 

the model as they have no impact when the correlator 

outputs are normalized by another correlator output 

corresponding to the same integration index. The 

simplified correlator output model becomes: 

𝐼𝑋(𝑘) = √
𝐶

2
𝐾𝑐𝑐(𝑋) + 𝑛𝑋(𝑘) 

 

(4) 

 

The expression of the noise variance at the correlator 

output is 𝑁0/(4𝑇𝑖𝑛𝑡) . 
Therefore the reduced in phase correlator output is such 

that 𝐼𝑋~𝒩(𝜇𝑋,, 𝜎𝑋
2) with: 

 𝜇X = √2 𝐶 𝑁0⁄ 𝑇𝑖 . 𝐾𝑐𝑐(𝑋) 

 𝜎X
2 = 1 

 The covariance between two correlator outputs 

in 𝑋 and 𝑌 is 𝑐𝑜𝑣(𝑛𝑋𝑛𝑌) = 𝐸[𝑛𝑋𝑛𝑌] =
𝐾𝑐𝑐(𝑌 − 𝑋) 

The objective is now to establish the confidence interval 

of the metric so that the receiver decide whether it is 

under 𝐻0 or 𝐻1. In this subsection we study two different 

methods for the determination of the thresholds.  

 

Gaussianity assumption 

The first method which is the one proposed in [5] assumes 

that the metrics (Simple Ratio Tests and Differential Ratio 

Tests) follow Gaussian distributions. Let’s denote 𝑀 an 

arbitrary metric among the coherent ones, it is assumed 

that 𝑀~𝒩(𝜇𝑀, 𝜎𝑀
2 ). Therefore the interval of confidence 

for the metrics is the interval [𝜇𝑀 − 𝑚𝑒𝑥𝑝𝜎𝑀;  𝜇𝑀 +

𝑚𝑒𝑥𝑝𝜎𝑀] where 𝑚𝑒𝑥𝑝 is an expansion factor that can be 

adjusted to set the desired 𝑃𝐹𝐴. The relation between this 

factor and the 𝑃𝐹𝐴 can be obtained with standard tables of 

Gaussian tails. However the ratio of two Gaussians 

asymptotically tends to a Gaussian when 𝜇𝑀/𝜎𝑀 tends to 

infinity. This assumption may be relevant in the operating 

conditions of [5] because the integration time is 

sufficiently high (1000 ms) and 𝐶 𝑁0⁄ values simulated are 

high (40/45 dB-Hz). In a standard GNSS receiver the 

integration time is much shorter (20 ms for GPS L1 C/A 

at best with data bit synchronization assumed). Moreover 

𝐶 𝑁0⁄  can be lower than the range of value tested in the 

prior art in a challenging environment. For each coherent 

metric, the bounds of the confidence interval are given in 

Table 2, and the calculations to obtain them are given in 

appendix I. 

 

Type of Test  

Characteristics of the distribution 

𝝁𝑴 𝝈𝑴 

Simple Ratio 

Tests (𝑴𝟏) 

𝜇𝑋

𝜇𝑌

 
𝜇𝑋

𝜇𝑌

√(
𝜎𝑋

2

𝜇𝑋
2 +

𝜎𝑌
2

𝜇𝑌
2 − 2

𝑐𝑜𝑣𝑋𝑌

𝜇𝑋𝜇𝑌

 ) 

Differential 

Ratio Tests 

(𝑴𝟐) 

𝜇𝑋 − 𝜇𝑌

𝜇𝑍

 (
𝜇𝑋 − 𝜇𝑌

𝜇𝑍

) √

𝜎𝑍
2

𝜇𝑍
2 +

𝜎𝑋
2 + 𝜎𝑌

2 − 2𝑐𝑜𝑣𝑋𝑌

(𝜇𝑋 − 𝜇𝑌)2
+

2
𝑐𝑜𝑣𝑍𝑋 − 𝑐𝑜𝑣𝑍𝑌

𝜇𝑍(𝜇𝑋 − 𝜇𝑌)

 

Table 2 Thresholds obtained with gaussianity assumption  



Proposed method 

The approach which is proposed in this paper does not 

assume any Gaussianity aspect of the metric and then the 

obtained threshold can be applied to receivers using 

standard integration time. The Geary-Hinkley 

transformation [7] [8] makes it possible to form a new 

random variable that is Gaussian when applied to a ratio 

of two correlated non central Gaussian variables. If 

𝐼𝑋~𝒩(𝜇𝑋, 𝜎𝑋
2) and 𝐼𝑌~𝒩(𝜇𝑌, 𝜎𝑌

2) with a covariance 

𝑐𝑜𝑣𝑋𝑌, then the expression of the Geary-Hinkley 

transform applied to 𝑀 =
𝐼𝑋

𝐼𝑌
 is the following: 

 

𝑇 =
𝜇𝑌𝑀 − 𝜇𝑋

√𝜎𝑌
2𝑀2 − 2𝑐𝑜𝑣𝑋𝑌𝑀 + 𝜎𝑋

2
 (5) 

 

Where 𝑇~𝒩(0,1) provided that the denominator is 

unlikely to assume negative values.  

The next step for the thresholds determination is to set the 

desired 𝑃𝐹𝐴 on the transformed variable 𝑇. Then simply 

deduces the thresholds of the metrics. Let 𝑚𝑒𝑥𝑝 be the 

expansion factor corresponding to the expected 𝑃𝐹𝐴, the 

thresholds for 𝑀 are the roots of the associated second 

degree equation. For every metrics and the thresholds 

obtained are given in Table 3.  

The validity of the thresholds is directly derived from the 

validity of the Geary-Hinkley transformation which is 

𝜇𝑌 ≥ 𝑚𝑒𝑥𝑝𝜎𝑌. By replacing 𝜇𝑌 and 𝜎𝑌 by their 

expressions, the domain of validity corresponds to: 

𝐶 𝑁0⁄ ≥
1

2𝑇𝑖𝑛𝑡

(
𝑚𝑒𝑥𝑝

𝐾𝑐𝑐(𝑌)
)

2

 
(6) 

 

 

 

Type of Test Metric Thresholds 

Simple Ratio Tests 

(general expression of 

the bounds) 

 

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =
−(−2𝜇𝑋𝜇𝑌 + 2𝑚𝑒𝑥𝑝

2𝑐𝑜𝑣𝑋𝑌) − √(−2𝜇𝑋𝜇𝑌 + 2𝑚𝑒𝑥𝑝
2𝑐𝑜𝑣𝑋𝑌)

2
− 4(𝜇𝑌

2 − 𝑚𝑒𝑥𝑝
2𝜎𝑌

2)(𝜇𝑋
2 − 𝑚𝑒𝑥𝑝

2𝜎𝑋
2)

2(𝜇𝑌
2 − 𝑚𝑒𝑥𝑝

2𝜎𝑌
2)

  

𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =
−(−2𝜇𝑋𝜇𝑌 + 2𝑚𝑒𝑥𝑝

2𝑐𝑜𝑣𝑋𝑌) + √(−2𝜇𝑋𝜇𝑌 + 2𝑚𝑒𝑥𝑝
2𝑐𝑜𝑣𝑋𝑌)

2
− 4(𝜇𝑌

2 − 𝑚𝑒𝑥𝑝
2𝜎𝑌

2)(𝜇𝑋
2 − 𝑚𝑒𝑥𝑝

2𝜎𝑋
2)

2(𝜇𝑌
2 − 𝑚𝑒𝑥𝑝

2𝜎𝑌
2)

 

 

Differential Ratio Tests 

        Substitute 𝑋 by 𝑁, and 𝑌 by 𝑍 in the general expression, where: 

𝜇𝑁 = 𝜇𝑋 − 𝜇𝑌 
 

𝜎𝑁 = √𝜎𝑥
2 + 𝜎𝑦

2 − 2𝑐𝑜𝑣𝑋𝑌 

𝑐𝑜𝑣𝑁,𝑍 = 𝑐𝑜𝑣𝑋𝑍 − 𝑐𝑜𝑣𝑌𝑍  

Table 3 Thresholds without gaussianity assumption 

Constraints on the metric candidates 

The most promising test metrics have been identified for 

GPS signals in [5] based on the ratio of the metric’s 

envelope over noise level. Most of these candidates are 

not relevant for the Galileo signals. They are highly noise 

sensitive because of the division by noisy correlators. 

Indeed the slope of the correlation function is higher for 

BOC signals: 3 in the main peak for BOC(1,1), and 

(53 ±  2√10)/11 ≈ 5.4 in the main peak for 

CBOC(6,1,1/11,±), which means that the range of 

relevant locations for the correlator at the denominator is 

thinner than for BPSK. This intuitive assumption is well 

illustrated by the domain of validity of the bounds given 

in (6). In Figure 1, the lower bound of the validity domain 

in term of 𝐶 𝑁0⁄  is given as a function of the correlator 

location for the three modulations with an infinite 

receiver’s front-end bandwidth. The expansion factor is 

set to a typical value of 3𝜎 which corresponds to a 𝑃𝐹𝐴 of 

0.0027. The operational range of 𝐶 𝑁0⁄  constrains the 

choice for the normalization correlator. In urban 

environment where a typical value for the 𝐶 𝑁0⁄  mask is 

30 dB-Hz [9] to select the robust measurement in a multi-

GNSS system, for a 3𝜎 expansion factor, the allowed 

values of Y for BPSK is [-0.5, 0.5] whereas it is [-0.17, 

0.17] for BOC(1,1) and CBOC(6,1,1/11). 

 
Figure 1 The allowed locations for the correlator used for the 

normalization of the metric correspond to the area above the 

curve 
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As the detectors studied in this paper are likely to be 

implemented on standard receivers that only process three 

correlators outputs (prompt, early and late), this will limit 

the amount of possible combination to form the metric. 

The validity domain of the BOC imposes the condition of 

a chip spacing for the DLL lower than 0.34 to normalize 

the test by either the early or the late correlator output. 

 

Performance assessment of the thresholds 

The performances of both thresholds’ expression are 

compared on a typical case of study, in which the receiver 

may process GPS L1 C/A and Galileo E1 OS. The BW is 

assumed infinite for simplicity. Three correlator outputs 

are simulated according to the model, in 𝑋 = 0, 𝑌 = 0.25 

and 𝑍 = 0.125. Accumulation time is set to 20 ms. The 

generation of the correlated noise sequences is done by 

multiplying independent Gaussian random variables by 

the Cholesky decomposition of the expected noise 

covariance matrix. The two metrics are calculated. The 

thresholds are calculated with gausianity assumption and 

with the proposed method for a typical range of operating 

𝐶 𝑁0⁄  for an expansion factor of 3. The observed 𝑃𝐹𝐴 is 

plotted in Figure 2 for each coherent metric on GPS L1 

C/A signals. 

 
Figure 2 Comparaison between the expected 𝑃𝐹𝐴 (0.0228) and 

the observed 𝑃𝐹𝐴 

 

The Gaussianity of the metric’s distribution increases 

with the 𝐶 𝑁0⁄ . The proposed thresholds enable to set the 

right 𝑃𝐹𝐴, even for low 𝐶 𝑁0⁄ . This observation would be 

all the more characteristic for lower integration times 

(typically 1 ms).  

 

III. Determination of the detection thresholds for 

non-coherent metrics 

For non-coherent metrics, the correlator output model is 

the following: 

𝐼𝑋(𝑘) = √
𝐶

2
𝑑(𝑘)𝐾𝑐𝑐(𝑋) cos(𝜀𝜑) + 𝑛𝑋(𝑘) 

 

(7) 

𝑄𝑋(𝑘) = √
𝐶

2
𝑑(𝑘)𝐾𝑐𝑐(𝑋) sin(𝜀𝜑) + 𝑛𝑋(𝑘) 

 

The determination of the thresholds for the non-coherent 

metrics requires the knowledge of its distribution. The 

term 𝐼𝑋
2 + 𝑄𝑋

2  follows a chi-square distribution with 2 

degrees of freedom and a non-centrality parameter 

𝜆 = 2𝑇𝑖𝑛𝑡 𝐶 𝑁0⁄ 𝐾𝑐𝑐(𝑋). The ratio of two non-central 

uncorrelated 𝜒2 follows a doubly non-central F 

distribution [10] [11], with known parameters. However, 

when considering the correlation between both correlator 

outputs (𝑋 and 𝑌) the distribution is unknown. Therefore, 

for non-coherent metrics, the thresholds are computed 

numerically. The interval of non-detection is symmetric 

and centered on the mean of the metric. The lack of 

knowledge about the distribution of the metric is the main 

drawback related to the use of non-coherent metrics. 

IV. Theoretical sensitivity 

In this subsection, the signal is assumed to be affected by 

one unique reflection in phase with the direct signal, 

which is one hypothesis generally assumed for the 

characterization of multipath mitigation techniques by 

their multipath envelope although it differs significantly 

from the urban conditions. The non-coherent metrics are 

not studied in this section due to the lack of knowledge of 

their distributions. The general model of the correlator 

output becomes: 

𝐼𝑋,𝑀𝑃(𝑘) = √
𝐶

2
𝐾𝑐𝑐(𝑋) +

1

√𝑆𝑀𝑅
√

𝐶

2
𝐾𝑐𝑐(𝑋 − 𝜏)

+ 𝑛𝑋(𝑘) 

(8) 

 

Where: 

 𝜏 is the relative delay of the reflection compared 

to the direct signal 

 𝑆𝑀𝑅 is the signal to multipath power ratio 

 

The Gaussian model can be used here with: 

 𝜇𝑋,𝑀𝑃 = 𝜇𝑋 + √
2𝐶 𝑁0⁄ 𝑇𝑖𝑛𝑡

𝑆𝑀𝑅
𝐾𝑐𝑐(𝑋 − 𝜏) 

= 𝜇X + 𝛼𝐾𝑐𝑐(𝑋 − 𝜏)                             
 

The sensitivity is defined as the maximum Signal to 

Multipath Ratio (𝑆𝑀𝑅) at which the test is positive 

providing the probability of missed detection (𝑃𝑀𝐷). In 

this subsection it is assumed that 𝜏 is a parameter. Figure 

3 illustrate the two scenarios that can occur and can lead 

to a missed detection. The 𝑃𝑀𝐷  corresponds to the area (in 

red) in between the thresholds that were set under 𝐻0. 



 
Figure 3 Possible scenarios for the missed detection 

The metric affected by multipath have a new distribution, 

which is unknown. However the multipath only affects 

the mean of the metric of both numerator and 

denominator. The calculation of the sensitivity starts from 

the following statement on the metric: 

 Configuration 1: 

𝑈𝐵∃𝑀𝑃 = 𝐿𝐵∄𝑀𝑃   

 Configuration 2: 

𝐿𝐵∃𝑀𝑃 = 𝑈𝐵∄𝑀𝑃   
 

Where 𝐿𝐵∄𝑀𝑃 and 𝑈𝐵∄𝑀𝑃 are respectively the lower 

bound and upper bound determined in the multipath free 

scenario to set the 𝑃𝐹𝐴. The analytic expressions of 

𝑈𝐵∃𝑀𝑃 and 𝐿𝐵∃𝑀𝑃 are obtained using the Geary-Hinkley 

transformation, by introducing a new expansion factor 

𝑚𝑚𝑑 in order to set the 𝑃𝑀𝐷 . Particular caution must be 

taken when setting the 𝑃𝑀𝐷  because as illustrated in 

Figure 3 the missed detection probability is only due to 

one of the two Gaussian tail (either left or right). 

Therefore in order to impose 𝑃𝑀𝐷𝑡𝑟𝑢𝑒
, the expansion 

factor 𝑚𝑀𝐷 shall be chosen so that it performs 𝑃𝑀𝐷𝑏𝑖𝑙𝑎𝑡
=

2𝑃𝑀𝐷𝑡𝑟𝑢𝑒
.  

Then Configuration 1 is assumed in order to calculate the 

minimum 𝑆𝑀𝑅, which is obtained by solving the second 

order equation given in Table 4. The validity of the 

Scenario must be checked afterwards with the following 

possible indicator: 

 

𝜂 = 𝑠𝑖𝑔𝑛(𝐸[𝑚|∃𝑀𝑃(𝑆𝑀𝑅, 𝜏) ] − 𝐸[𝑚|∄𝑀𝑃])  (9) 

 

 If 𝜂 is positive, Scenario 1 is valid.  

 If 𝜂 is negative, Scenario 1 is not valid and the 

𝑆𝑀𝑅 shall be calculated for Scenario 2 with the 

corresponding equation given in Table 4. 

 

 
Type of Test Metric  

Simple Ratio Tests 

(general expression of 

the sensitivity) 

Configuration 1: 

𝛼2{[𝑈𝐵∄𝑀𝑃𝐾𝑐𝑐(𝑌 − 𝜏)]2 − 2𝑈𝐵∄𝑀𝑃𝐾𝑐𝑐(𝑌 − 𝜏)𝐾𝑐𝑐(𝑋 − 𝜏) + 𝐾𝑐𝑐(𝑋 − 𝜏)2} 

+𝛼{2𝑈𝐵∄𝑀𝑃
2𝜇𝑌𝐾𝑐𝑐(𝑌 − 𝜏) − 2𝑈𝐵∄𝑀𝑃[𝜇𝑋𝐾𝑐𝑐(𝑌 − 𝜏) + 𝜇𝑌𝐾𝑐𝑐(𝑋 − 𝜏)] + 2𝜇𝑋𝐾𝑐𝑐(𝑋 − 𝜏)} 

+𝑈𝐵∄𝑀𝑃
2(𝜇𝑌

2 − 𝑚𝑀𝐷
2 𝜎𝑌

2) + 2𝑈𝐵∄𝑀𝑃(−𝜇𝑋𝜇𝑌 + 𝑚𝑀𝐷
2 𝑐𝑜𝑣𝑥𝑦) + 𝜇𝑋

2 − 𝑚𝑀𝐷
2 𝜎𝑋

2 = 0 

 

Configuration  2: 

𝛼2{[𝐿𝐵∄𝑀𝑃. 𝐾𝑐𝑐(𝑌 − 𝜏)]2 − 2𝐿𝐵∄𝑀𝑃𝐾𝑐𝑐(𝑌 − 𝜏). 𝐾𝑐𝑐(𝑋 − 𝜏) + 𝐾𝑐𝑐(𝑋 − 𝜏)2} 

+𝛼{2𝐿𝐵∄𝑀𝑃
2𝜇𝑌𝐾𝑐𝑐(𝑌 − 𝜏) − 2𝐿𝐵∄𝑀𝑃[𝜇𝑋𝐾𝑐𝑐(𝑌 − 𝜏) + 𝜇𝑌𝐾𝑐𝑐(𝑋 − 𝜏)] + 2𝜇𝑋𝐾𝑐𝑐(𝑋 − 𝜏)} 

+𝐿𝐵∄𝑀𝑃
2(𝜇𝑌

2 − 𝑚𝑀𝐷
2 𝜎𝑌

2) + 2𝐿𝐵∄𝑀𝑃(−𝜇𝑋𝜇𝑌 + 𝑚𝑀𝐷
2 𝑐𝑜𝑣𝑥𝑦) + 𝜇𝑋

2 − 𝑚𝑀𝐷
2 𝜎𝑋

2 = 0 
 

𝑆𝑀𝑅 =  
2 𝐶 𝑁0⁄ 𝑇𝑖𝑛𝑡

𝛼2
 

 

Differential Ratio Tests  Substitute 𝑋 by 𝑁, and 𝑌 by 𝑍 in the general expression  

Table 4 General expression of the theoretical sensitivity 

The sensitivity shall be taken into account in the design of 

the quality monitoring indicator concept. The way to 

calculate and interpret the sensitivity is given in this study 

through a realistic example. The 𝐶 𝑁0⁄  is set to 40 dB-Hz, 

and the metric of interest is 𝑀1, with 𝑋 = 0.25 and 𝑌 = 0. 

The delay of the multipath is arbitrarily set to 0.5 chip. 

The signal of interest is in this example BPSK(1). This 

example is also used to validate the obtained results by 

simulations. The reverse process is done as a validation, 

where the multipath amplitude is set to the value of the 

sensitivity for the corresponding 𝑃𝐹𝐴. Random draw of the 

metric value affected to multipath are done, the 𝑃𝑀𝐷  is 

then estimated as the proportion of the undetected 

samples. It can be inferred from Table 5 that the 

correspondence between the 𝑃𝑀𝐷  and the sensitivity is 

well characterized by the theoretical expressions 

according to the green cells. This table of sensitivity could 

have been translated into a table of maximum 

pseudorange error. Indeed, as an example, for a 

conventional DLL using a narrow correlator to track the 

GPS L1 C/A signal, the rule of thumb for the envelope of 

the pseudorange multipath error is: 

𝜀𝑀𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ =
1

√𝑆𝑀𝑅
.
𝑑

2
 

 

(10) 

Where 𝑑 is the chip spacing between the early and late 

correlators of the DLL.  
 

No 

detection 

Configuration 1 Configuration 2 



 
 𝑷𝑭𝑨 

 
 0.0455 0.0027 6.33e-5 5.73e-7 

𝑷
𝑴

𝑫
 

0.159 
10.7 dB 7.70 dB 5.21 dB 3.00 dB 

0.159 0.159 0.159 0.159 

0.0228 
8.20 dB 5.77 dB 3.62 dB 1.67 dB 

0.0228 0.0228 0.0228 0.0228 

0.00135 
6.26 dB 4.18 dB 2.29 dB 0.505 dB 

0.00135 0.00135 0.00135 0.00135 

3.17e-5  
4.68 dB 2.84 dB 1.13 dB -0.518 dB 

3.18e-5 3.21e-5 3.21e-5 3.18e-5 

2.87e-7  
3.34 dB 1.68 dB 0.105 dB -1.43 dB 

3.05e-7 3.13e-7 3.03e-7 3.16e-7 

Table 5 The white cells represents the sensitivity of the test on 

GPS L1 C/A for M1 with infinite front end BW. The green cells 

represent the observed 𝑷𝑴𝑫. 

For low 𝑃𝐹𝐴 associated with low 𝑃𝑀𝐷 , the efficiency of 

the test in term of sensitivity is low. To improve it, an 

intuitive idea is to narrow the distribution of the multipath 

free metric. Multipath has long correlation times 

compared to the thermal noise which is memoryless 

(white). Multipath deterministically results in a translation 

of the distribution of the metric. To narrow the 

distribution, it is either possible to low pass filter the 

correlator outputs that are combined to form the metric, or 

to low pass filter the metric. The smoothing of the 

correlator outputs is preferred as the new thresholds can 

easily be calculated when using the proposed approach. 

Moreover, the filtered denominator is less likely to be null 

after this filtering step which enable the extention of the 

domain of validity of the metrics. On the other hand, if 

the Gaussianity assumption has been used it is more 

practical to filter the metric instead. The problem relative 

to such a smoothing is the data term in the correlator 

output that can be +1 or -1. If an external mean is 

available to get the data message, it is possible to multiply 

each correlator by the corresponding sign of the data bit 

which is known. An alternative is to take the absolute 

value of each correlator outputs. This step changes the 

distribution of the correlator output which must then be 

modelled by a folded normal distribution. This 

distribution can still be approximated by a Gaussian 

provided that the correlators are unlikely to assume 

negative values. This condition is fulfilled if all the 

correlators used to form the metric are under the 

conditions of (6). The general model of correlator output 

becomes: 

𝜇𝑋 = √2
𝐶 𝑁0⁄

𝐵𝑙

. 𝐾𝑐𝑐(𝑋) 

𝜎𝑋 = 1 

 

(11) 

Where 

 𝐵𝑙  is the double-sided equivalent noise 

bandwidth of the low pass filter 

For a noise equivalent bandwidth of 5Hz, the sensitivity is 

given in Table 6. 

 
 𝑷𝑭𝑨 

 
 0.0455 0.0027 6.33e-5 5.73e-7 

𝑷
𝑴

𝑫
 

0.159 
21.3 dB 18.7 dB 16.6 dB 14.9 dB 

0.159 0.159 0.159 0.159 

0.0228 
18.8 dB 16.7 dB 15.0 dB 13.5 dB 

0.0227 0.0227 0.0228 0.0228 

0.00135 
16.9 dB 15.1 dB 13.7 dB 12.4 dB 

0.00134 0.00134 0.00135 0.00135 

3.17e-5  
15.3 dB 13.8 dB 12.5 dB 11.3 dB 

3.12e-5 3.15e-5 3.11e-5 3.14e-5 

2.87e-7  
13.9 dB 12.6 dB 11.5 dB 10.4 dB 

2.1e-7 1.9e-7 2.3e-7 2.2e-7 

Table 6 The white cells represents the sensitivity of the test on 

GPS L1 C/A for M1 with infinite front end BW with smoothing 

of the correlator. The green cells represent the observed 𝑷𝑴𝑫. 

The gain in term of sensitivity obtained by smoothing the 

correlator outputs with a 5 Hz equivalent noise bandwidth 

low pass filter is approximately 11 dB in the studied 

scenario. The domain of validity is also increased thanks 

to the smoothing of the correlator used for the 

normalization assuming that the navigation message is 

known (if the absolute value is calculated, then (6) shall 

be used): 

𝐶 𝑁0⁄ ≥
𝐵𝑙

2
(

𝑚𝑒𝑥𝑝

𝐾𝑐𝑐(𝑌)
)

2

 
 

(12) 

 
Figure 4 Lower bound of the allowed locations for the correlator 

used for the normalization of the metric after low pass filtering 

(5Hz) 

V. Performance assessment on urban channel 

model 

The aim of this section is to assess the performances of a 

test based on the multipath detection metrics to improve 

the reliability of the pseudoranges estimation in urban 

environment. The approach consists in coupling the 

wideband Land Mobile Satellite (LMS) Channel 

developed by the German Aerospace Center (DLR) [12] 

which is an open source software, with a realistic GNSS 

receiver model called geneIQ and developed by ENAC. 

The LMS is the reference wideband model for the ITU 

(International Telecommunication Union). A narrowband 

-1 -0.5 0 0.5 1
10

15

20

25

30

35

40

45

50

Location of the correlator (Chips)

C
/N

0
 (

d
B

-H
z
)

 

 

BPSK(1)

BOC(1,1)

CBOC(6,1,1/11,+)

CBOC(6,1,1/11,-)



model such as the one developed in [13] would not be 

suitable for this study as it does not generate any 

distortion on the correlation function which is the 

phenomenon that is detected in this study. The connection 

process between the LMS and geneIQ is detailed in [9]. 

However, we chose to reformulate the test so that it is 

adapted to urban environment. Indeed in urban 

environment the receiver is almost always affected by 

multipath and therefore always under 𝐻1. The new 

formulation is based on the definition of a maximum 

tolerable error (𝑀𝑇𝐸). As an example, the 𝑀𝑇𝐸 is set to 5 

meters. The new hypotheses to test are: 

 𝐻0′: the pseudorange error is lower than the 

𝑀𝑇𝐸 

 𝐻1′: the pseudorange error is higher than the 

𝑀𝑇𝐸 

The approach used in the initial test consisted in setting 

the 𝑃𝑀𝐷 , and then to observe the Sensitivity in dB or in 

term of pseudorange error. The reformulation consist in 

setting the Sensitivity in term of pseudorange error, and 

then to observe the 𝑃𝑀𝐷 . 

Simple ratio metric 

As detailed in Chapter IV the implementation of a raw 

test metrics leads to poor performance in term of 

sensitivity. This can be illustrated by simulations on the 

LMS tracked by geneIQ. The channels for satellite 

elevations of 40, 50, 60, 70, 80° and satellite azimuths of 

45 and 90° are concatenated. The LOS is not shadowed 

for these elevations. Each channel is 1 km long, and the 

velocity of the vehicle is set to 20 km/h. Thermal noise is 

added to the correlators with a 𝐶 𝑁0⁄  set to 40 dB-Hz. The 

receiver used is a wideband (4 MHz) receiver that tracks 

the L1 C/A signal with a conventional non coherent DLL 

with a 1 Hz 2
nd

 order loop filter. The Early minus Late 

spacing of the DLL is set to 0.5 chips. The carrier phase is 

tracked by a non-coherent 𝑎𝑡𝑎𝑛 PLL with a 10 Hz 3
nd

 

order loop filter. In such a standard receiver, the available 

correlator outputs are located at -0.25, 0 and 0.25 on the 

correlation function. The simple ratio with 𝑋 = 0.25 and 

𝑌 = 0 is formed. Figure 5 illustrates the lack of 

correlation between the raw value of the metric and the 

code pseudorange error. The coefficient of correlation 

between the two variables is -0.19. Values of errors up to 

8 meters are not detected. The correlator outputs are low 

pass filtered with a rectangular low pass filter with 3Hz 

noise equivalent bandwidth. The narrowness of the low 

pass filter bandwidth is limited by the coherence time of 

the multipath, which in turn depends on the dynamic of 

the vehicle. The metric formed after filtering is shifted by 

a constant delay that maximizes the correlation between 

the metric and the code pseudorange error (e.g. 0.16 

seconds for 3 Hz filtering). Figure 6 illustrates the 

existing correlation between the value of the metric and 

the code pseudorange error. The scatter is characteristic of 

two correlated variables. The magnitude of the coefficient 

of correlation between both variables is improved to -

0.53. For a fixed maximum tolerable error and 

𝑃𝑓𝑎  (𝑚𝑒𝑥𝑝 =  2), the 𝑃𝑀𝐷  has decreased according to 

Figure 6. It reflects an improvement of sensitivity. Largest 

code errors are located in the right bottom region in 

Figure 4, which corresponds to a successful detection of 

abnormal error. Table 7 contains the 𝑃𝐹𝐴 and 𝑃𝑀𝐷  as 

functions of the expansion factor chosen to set the 

thresholds. Firstly, Table 7 shows that the observed 𝑃𝐹𝐴 in 

urban environment is lower than the expected 𝑃𝐹𝐴. In 

presence of several reflections and due to their impact on 

tracking loops, the distribution of the metric is different. 

New thresholds could be derived from these simulations 

to force the 𝑃𝐹𝐴 to the expected value, based on 

gaussianity assumption and by measuring the standard 

deviation of the metric. However, the validity of these 

thresholds would rely on too many hypotheses such as the 

satellite elevation, the loop bandwidths, the chip spacing 

and the vehicle dynamic to name a few. Table 7 also 

proves the major improvement obtained by smoothing the 

correlator outputs. Indeed for every expansion factor, the 

𝑃𝐹𝐴 and 𝑃𝑀𝐷  are lower after low pass filtering.  

Anyway, in this set of simulations, the magnitudes of the 

pseudorange errors are not large enough to be detected 

when setting a low 𝑃𝐹𝐴 (e.g. 𝑚𝑒𝑥𝑝 =  3).  
 

 
Figure 5 Correlation between code pseudorange error and value 

of the raw simple ratio metric (𝑴𝟏) for BPSK 

 
Figure 6 Correlation between code pseudorange error and value 

of the simple ratio metric (𝑴𝟏) after smoothing the correlator 

outputs for BPSK 
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Theoretical 𝑷𝑭𝑨 0.027   0.046 0.072 0.11 0.16 

𝑷𝑭𝑨 w/o filtering 0.0045 0.0088 0.018 0.034 0.063 

𝑷𝑴𝑫 w/o filtering 1 1 0.88 0.88 0.79 

𝑷𝑭𝑨 w/ filtering 0.0028 0.0056 0.0129 0.027 0.051 

𝑷𝑴𝑫 w/ filtering 0.52 0.52 0.30 0.17 0.090 

Table 7 Performances of the test based on the simple ratio test 

Performance comparison with 𝑪 𝑵𝟎⁄  estimator 

A conventional way for the receivers to monitor the signal 

quality is to estimate the 𝐶 𝑁0⁄ . The objective is here to 

compare the ability of the 𝐶 𝑁0⁄ estimation to detect error 

with high magnitude with the ability of a test based on the 

distortion metrics.  

The 𝐶 𝑁0⁄  estimator used is: 

 

𝐶 𝑁0⁄̂ = 𝐴 − 1 + √𝐴(𝐴 − 1) 

 

(13) 

 

Where: 

𝐴 =
𝐸[𝐼𝑃

2 + 𝑄𝑝
2]

2

𝑣𝑎𝑟(𝐼𝑃
2 + 𝑄𝑝

2)
 

 

(14) 

The expectation and the variance are estimated over 1 

second. We firstly compare the behavior of this estimator 

in presence of a 40 dB-Hz noise, with and without 

multipath.  

 
Figure 7 Estimation of C/N0 with true C/N0 set to 40dB-Hz 

The quality of the 𝐶 𝑁0⁄  estimation is degraded by the 

presence of multipath according to Figure 7. As the 𝐶 𝑁0⁄  

is used for the determination of the detection threshold of 

the metric (in the expression of 𝜇). A possible solution is 

to smooth the 𝐶 𝑁0⁄  estimate [5]. Moreover, it has already 

been proven that the Signal to Noise Ratio (𝑆𝑁𝑅) error is 

correlated (and in phase) with the multipath delay error 

[14] This phenomenon can be illustrated through the 

simulation platform by processing the LMS output 

without adding any thermal noise. The shape of the scatter 

in Figure 8 shows that the highest multipath error occurs 

for low estimated 𝐶 𝑁0⁄ . It is therefore relevant to define a 

monitoring algorithm based on this detector and it is then 

necessary to set the lower bound for the detector. A 

typical value is 30 dB-Hz [9] because it is a good trade-

off between NLOS exclusion and availability. The 

efficiency of this monitoring approach is assessed on the 

LMS and affected by a 40 dB-Hz thermal noise. The code 

pseudorange error is plotted as a function of the estimated 

𝐶 𝑁0⁄  in Figure 9. Table 8 summarizes the performance of 

the 𝐶 𝑁0⁄  based detection test for several threshold 

candidates. 𝑆𝑁𝑅 monitoring outperforms the test based on 

raw metric monitoring. Indeed as an example for a 𝑃𝐹𝐴 of 

0.019, the 𝑆𝑁𝑅 monitoring has a 𝑃𝑀𝐷  of 47% whereas the 

raw metric performs a 𝑃𝑀𝐷  of 88%. On the other hand the 

detection power of the metric obtain after correlator 

smoothing is higher than the 𝑆𝑁𝑅 test. For an expansion 

factor of 1.4, the 𝑃𝐹𝐴 is −6.3% which is lower than the 

𝑃𝐹𝐴 of 𝑆𝑁𝑅 with a threshold of 32 dB-Hz. Moreover the 

𝑃𝑀𝐷  is 9% which outperforms the 33% obtained with the 

monitoring of the 𝐶 𝑁0⁄ . 

 
Figure 8 Correlation between code pseudorange error and 

estimated C/N0 with multipath only for BPSK 

 

 
Figure 9 Correlation between code pseudorange error and 

estimated 𝐶/𝑁0 with multipath only for BPSK 
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𝑪/𝑵𝟎 (dB-

Hz) 
28 29 30 31 32  

𝑷𝑭𝑨 0.0036 0.0080 0.019 0.043 0.083 

𝑷𝑴𝑫 0.93 0.90 0.47 0.43 0.33 

Table 8 Performance of the SNR monitoring  

Other metrics 

The same simulations were conducted for a differential 

ratio and non-coherent simple ratio. The differential ratio 

was formed by using 𝑋 = 0.25 𝑌 = − 0.25 and 𝑍 = 0. 

This metric characterizes well the asymmetry of the 

correlation function. The correlation coefficient between 

the code error and this metric is 0.64 which is higher than 

the simple ratio metric. Table 9 summarizes the 

performance of this detector. No major improvement is 

obtained for the differential ratio compared to the simple 

ratio metric. Moreover the comparison in term of 

performance is difficult as the observed 𝑃𝐹𝐴 are not the 

same for both tests.  

 
Figure 10 Correlation between code pseudorange error and 

differential ratio metric (𝑀2) 

 

Theoretical 𝑷𝑭𝑨 0.027  0.046 0.072 0.11 0.16 

𝑷𝑭𝑨 0.007 0.012 0.023 0.040 0.069 

𝑷𝑴𝑫 0.36 0.30 0.24 0.091 0.0 

Table 9 𝑃𝐹𝐴 and 𝑃𝑀𝐷 performed by monitoring the differential 

ratio metric  

Finally a simple ratio non coherent test metric was 

implemented on the model of narrowband receiver, but 

the 3
rd

 order PLL is replaced by a second order FLL with 

a 5 Hz loop bandwidth. The estimation of the frequency 

error is based on the non-coherent differential arctangent 

discriminator. The metric is formed with 𝑋 = 0.25 and 

𝑌 =  0. The detection thresholds were determined a priori 

by simulating correlator output affected by thermal noise 

only. The results obtained in term of 𝑃𝐹𝐴 and 𝑃𝑀𝐷  are 

given in Table 10. Overall the performances of 𝑀3 ratio 

are similar to the performances of 𝑀1 and 𝑀2. It is 

therefore possible to implement a metric based test to 

detect the presence of multipath in a receiver using a FLL. 

 

 
Figure 11 Correlation between code pseudorange error and non 

coherent simple ratio metric (𝑴𝟑) 

 

Theoretical 

𝑷𝑭𝑨 
0.027  0.046 0.072 0.11 0.16 

𝑷𝑭𝑨 0.002 0.0054 0.012 0.025 0.047 

𝑷𝑴𝑫 0.63 0.52 0.30 0.21 0.18 

Table 10 𝑃𝐹𝐴 and 𝑃𝑀𝐷 performed by monitoring the non 

coherente simple ratio metric 

 

 

BOC(1,1) signal 

The simple ratio metric is tested with BOC(1,1) 

modulation with 𝑋 = 0.25 and 𝑌 = 0. The location of Y 

is chosen in the validity domain according to Figure 1. 

Firstly, it can be inferred from Figure 11 that the 

magnitude of the pseudorange errors is lower for the 

BOC(1,1) modulation than BPSK. The maximum error 

does not reach 5 meters for BOC(1,1), therefore the 

maximum tolerable error is reduced to 3.5 meters. Table 

10 shows that the metric is able to detect large errors even 

for BOC(1,1). Again, the errors observed do not have a 

sufficient amplitude to assess the performances for very 

low 𝑃𝐹𝐴. 
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Figure 12 Correlation between code pseudorange error and 

simple ratio metric for BOC(1,1) modulation 

Theoretical 𝑷𝑭𝑨 0.027   0.046 0.072 0.11 0.16 

𝑷𝑭𝑨 0.013 0.023 0.036 0.059 0.092 

𝑷𝑴𝑫 0.32 0.18 0.054 0.036 0.018 

Table 11 Performances of the simple ratio metric for BOC(1,1) 

Future work 

The processing of the LMS does not generate code error 

with amplitude of several tenth of meter when the 

received signal is the sum of a LOS signal and reflections. 

This phenomenon is partly due to the low probability to 

receive multipath with large or medium delays that 

generate large errors. Moreover the lifespan of the 

reflections do not exceed few seconds. Finally, the 

filtering effect of the multipath by the carrier loop 

because of the difference of Doppler frequency between 

the direct signal and the reflections also reduce the 

magnitude of the multipath error. Further work will focus 

on the testing of the multipath monitoring indicators on 

actual measurements in urban environment. The ability of 

the test to detect multipath error with large magnitude will 

be tested. Future work will also be conducted in order to 

consider the nominal distortion of the correlation due to 

other phenomenons such as evil-waveform in order to 

refine the detection thresholds. 

 

Conclusion 

This paper discussed the theoretical and simulated 

performance of a detection test based on correlation 

function distortion metrics. A new rigorous approach for 

the setting of the detection threshold is proposed. These 

thresholds enable to set the 𝑃𝐹𝐴 with a wider domain of 

validity. The sensitivity of the test is defined as the 

minimum 𝑆𝑀𝑅 at which the test is able to detect the 

multipath with a fixed 𝑃𝑀𝐷 . It is then possible to 

theoretically assess the performances of the test metrics. It 

was proven in the paper that a detector formed with the 

raw correlator outputs does not perform sufficiently in 

term of sensitivity. However, smoothing either the 

correlator outputs or the metric enable to narrow the 

confidence interval and therefore to significantly improve 

the sensitivity of the test. This improvement in term of 

𝑆𝑀𝑅 was quantized to 11 dB on a typical scenario. 

Finally the performances of the detector were assessed by 

simulation on a Land Mobile Satellite channel simulator 

coupled with a realistic GNSS receiver simulator. The 

correlation between the raw metric is low and therefore as 

expected the performance of such test are low. As 

theoretically proven, the smoothing of the correlator 

outputs highly improve the sensitivity of the test provided 

that the bandwidth of the filter is sufficiently high not to 

filter out the dynamic of the multipath. The performances 

of these tests were compared with a multipath detector 

based on the 𝑆𝑁𝑅 estimation. Even if the 𝑆𝑁𝑅 estimation 

shows promising detection abilities, the test based on 

filtered correlator outputs is more efficient to detect 

abnormally large code error. Finally similar performances 

were obtained for other existing and proposed metrics and 

other signals. 
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APPENDIX 
 

This appendix provides the proofs for the formulas that 

are used in the paper for the determination of the 

thresholds and the calculation of the sensitivity.  

 

I. Determination of detection thresholds 

with gaussianity assumption 
 

Simple ratio metric 

In order to calculate the standard deviation of the simple 

ratio metric, the first order development in Taylor series 

gives: 

 

𝐼𝑋

𝐼𝑌

=
𝜇𝑋 + 𝑛𝑋

𝜇𝑌 + 𝑛𝑌

≈
𝜇𝑋 + 𝑛𝑋

𝜇𝑌

(1 −
𝑛𝑌

𝜇𝑌

+ (
𝑛𝑌

𝜇𝑌

)
2

) 

 

At the second order (the zero means and higher order 

terms are not written): 

 

𝐸 [
𝐼𝑋

2
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2] =

1
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2 𝐸 [𝜇𝑋
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2] 

 

We also have: 

 

𝐸 [
𝐼𝑋
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] =
𝜇𝑋

𝜇𝑌

−
1
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Thus  
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Differential ratio metric 

In order to calculate the standard deviation of the 

differential ratio metric, the first order development in 

Taylor series gives: 
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The previous results can be used: 
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If X and Y do not have the same value: 
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II. Determination of detection thresholds 

with rigorous approach 
 

Simple ratio metric 

The expression of the Geary-Hinkley transform applied to 

𝑀 =
𝐼𝑋

𝐼𝑌
 is the following: 
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The expression is always positive except between the 

roots of the polynom then: 
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Differential ratio metric 

The expression of the threshold for the differential metric 

is derived from the thresholds of the simple ratio test.  

 

 

III. Determination of the sensitivity 
 

Simple ratio metric 

The bounds of the biased distribution can be found the 

same way as they were found to set the 𝑃𝐹𝐴. Here the 𝑃𝐹𝐴 

is replaced by the 𝑃𝑀𝐷 . 

The new distribution is bounded (with 𝑃𝑀𝐷) between 

𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑, 𝑀𝑃 and 𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑, 𝑀𝑃. 

These can be obtained with the Geary-Hinkley 

transformation. 

𝜇𝑋,𝑀𝑃 = 𝜇𝑋 + 𝛼𝐾𝑐𝑐(𝑋 − 𝜏) 

𝜇𝑌,𝑀𝑃 = 𝜇𝑌 + 𝛼𝐾𝑐𝑐(𝑌 − 𝜏) 

 

The bounds of the confidence interval of the metric 

affected by multipath become: 
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2)

− 

√
(2𝜇𝑋,𝑀𝑃𝜇𝑌,𝑀𝑃 − 2𝑚𝑀𝐷

2𝑐𝑜𝑣𝑋𝑌)
2

−

4(𝜇𝑌,𝑀𝑃
2 − 𝑚𝑀𝐷

2𝜎𝑌
2)(𝜇𝑋,𝑀𝑃

2 − 𝑚𝑀𝐷
2𝜎𝑋

2)

2(𝜇𝑌,𝑀𝑃
2 − 𝑚𝑀𝐷

2𝜎𝑌
2)

 

 

𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑, 𝑀𝑃 = 

−(−2𝜇𝑋,𝑀𝑃𝜇𝑌,𝑀𝑃 + 2𝑚𝑀𝐷
2𝑐𝑜𝑣𝑋𝑌)

2(𝜇𝑌,𝑀𝑃
2 − 𝑚𝑀𝐷

2𝜎𝑌
2)

+ 

√
(2𝜇𝑋,𝑀𝑃𝜇𝑌,𝑀𝑃 − 2𝑚𝑚𝑑

2𝑐𝑜𝑣𝑋𝑌)
2

−

4(𝜇𝑌,𝑀𝑃
2 − 𝑚𝑀𝐷

2𝜎𝑌
2)(𝜇𝑋,𝑀𝑃

2 − 𝑚𝑀𝐷
2𝜎𝑋

2)

2(𝜇𝑌,𝑀𝑃
2 − 𝑚𝑀𝐷

2𝜎𝑌
2)

 

 
Then two configurations described in Chapter IV are 

possible. 

 

Configuration 1: 

 
𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑, 𝑀𝑃 = 𝑈𝐵∄𝑀𝑃  

Where UB∄MP is the upper detection threshold set in order 

to set the 𝑃𝐹𝐴.  

Then: 

(−2𝜇𝑋,𝑀𝑃𝜇𝑌𝑀𝑃 + 2𝑚𝑀𝐷
2𝑐𝑜𝑣𝑋𝑌)

2
− 4(𝜇𝑌,𝑀𝑃

2 −

𝑚𝑀𝐷
2𝜎𝑌

2)(𝜇𝑋,𝑀𝑃
2 − 𝑚𝑀𝐷

2𝜎𝑋
2) = [−(−2𝜇𝑋,𝑀𝑃𝜇𝑌,𝑀𝑃 +

2𝑚𝑀𝐷
2𝑐𝑜𝑣𝑋𝑌) − 2𝑈𝐵∄𝑀𝑃(𝜇𝑌,𝑀𝑃

2 − 𝑚𝑀𝐷
2𝜎𝑌

2)]
2
  

 

After transformation transformations it becomes: 

 

𝑈𝐵∄𝑀𝑃
2 (𝜇𝑌𝑀𝑃

2 − 𝑚𝑀𝐷
2𝜎𝑌

2)

+ 𝑈𝐵∄𝑀𝑃(−2𝜇𝑋,𝑀𝑃𝜇𝑌𝑀𝑃

+ 2𝑚𝑀𝐷
2𝑐𝑜𝑣𝑥𝑦) + (𝑥2 − 𝑚𝑀𝐷

2𝜎𝑋
2)

= 0 
 

The unknown is α, and after replacing 𝜇𝑋,𝑀𝑃 and 𝜇𝑌,𝑀𝑃 by 

their expressions in function of α the equation becomes: 
 

𝛼2{[𝑈𝐵∄𝑀𝑃𝐾𝑐𝑐(𝑌 − 𝜏)]2

− 2𝑈𝐵∄𝑀𝑃𝐾𝑐𝑐(𝑌 − 𝜏)𝐾𝑐𝑐(𝑋 − 𝜏)

+ 𝐾𝑐𝑐(𝑋 − 𝜏)2} 

+𝛼{2𝑈𝐵∄𝑀𝑃
2𝜇𝑌𝐾𝑐𝑐(𝑌 − 𝜏)

− 2𝑈𝐵∄𝑀𝑃[𝜇𝑋𝐾𝑐𝑐(𝑌 − 𝜏)

+ 𝜇𝑌𝐾𝑐𝑐(𝑋 − 𝜏)] + 2𝜇𝑋𝐾𝑐𝑐(𝑋 − 𝜏)} 

+𝑈𝐵∄𝑀𝑃
2(𝜇𝑌

2 − 𝑚𝑀𝐷
2 𝜎𝑌

2)

+ 2𝑈𝐵∄𝑀𝑃(−𝜇𝑋𝜇𝑌 + 𝑚𝑀𝐷
2 𝑐𝑜𝑣𝑥𝑦) + 𝜇𝑋

2

− 𝑚𝑀𝐷
2 𝜎𝑋

2 = 0 
 

The lowest root of this equation is the sensitivity 

associated with the probability of missed detection 𝑚𝑀𝐷 . 
 

 

Configuration 2: 

 
𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑, 𝑀𝑃 = 𝐿𝐵∄𝑀𝑃  

Where UB∄MP is the upper detection threshold set in order 

to set the 𝑃𝐹𝐴.  

 

𝛼2{[𝐿𝐵∄𝑀𝑃𝐾𝑐𝑐(𝑌 − 𝜏)]2 − 2𝐿𝐵∄𝑀𝑃𝐾𝑐𝑐(𝑌 − 𝜏)𝐾𝑐𝑐(𝑋 − 𝜏)

+ 𝐾𝑐𝑐(𝑋 − 𝜏)2} 

+𝛼{2𝐿𝐵∄𝑀𝑃
2𝜇𝑌𝐾𝑐𝑐(𝑌 − 𝜏)

− 2𝐿𝐵∄𝑀𝑃[𝜇𝑋𝐾𝑐𝑐(𝑌 − 𝜏)

+ 𝜇𝑌𝐾𝑐𝑐(𝑋 − 𝜏)] + 2𝜇𝑋𝐾𝑐𝑐(𝑋 − 𝜏)} 

+𝐿𝐵∄𝑀𝑃
2(𝜇𝑌

2 − 𝑚𝑀𝐷
2 𝜎𝑌

2)

+ 2𝐿𝐵∄𝑀𝑃(−𝜇𝑋𝜇𝑌 + 𝑚𝑀𝐷
2 𝑐𝑜𝑣𝑥𝑦) + 𝜇𝑋

2

− 𝑚𝑀𝐷
2 𝜎𝑋

2 = 0 

 

The lowest root of this 2
nd

 order equation is the sensitivity 

associated with the probability of missed detection ThMD. 
 

Differential ratio metric 

Substitute 𝑋 by 𝑁, and 𝑌 by 𝑍 in the general expression  


