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Abstract—Machine-learning approaches for mental workload 

(MW) estimation by using the user brain activity went through 

a rapid expansion in the last decades. In fact, these techniques 

allow now to measure the MW with a high time resolution (e.g. 

few seconds). Despite such advancements, one of the 

outstanding problems of these techniques regards their ability 

to maintain a high reliability over time (e.g. high accuracy of 

classification even across consecutive days) without performing 

any recalibration procedure. Such characteristic will be highly 

desirable in real world applications, in which human operators 

could use such approach without undergo a daily training of the 

device. In this work, we reported that if a simple classifier is 

calibrated by using a low number of brain spectral features, 

between those ones strictly related to the MW (i.e. Frontal and 

Occipital Theta and Parietal Alpha rhythms), those features 

will make the classifier performance stable over time. In other 

words, the discrimination accuracy achieved by the classifier 

will not degrade significantly across different days (i.e. until one 

week). The methodology has been tested on twelve Air Traffic 

Controls (ATCOs) trainees while performing different Air 

Traffic Management (ATM) scenarios under three different 

difficulty levels. 

I. INTRODUCTION 

In the recent decades, research is focusing on the 
evaluation of user’s mental states based on his/her 
neurophysiological activity in operating environments. In 
this regard, the mental workload (MW) monitoring is of 
particular interest especially in safety-critical applications 
where human performance is often the least controllable 
factor. In fact, as the MW increases, it became harder to 
maintain the user’s task performance within an acceptable 
range, resulting then into an increasing of errors’ occurrence 
[1].  
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The theta (θ: over the frontal and the occipital sites) and 
alpha (α: over the parietal sites) rhythms of the 
electroencephalographic (EEG) signal have been taken into 
account in several studies because of their strong correlation 
with the MW variations [2], [3].  

In this regard, the application of machine-learning 
techniques (MLTs) to the MW evaluation based on the 
measurement of brain activity is growing continuously. In 
general, the use of these techniques allows to assess subjects' 
MW in a short time (few seconds), reaching high binary 
discrimination accuracy (DA~90%) [2], [5]. These 
algorithms are able to extract from a big amount of 
physiological data within a training dataset the most 
significant features closely related to the user’s mental state 
(i.e. MW). Then, based on those features it should be 
possible to assess the user’s MW level and to keep the DA 
stable across different days. Actually, one of the big 
concerns of the MLTs is related to the capability of such 
algorithms to extract from the training dataset only those 
neurophysiological features by which the reliability of the 
measure could remain stable over time, providing a high DA 
across different days. Nowadays, the effects of day-to-day 
fluctuations in the operator's brain signals have not been 
thoroughly assessed while operators are engaged in complex 
tasks. Different studies showed that the performance of 
classifiers in evaluating the different MW levels of the user 
dramatically decrease over days [6],[7]. Despite the EEG is 
not a stationary process, let us assume that few 
neurophysiological features of the user related to the MW 
could remain enough stable over time. In this way, a 
classifier trained with those features should not degrade his 
DA over time. On the contrary, it will be indicative that it 
becomes too specific to the training dataset (overfitting). The 
reduction of features used by the classifier during its 
calibration phase could mitigate the overfitting and improve 
the reliability and stability of the DA over time [8]. 

In this work, we hypothesized that if a simple classifier is 
calibrated by using a low number of brain spectral features 
between those ones strictly related to the MW (i.e. Frontal 
and Occipital θ, Parietal α rhythms), those features will make 
the classifier DA high across the days. In particular, the DA 
of a linear classifier across an entire week has been 
investigated by using EEG data related to MW collected in a 
professional school of Air Traffic Management (ATM) while 
Air Traffic Controllers (ATCos) trainees were performing 
several ATM scenarios characterized by increasing level of 
difficulty. 
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II. MATERIALS AND METHODS 

A. Experimental protocol 

Twelve ATCo trainees (age 25±3) from ENAC (Ecole 
Nationale de l’Aviation Civile, Toulouse, France) have been 
involved in this experimentation. In particular the 
experimental procedures involving human subjects described 
in this paper were approved by the Institutional Review 
Board. The experimental task used in this study was the 
Labyrinth (LABY, Figure 1), a functional simulated ATM 
environment, developed by ENAC [9]. The difficulty of the 
task can be altered according to how many aircraft the 
participant have to control, the number and type of 
clearances required over the time and the number/trajectory 
of other interfering flights. Subjects were asked to execute 
the LABY task under three difficulty conditions (Easy [E], 
Medium [M] and Hard [H]) chosen by ATM Experts at 
ENAC. Controllers have been trained to use LABY before 
starting with the experimentation. The experimental protocol 
has been composed of three recording sessions performed on 
three different days. The first two sessions have been 
performed in two consecutive days named hereafter as Day 1 
and Day 2. The last session has been performed after one 
week from the last one (Day 9). Each session consisted in 
twelve runs, in which subjects performed the three LABY 
conditions (E, M, H) four times each in a randomized 
sequence. Each condition lasted 3 minutes. Also, in order to 
avoid habituation and expectation effects, some task 
parameters have been randomly changed across the 
experimental sessions. In summary, the whole dataset has 
been composed of twelve triplets of conditions (4 triplets of 
E, M, H conditions for each of the three experimental days).  

 

Figure 1.  The LABY task, developed by ENAC 

B. EEG-based workload index 

Neurophysiological signals have been recorded by the 
digital monitoring BEmicro system (EBNeuro, Italy). 
Thirteen EEG (FPz, F3, Fz, F4, AF3, AF4, P3, Pz, P4, POz, 
O1, Oz, O2) and one vertical EOG channels have been 
collected simultaneously with a sampling frequency of 256 
(Hz). All the EEG electrodes have been referenced to both 
the earlobes, and the impedances of the electrodes were kept 
below 10 (kΩ). The acquired EEG signals have been 
digitally band-pass filtered by a 4

th
 order Butterworth filter 

[1÷30] (Hz) and the EOG signal has been used to remove 
eyes-blink artifacts from the EEG data. The EEG signal has 
been then segmented into epochs of 2 seconds, shifted of 
0.125 seconds and the Power Spectral Density (PSD) has 
been calculated for each EEG epoch by using only the 

frequency bands directly correlated to the MW (frontal and 
occipital θ and parietal α bands, [3-12] (Hz)). 

C. Classifier features selection 

In this study we chose to use a StepWise Linear 
Discriminant Analysis (SWLDA) regression [2] that is one 
of the best outperforming classifiers, in fact with respect to 
other methods it has the advantage of having automatic 
features extraction, so that insignificant terms are statistically 
removed from the model. In particular, a three-classes 
SWLDA has been used to select the most relevant EEG 
spectral features, within the training dataset, to discriminate 
the MW level among the three task conditions (E [Label = 
0], M [Label = 0.5] and H [Label = 1]), and then the linear 
discriminant function has been evaluated to test the 
reliability of the feature selection criteria. For each PSD 
epoch, only the frequencies strictly related to the MW have 
been considered to train and test the classifier. 

In a SWLDA regression, the input features are usually 
weighted by using ordinary least-squares regression to 
predict the target class label (i.e. 0, 0.5, 1). At each step, a 
new term can be added to or deleted from the model (if p-
value < αENTER or if p-value > αREMOVE). This process goes on 
until the predefined number of significant features is reached 
(IterationMAX), unless there are no more features satisfying 
the entry (αENTER) and the removal (αREMOVE) conditions [10]. 
Normally, it is possible to optimize a SWLDA regression by 
tuning all or few of the three parameters available in the 
algorithm (αENTER, αREMOVE and IteractionMAX). For reducing 
the degrees of freedom of the problem, we chose to not 
impose constrains over the first two parameters αENTER, 
αREMOVE, but to tune only the IteractionMAX value. In other 
words, a “forward SWLDA” has been implemented. In this 
way, it was possible to impose the SWLDA to select a 
features’ number equal to the number of iterations 
(IterationMAX). Despite no constrains on the αENTER and the 
αREMOVE parameters, features are included in the model in 
order of significance (i.e. the first feature added into the 
model will be the most significant one, and so on). In this 
way, we can be sure that the first features included in the 
model are also the most significant ones. In particular, we 
performed simulations by using three different values of the 
IterationMAX parameter, that is 5%, 50% and 100% of the 
available features (Frontal and Occipital θ, Parietal α). We 
used the 5% to test our hypothesis, so that to have a low 
number of features used for the calibration of the classifier. 
As we stated before, we expected that by using a low number 
of features (i.e. 5%) the DA of the classifier would be 
reliable over time. On the contrary, in the other cases (50% 
and 100%) the DA should decrease over time.  

D. Mental workload index based on EEG activity 

The linear discriminant function (ytest(t)) for each window 
of 2 seconds has been computed by using the coefficients 
(weights: witrain and bias: btrain) returned by the SWLDA 
function (equation 1, where fitest(t) represents the PSD matrix 
of the testing dataset at the time sample t, and of the i

th
 

feature). Finally, we applied a moving average of 8 seconds 
(8MA) to the ytest(t) function in order to smooth it out by 



  

reducing the variance of the measure, and we defined it as 
EEG-based workload index (WEEG). Here below the 
SWLDA discriminant function (1) and the WEEG index (2) 
equations are reported. 

ytest(t) = ∑iwi train ∙ fi test(t)+btrain          (1) 

WEEG = 8MA (ytest(t))              (2) 

E. Cross-validations between days 

For each subject, different cross-validations have been 
performed by training the classifier with one triplet of E, M, 
H conditions and by testing it over the other triplets. In 
particular, to investigate the stability of the measure across 
different days, we considered three types of cross-
validations. The Intra cross-validation type, where the 
training and testing triplets belonged to the same day; the 
Short term cross-validation type, where the training triplets 
belonged to Day 1 (Day 2) and the testing triplets to Day 2 
(Day 1); and finally, the Medium term cross-validation type, 
where the training triplets belonged to Day 1 or Day 2 (Day 
9) and the testing triplets to Day 9 (Day 1 or Day 2). 

F. Performed analyses 

Discriminant Accuracy (DA) analysis: We performed 
analysis by using different IterationMAX values, the 5%, 50% 
and 100% of the available features. For each testing triplet, 
we calculated the WEEG indexes. At this point, Area Under 
Curve (AUC) values of the Receiver Operating 
Characteristic (ROC, [11]) have been calculated by 
considering couples of WEEG distributions (E vs H, M vs H 
and E vs M) in order to test the DA of the classifier.  

Workload distribution analysis (WEEG): For each subject 
we evaluated the WEEG distributions over the testing dataset, 
by considering the best IterationMAX value resulting from the 
DA analysis. Two two-ways repeated measures ANOVA (CI 
= .95) analyses have been performed, one on the AUC values 
and the other one on the WEEG distributions. In the first one, 
we averaged the AUC values related to the three difficulty 
levels (E vs H, M vs H and E vs M) considering as within 
factors the “IterationMAX values” (5%, 50%, 100%) and the 
“three cross-validation types” (Intra, Short term, Medium 
term). In the second one, we fixed the IterationMAX value 
(based on the first ANOVA results) and we considered the 
WEEG by using as within factors the three “conditions” (E, M, 
H) and the three “cross-validation types” (Intra, Short term, 
Medium term). Post-hoc tests (Bonferroni correction for 
multiple comparisons) have been performed to assess 
significant differences among all pairs of levels of the 
considered factors. Before every statistical analysis, we used 
the z-score [12] correction formula to normalize the different 
behaviors of the subjects. In particular, we calculated this 
score by using the mean and the standard deviations of the 
related values (i.e. AUC, scores) over the conditions (i.e. 
classifiers, cross-validations, difficulty levels). 

III. RESULTS 

Discriminant Accuracy (DA): Figure 2 represents the 
error bars (CI = .95) related to the mean AUC values of the 
classifier over the E vs H, M vs H and E vs M conditions by 

using the three IterationMAX values (5%, 50%, 100%) and the 
three cross-validation types (Intra, Short term and Medium 
term). ANOVA results highlighted a significant main effect 
between the two factors (F(4,44)=3.81, p=.01). The post-hoc 
test highlighted a significant decrement of the AUC values 
within all the cross-validation types (Intra, Short term and 
Medium term) by considering both the 50% and the 100% of 
the available EEG features (all p<10

-3
), but no significant 

differences across the different cross-validation types have 
been found by considering the 5% of features (all p=1). Also, 
despite there was no significant difference among the AUC 
values achieved by using the 5%, 50% and 100% of the 
features within the Intra cross-validations (all p>.3), the post-
hoc test highlighted a significant decrement of the AUC 
values between the 5% of features and the 50% and 100% of 
features within the Short term and the Medium term cross-
validation types (all p<10

-3
).  

 

Figure 2.  Error bars (CI = .95) related to the normalized AUC values of 

the classifier over the E vs H, M vs H and E vs M conditions by using the 

three IterationMAX values (5%, 50%, 100%) and the three cross-validation 

types (Intra, Short term, Medium term). The absolute AUC values have 

been also reported (red writings). 

 

Figure 3.  WEEG values distribution across the three difficulty levels 

across subjects.  

 

Neurophysiological workload distribution (WEEG): 
ANOVA results showed a significant interaction between the 
two factors (F(4,44)=19.14, p=10

-6
). The post-hoc test 

highlighted that the WEEG distributions related to the three 
difficulty levels (E, M, H) were significantly different for 
each cross-validation type (all p<10

-6
). Furthermore, no 

significant differences have been shown between each WEEG 
distribution related to the three MATB difficulty levels 
among the cross-validation types (all p>0.6). Figure 3 
represents the WEEG values measured for each difficulty level 
(E, M, H) and for each subject. 



  

IV. DISCUSSION 

The ATM environment imposes multiple concurrent 
demands on the operator, including air traffic monitoring, 
anticipating loss of separation between aircrafts, and 
intervening to resolve conflicts. The assessment of the MW 
associated with operating in such complex systems has long 
been recognized as an important issue [13]. MLTs have been 
widely used to assess the MW of the operators by using their 
brain activity [2], [5]. One of the big problems in using these 
approaches is that the MW measure does not remain stable 
over time, unless a frequent recalibration procedure. The 
reliability of such methodologies is of great importance for 
their effective use in real work contexts. The necessity to re-
calibrate the system every day makes such kind of approach 
unsuitable in operative environments.  

In addition, there are evidences in literature in which it has 
been demonstrated that, as long as a subject is trained to do a 
specific task, the cognitive processes required for performing 
such task would be always present over time [3]. In other 
words, it would be possible to take into account certain 
cerebral features strictly related to the MW of the user 
(Frontal and Occipital θ, Parietal α), that remain enough 
stable over time. In this work, we observed that if a classifier 
is calibrated by using a low number of cerebral features 
(among the ones strictly related to the MW of the operator), 
the reliability of the system will not degrade across days. In 
this context, we could speculate that the classifier is able to 
identify those brain features always involved in the execution 
of the proposed task, since the DA remained stable over 
time. The described algorithm has been tested on twelve 
ATCos trainees while performing an ATM task under three 
different difficulty levels (E, M, H) resembling different 
possible ATM scenarios. Results demonstrated that if a 
SWLDA regression is calibrated by using a low number of 
features (5% out of the total available features) a stable MW 
measure across the days is obtained. The consequence of this 
finding is that within a week, it will not be necessary to 
recalibrate the algorithm and the classification system with 
new user’s EEG data. In addition, the proposed algorithm 
has been able to differentiate significantly the MW over the 
three experimental conditions (E, M, H). 

V. CONCLUSION 

In this work, we have provided evidences that if a 
SWLDA classifier is used to select a low number of EEG 
spectral features related to the MW of the user, those 
features will make the classifier DA stable across different 
days. In other words, if the classifier selects certain cerebral 
features on Monday, those features can be used within one 
week, without degradation of the system’s reliability. 
However, the study has several limitations. The first one is 
that the reliability of the measure has been tested only in a 
short period of one week. A second limitation is that 
different variables have been kept under control for the 
purpose of this experimentation. For example, each subject 
took part to the experiment at the same time over the 
different days; in addition the simulation scenario was not 
too much ecological in terms of time duration (the work shift 
for an ATCo is of ~40 minutes) and performed tasks (the 

ATCos use to talk with their colleagues and with the pilots). 
In addition, an open question that has to be investigated 
following the results of the actual study is if it exists the 
possibility to identify a subset of EEG features that are 
maintained stable even between different subjects. Taking 
into account all these limitations, there is the need to perform 
further experiments to test the proposed approach in a more 
real ATM work scenario, by considering a longer period of 
stability (“Long-term”) than one week.    
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