
HAL Id: hal-01226729
https://enac.hal.science/hal-01226729

Submitted on 10 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Looking through the Eye of the Mouse: A Simple
Method for Measuring End-to-end Latency using an

Optical Mouse
Géry Casiez, Stéphane Conversy, Matthieu Falce, Stéphane Huot, Nicolas

Roussel

To cite this version:
Géry Casiez, Stéphane Conversy, Matthieu Falce, Stéphane Huot, Nicolas Roussel. Looking through
the Eye of the Mouse: A Simple Method for Measuring End-to-end Latency using an Optical Mouse.
UIST ’15, Nov 2015, Charlotte, United States. pp.629-636, �10.1145/2807442.2807454�. �hal-01226729�

https://enac.hal.science/hal-01226729
https://hal.archives-ouvertes.fr


Looking through the Eye of the Mouse: A Simple Method
for Measuring End-to-end Latency using an Optical Mouse

Géry Casiez1, Stéphane Conversy2, Matthieu Falce3, Stéphane Huot3 & Nicolas Roussel3

1Université de Lille, 2Université de Toulouse - ENAC, 3Inria Lille, France
gery.casiez@univ-lille1.fr, stephane.conversy@enac.fr
{matthieu.falce, stephane.huot, nicolas.roussel}@inria.fr

ABSTRACT
We present a simple method for measuring end-to-end la-
tency in graphical user interfaces. The method works with
most optical mice and allows accurate and real time latency
measures up to 5 times per second. In addition, the tech-
nique allows easy insertion of probes at different places in
the system – i.e. mouse events listeners – to investigate the
sources of latency. After presenting the measurement method
and our methodology , we detail the measures we performed
on different systems, toolkits and applications. Results show
that latency is affected by the operating system and system
load. Substantial differences are found between C++/GLUT
and C++/Qt or Java/Swing implementations, as well as be-
tween web browsers.

Author Keywords
Latency; lag; latency measure; latency jitter; computer
mouse.

ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies

INTRODUCTION
The end-to-end latency (or lag) of a graphical user interface
is commonly defined as the duration between a user action
(e.g. movement of an input device or human limb) and the
corresponding on-screen visual feedback (e.g. cursor move-
ment, object displacement). All interactive systems have
some latency introduced by input and output devices, net-
work, events handling and processing. Probably due to the
difficulty to measure it and to the multiple factors that can in-
fluence its variability, latency is only occasionally reported on
input or output devices datasheets, interactive systems speci-
fications or HCI experiments reports.

Latency and its variation over time, called latency jitter, are
known for a long time to affect human performance and qual-
itative perception [8, 16, 12, 4]. Latency with computer mice
has been studied in Fitts’ law experiments where it has been
shown to have an interaction with the task index of diffi-
culty [8, 11, 15]. A latency of around 50 ms is known to

affect performance in mouse-based pointing tasks and latency
jitter above 20-40 ms is likely to be noticed [4]. The effect is
even more pronounced in direct touch interaction, where it
has been shown that latency as low as 2 ms can be perceived
and that performance is affected from 20 ms [10, 5].

Considering its importance in touch/direct-interaction sys-
tems, researchers have developed methods to ease its mea-
surement [1]. However, there is no such easy and affordable
measurement method for traditional mouse-based interaction.
The most common procedure to measure end-to-end latency
is to use an external camera to record both the input device
(or finger) and the associated response on screen, then to an-
alyze the video to match the two related events in order to
count the number of elapsed frames between them [7, 16, 10,
14, 11, 15]. Since this process is generally done by hand,
getting one measure of latency is already a tedious and er-
ror prone process, whatever the interactive system. Getting
repeated measures is thus cumbersome and time consuming,
which can be one of the reasons why latency is rarely mea-
sured and mentioned in HCI experiment reports.

We believe that as HCI researchers, it is essential to measure
and report the average latency and the latency jitter observed
during our experiments, to enable more accurate replication,
but also in case latency reveals to be a confounding factor
(especially in Fitts’ law and reaction time experiments). For
practitioners and users, it is also important to provide meth-
ods to determine and troubleshoot how hardware, toolkits,
softwares and parameters tuning can affect the latency of in-

Figure 1: Sample setup used, with a Logitech MX310 mouse positioned
on a horizontally-oriented laptop display. A particular texture is dis-
played and moved under the mouse sensor to fake displacements. Other
mice discussed in the paper are positioned around the display.

http://www.acm.org/about/class/ccs98-html#H.5.2


teractive systems. As suggested in [3], manufacturers and ap-
plication programmers would be able to make sure that a rel-
ative gain in latency might be perceived by users to enhance
the overall user experience. For that, we need a simple and
affordable measurement method but that accounts for all the
“real-world” parameters that are prone to influence latency.

The measurement method we introduce, consists in position-
ing an unmodified optical computer mouse on a monitor, dis-
playing and moving a particular texture to fake a mouse dis-
placement, and sampling the corresponding mouse events.
Latency is then measured as the time elapsed between the tex-
ture update and the movement of the on-screen pointer. This
method contributes to:

1 - a lightweight method to measure end-to-end latency in
real time;

2 - the possibility to perform multiple measures up to 5 times
per second in real time;

3 - the ability to insert probes at different levels of the system
– e.g. drivers, system pointer, toolkits or APIs – thanks to
the use of a common clock (which is hardly possible with an
external measurement system such as a video camera). This
allows determining where the latency comes from;

4 - the measurement of latency and jitter on different operat-
ing systems, toolkits and in different conditions.

RELATED WORK
We first detail previous work showing the impact of latency
and latency jitter on performance before presenting existing
latency measurement techniques.

Impact of latency on performance
MacKenzie and Ware evaluated how latencies of 8.33, 25, 75
and 225 ms affect performance using a mouse in a pointing
task of index of difficulties (IDs) up to 6.02 bits [8]. They
showed a significant interaction between lag and the ID with
an increasing degradation of the performance as the tasks get
more difficult, the degradation being particularly important
for latencies of 75 and 225 ms. In their experiment, they
introduced additional latency to the system but they did not
measure and report the actual one. In a Fitts’ law experiment
using a computer mouse, Pavlovych and Stuerzlinger also ob-
served a more pronounced impact of latency with smaller tar-
gets, but did not notice any drop of performance up to 58
ms of latency when acquiring targets as small as 14 pixels
wide [11]. In a similar experiment with targets of 12 pixels,
Teather et al. measured a significant 15% decrease of perfor-
mance between 35 and 75 ms end-to-end latency [15].

Concerning latency jitter, Ellis et al. have shown that users
are able to detect a change in latency of less than 33 ms
and probably less than 16.7 ms, independently of the base
latency [4]. Pavlovych et al. measured the effect of both la-
tency and latency jitter in a target following task [12]. Using a
35 pixels target, they showed that errors increase very quickly
for latencies above 110 ms and latency jitter above 40 ms.

On touch systems, it has been shown that users are able to
perceive a latency of 2 ms (6 ms in average) during a dragging
task [10]. For tapping tasks, performance starts to decrease
from 20 ms latency [5].

In summary, latency around 50 ms impacts performance in
mouse-based pointing tasks, with a more pronounced effect
as target size decreases (minimum target size evaluated: 12
pixels). Variations of latency (latency jitter) above 20-40 ms
are also likely to be noticed and detrimental to performance.

Latency measurement techniques
The classical approach to measure latency is to record a video
of both the input device and graphical output and then to ana-
lyze the images in order to measure the end-to-end latency [7,
16, 10, 14, 11, 15].

Liang et al. measured the latency of a Polhemus Isotrak sen-
sor by mounting it on a pendulum [7]. They used a video
camera to record the periodic motion of the pendulum to-
gether with the timestamps of the device events displayed on
the screen. They measured latency by playing back the video
frame by frame, allowing them to determine the on-screen
timestamp corresponding to the pendulum neutral position.
They then processed their events log file to determine the
timestamp of the associated neutral position. The difference
between the two timestamps provided the overall latency.

Ware and Balakrishnan used a similar setup to measure the
latency of a Polhemus Isotrak and a Logitech ultrasonic sen-
sor [16]. Their replaced the pendulum by a stepper motor
driven pulley assembly mounted on top of the computer mon-
itor. They moved the attached sensor back and forth, at a con-
stant speed. The latency was measured by playing back the
video frame by frame, measuring the distance between the
sensor and its corresponding on-screen position divided by
the controlled moving speed.

Swindells et al. measured latency in a VR setup using a
phonograph turntable equipped with a tracked marker [14].
The virtual position of the marker was video-projected on the
turntable and the whole setup was video recorded. Latency
was determined by the ratio of the angular distance between
the two markers and the turntable angular speed. The authors
also proposed a second method consisting in connecting the
RGB wires of the VGA monitor to A/D converters. Latency
was measured as the time from when the software renders a
color scene until the software detects a voltage change. In a
similar way, Mine used an oscilloscope to detect the breaking
of a beam of light between a photo diode/LED by the input
device (a tracker) mounted on a pendulum [9]. A photo diode
connected to the oscilloscope was mounted on the display to
measure the time when the display turned from black to white
upon detecting the input device crossed the photo diode/LED.

Pavlovych and Stuerzlinger measured mouse to display la-
tency by moving a mouse back and forth along the top bezel
of a monitor at a rate of about 1 Hz [11]. Movements of both
the mouse and the cursor were recorded with a digital cam-
era and analyzed by measuring the time-frame differences of
their corresponding phases of motions. They reported laten-
cies between 33.2 ± 2.8 ms and 102.9 ± 3.3 ms, depending



on the type of mouse (wired or wireless) and screen (CRT,
LCD or DLP projection screen). They found a latency equal
to 43.2 ± 2.7 ms using a wired mouse and an LCD monitor.

In a similar work, Teather et al. positioned a mouse in front
of the display behind a Styrofoam pendulum [15]. The mouse
measured the displacement of the pendulum oscillating at
approximately 0.8 Hz and updated a line displayed on the
screen, following the pendulum’s arm. The manual analysis
of the video provided the latency. Using a wired mouse and
a 120 Hz CRT monitor, they found an average 35 ± 2 ms la-
tency. Steed also proposed a method to automatically extract
the position of the pendulums, fit sine curves and determine
their phase shift to measure the latency [13].

In the context of touch screens, Ng et al. measured the la-
tency by video-recording a finger and the associated moving
object at 240 Hz. The finger was moved along a ruler at a
speed as constant as possible. By analyzing the video, the la-
tency was computed by measuring the distance between the
finger and the displayed object, and by estimating the finger
speed using the distance traveled between successive frames.
They found the latency to be typically between 50 and 200
ms. Using a high speed video camera, microphone and ac-
celerometer Kaaresoja and Brewster measured the visual, au-
dio and tactile latencies of different smart phones [6]. They
found latencies from 60 and up to 200 ms, depending on the
smartphone and the application. Bérard and Blanch proposed
to measure latency on touch surfaces by following a wheel
spinning at a constant speed with a finger [1]. Using a Wa-
com Cintiq display with a 3.4 GHz processor, they found an
average latency of 43 ms. Despite its simplicity this method
is obviously not applicable to mouse based interaction.

To sum up, methods based on video recording are the most
commonly used to measure latency. But they introduce prob-
lems and biases related to the frame rate (each measure cannot
be lower than the capture period), spatial resolution (mea-
sured distances cannot be below the camera pixel accuracy,
and high frame rate camera typically have low resolutions)
and blur (fast moving objects get blurred, and since high
frame rate cameras require good light exposure for the image
to be sharp, this can also wash out the image from the mon-
itor). Good measures require perfect alignment between the
camera, physical device and screen and good lighting condi-
tions. In addition videos generally require to be processed by
hand, which is a time consuming and error prone process. Fi-
nally, these methods help at measuring end-to-end latency but
do not allow to insert probes at different levels of the system
in order to finely determine where the latency comes from.

MEASURING LATENCY USING AN OPTICAL MOUSE
A modern computer mouse consists of a small camera com-
prising a pixel array between typically 18x181 and 30x302

pixels, a lens and an LED or laser to illuminate the surface.

1http://www.alldatasheet.com/datasheet-pdf/pdf/520966/AVAGO/
ADNS-2610.html
2http://www.pixart.com.tw/upload/ADNS-9800%20DS S V1.
0 20130514144352.pdf

The microcontroller processes the images at a high framer-
ate, typically between 1,500 Hz and 12,000 Hz, to detect vis-
ible features in the image and measure their translation be-
tween consecutive images. The measured displacements are
reported to the computer as counts. The sensor has a rel-
ative responsivity above 80% typically for wavelengths be-
tween 500 nm (green) and 950 nm (infra-red)1,2. The cam-
era adjusts its shutter to keep the brightest pixel at a given
value. The lens determines the dimensions of the area un-
der the mouse recorded by the camera. Laser mice typically
record a smaller area to see finer details.

Our method for measuring end-to-end latency consists in po-
sitioning a standard computer mouse at a fixed location on an
horizontally oriented monitor. Alternatively, one can use ad-
hesive (e.g. Blu-Tack) to stick the mouse on a vertical monitor
but should take care not to increase the distance between the
sensor and the screen too much in order to avoid blurring the
captured image. Depending on the shininess of the screen sur-
face, the LED of the mouse has to be obscured with e.g. black
tape, if the mouse cursor hardly or does not move when mov-
ing the mouse on the monitor displaying a white background.
Once the mouse is correctly set up on the display, a given tex-
ture is displayed on the screen and moved of a controlled dis-
tance (e.g. 1px), while a timestamp is recorded. The texture
displacement is intended to create a well-controlled closed-
loop by producing a fake mouse displacement at a given and
measurable time, which will thus be detected and reported
by the mouse sensor to the system as a normal event. Upon
reception of this event and subsequent ones (drivers, system
pointer, toolkit, etc.), successive timestamps are recorded and
latency can be measured at several levels.

Finding the right texture to display
The main assumption of our method is that the texture we
display and its translation will produce a displacement that
(i) can be detected by the mouse sensor; and (ii) can subse-
quently produce a system cursor displacement.

Mice resolution is reported in CPI (counts per inch) which
corresponds to the smallest displacement they can report. It
starts at 400 CPI and can go up to 12,000 CPI3. Screens res-
olution, in PPI (pixels per inch), is far lower, around 100 PPI
for current average-end LCD monitors, while high-resolution
monitors can go up to 300-400 PPI. This means that a transla-
tion of a single pixel on the highest-end monitor is larger than
what can measure the lowest-end mouse. As a result, moving
a texture of one pixel ensures the displacement can be de-
tected by the mouse. It is also the best case scenario to make
sure that a part of the texture remains visible by the mouse
sensor after it is translated: the mouse needs to see common
features between two images to compute a displacement.

Moving the texture of one pixel is likely to produce mouse
reports as low as 1 count. Thus, we have to make sure that
1 count produces a displacement of the system pointer of at
least 1 pixel after the operating system transfer function is
applied. Casiez and Roussel have shown that each operating

3http://gaming.logitech.com/en-us/product/
g502-proteus-core-tunable-gaming-mouse

http://www.alldatasheet.com/datasheet-pdf/pdf/520966/AVAGO/ADNS-2610.html
http://www.alldatasheet.com/datasheet-pdf/pdf/520966/AVAGO/ADNS-2610.html
http://www.pixart.com.tw/upload/ADNS-9800%20DS_S_V1.0_20130514144352.pdf
http://www.pixart.com.tw/upload/ADNS-9800%20DS_S_V1.0_20130514144352.pdf
http://gaming.logitech.com/en-us/product/g502-proteus-core-tunable-gaming-mouse
http://gaming.logitech.com/en-us/product/g502-proteus-core-tunable-gaming-mouse


Figure 2: Raw images captured using an Avago ADNS-2610 sensor. From left to right: white background on a 86 PPI Dell 1905FP; black dots on a
white background with no LED occlusion (same display); same pattern with LED occluded using black tape (same display); white background on a 148
PPI Apple Retina display; black letter ’d’ on a white background captured on the same display. Note that pixels from the sensor range between 0 and
63. The above images are displayed using re-scaled values between 0 and 255 for better visibility.

system uses custom transfer functions, but their reverse engi-
neering helps determining the appropriate mouse configura-
tion panel settings [2]. On Windows XP, 7, 8 and 10, setting
the slider to one of the 2 last positions when the “enhanced
pointer precision” box is checked results in at least a 1 cur-
sor pixel displacement for every 1 count. When “enhanced
pointer precision” is unchecked, any position higher than the
middle one works. On Linux, any configuration of the set-
tings in the mouse configuration panel works. On OS X, “ac-
celeration” needs to be disabled4 because all settings for non-
linear transfer functions prevent to systematically get at least
one pixel displacement for one count.

We first tried to display and move different textures designed
on the rule of the thumb (grids, images, Perlin noise, ran-
dom noise . . . ) but only some of those sometimes produced a
mouse event. Obviously we needed a less arbitrary and more
systematic approach.

What the mouse sees
To help finding the right texture to display, we first needed to
get the raw image from a mouse sensor in order to better un-
derstand “what the mouse is seeing”. We opened a 400 CPI
Logitech M-BT58 mouse and wired its Avago ADNS-26101

sensor to an Arduino board. We chose this mouse as we could
easily find its datasheet, it is widely available and it corre-
sponds to the lowest mouse resolution available (our worse
case scenario). We set the sensor in pixel grab mode, put
the mouse on a LCD screen displaying white background and
black text (without anti-aliasing), and sent the 18×18 cap-
tured pixels to a custom made application. This first helped
us to figure out the physical dimensions of the area recorded
by the sensor, which is around 1×1mm. On a 100 PPI screen,
this corresponds to about 3×3 visible pixels, giving us the
size of our unit pattern for the texture. Figure 2 shows images
captured using the sensor.

We noticed on the captured images that the screen’s pixel grid
and the corresponding small physical separation between its
pixels are visible (Fig. 2), which is known as the “screen
door effect”5. This explains why moving a mouse with the
LED obscured on a white on-screen image is still producing
pointer movements: the sensor detects the fixed pixel grid
which is helpful to compute the mouse displacements (this

4Using the command defaults write .GlobalPreferences
com.apple.mouse.scaling -1 and logging out and back in to apply
the setting.
5http://en.wikipedia.org/wiki/Screen-door effect

is how the very first optical mice were working, with a grid
printed on a dedicated pad). As we will see below, the screen
door effect proved to be an important factor for reliable tex-
ture displacement detection.

What we decided to show
To systematically investigate the textures that could fake a
mouse displacement, we built 512×512 pixels textures based
on the repetition of all the possible 3×3 patterns composed
of black and white pixels (we discarded gray levels as they
reduce the contrast of the images and reduce the chance of
finding relevant patterns). The mouse was roughly aligned
with the screen edges, so the pixels of the sensor are approx-
imately aligned with the screen ones. We tested the resulting
29 patterns using 9 offset positions and 15 repetitions. The
offset position corresponds to a translation of the starting po-
sition of a texture, between 0 and 2 pixels in x and y. This
ensured invariance with respect to the position of the mouse
sensor on the screen, avoiding to get a texture working just by
chance because the sensor would be well aligned with it.

We developed a testbed application in C++ using the Qt 5
framework. Textures were pre-computed and stored as PNG
images. A trial consisted in displaying a texture with no anti-
aliasing – making sure that one pixel of the texture was cor-
responding to one pixel on screen – and moving it one pixel
along the x screen axis. Trials with no mouse event received
within 200 ms were marked as failed.

We ran this experiment with several mice and monitors. After
that we visually compared the patterns with the higher suc-
cess rate for each pair of mouse and monitor to select the
most robust ones over all the conditions. The patterns that
work best are those that cancel the screen door effect: if the
physical gaps between pixels are visible, the mouse sensor is
likely to detect them as visual features that do not move or
disappear between two captured frames, while other features
in the texture move. In such situations, the mouse is not able
to compute a displacement. As a result, two adjacent pixels
in a texture cannot be white, and working textures are those
made of oblique and non adjacent lines of pixels (e.g. a rep-
etition of the pattern displayed in Figure 3).

Evaluating the texture in different conditions
We evaluated the texture presented in Figure 3 with 10 differ-
ent mice and with 2 monitors using the previously described
application on a laptop MacBook Pro Retina 15-inch (Mid
2014) 2.5 GHz, 16GB Ram, SSD hard drive, 1920×1200

http://en.wikipedia.org/wiki/Screen-door_effect


Dell 1905fp (86 PPI) Apple Retina (148 PPI)
SR mean std SR mean std

Apple A1152 (Agilent ADNS-2051) 83.2 % 62.0 ms 14.1 ms 98.8 % 64.1 ms 6.0 ms
Dell M-UVDEL1 (Agilent S2599) 18.0 % 62.8 ms 20.1 ms 0.0 % - -
Dell MS111-L 0.0 % - - 0.0 % - -
IBM MO09BO (Agilent H2000) 17.3 % 71.8 ms 26.2 ms 64.4 % 75.9 ms 5.5 ms
Logitech M-BT58 (Avago ADNS-2610) 75.7 % 62.9 ms 16.5 ms 99.9 % 68.4 ms 5.8 ms
Logitech M-U0017 (unknown) 71.3 % 71.6 ms 9.8 ms 41.1 % 76.9 ms 8.2 ms
Logitech M-UV96 (Agilent S2599) 16.7 % 63.5 ms 16.9 ms 98.7 % 61.8 ms 5.7 ms
Logitech M100 0.0 % - - 16.0 % 71.3 ms 9.0 ms
Logitech MX310 (Agilent S2020) 99.6 % 55.1 ms 7.0 ms 99.9 % 65.8 ms 5.1 ms
Kensington Ci65 Wireless (unknown) 94.1 % 70.0 ms 7.5 ms 87.7 % 81.6 ms 6.6 ms

Table 1: Success rate (SR), mean latency and standard deviation for 10 mice with 2 monitors on a MacBook Pro using OS X 10.10. When known the
sensor reference is provided in brackets. Latency is measured as the time elapsed between the one pixel horizontal texture translation to the reception
of the first mouse move event in the Qt application.

pixels resolution (148 PPI6), using OS X 10.10. The mon-
itors were the laptop screen and an external Dell 1905fp con-
nected through DVI. There were few applications running but
we could not control the background processes from running.
Each pair of mouse/display was evaluated 1000 times. A
trial consisted in translating the texture one pixel along the
x abscissa. Trials alternated translation from left to right and
right to left. We measured the success rate (SR) to produce
mouse events, the mean and standard deviation (std) for la-
tency, measured from the texture translation to the first mouse
move event in Qt. We noticed that the mouse does not al-
ways send a single report for one pixel texture translation.
We hypothesis this can be due to the high frame rate of the
mouse sensor measuring some transition when pixels change
color. Trials with no mouse event produced within 200 ms
were marked as errors. Mice were always positioned at the
center of the screen.

Results are presented in table 1. On average the texture works
better on the higher resolution monitor, probably because the
mouse sensor can see finer details. Except two mice that do
not work at all on each monitor, the other mice show a success
rate above 16%, which means it is at least possible to perform
one measure of latency per second using these mice, using a
200 ms timeout. Two mice for the lower end monitor and
four mice for the higher resolution monitor have a success
rate above 95%, which means it is possible to have up to 5
measures of latency per second with them. On average the
latency is close to 70 ms with a higher standard deviation for
the external monitor.

Measuring latency at different positions on a display
We measured end-to-end latency at different positions on an
Apple Retina display using a Logitech MX310. We found a
mean of 58.9 ms (std=8.4 ms) for top right position, 65.6 ms
(std=9.1 ms) for top left, 68.2 ms (std=7.8 ms) for center, 77.7
ms (std=8.0 ms) for bottom right and 78.8 ms (std=7.6 ms).
Note that all positions were not measured simultaneously.

6We set the monitor to the maximum available resolution in the con-
figuration panel (1920×1200 pixels) and the physical dimensions of
the display are 330.63 × 207.347 mm.

Figure 3: The displayed texture (middle) is composed of a repetition of
the 3×3 pixels pattern composed of black and white pixels (left). Image
of the texture captured by the ADNS-2610 mouse sensor (right) showing
the screen door effect is canceled.

Considering that LCD monitors usually update the screen
from top to bottom, it makes sense to get lower values for
the top of the screen. If we subtract the mean latency at the
bottom of the screen and at the top of the screen, we get 16
ms which is close to the time screen time period (1000/60
= 16.67 ms). For all the following measures, the computer
mouse was positioned at the center of the screen.

INSERTING PROBES IN THE SYSTEM
Conversely to other lag measurement methods that rely on
external devices, our probe is a mouse connected to the com-
puter on which we want to measure lag. Our method thus
”closes the loop” and enables to establish time measurements
based on a single (internal) clock. We use this property to
insert probes at different places in the system to investigate
the sources of latency: since all time measurements are based
on the same clock, comparing these times is reliable, while
it would require substantial supplemental work with external
systems such as a video camera.

Our probes consist of callback functions registered at differ-
ent places. Each callback logs a timestamp and information
about the event. We start measuring time before the texture
is moved (Window repaint in Fig. 4). The texture is then up-
dated on-screen after a given amount of time (on-screen tex-
ture moved). Upon detecting a displacement, the mouse sends
an HID report (HID report sent) that is handled by the low-
level layers of the operating system before getting out of the
HID stack (HID report received). The operating system then

http://www.amazon.com/?keywords=Apple+A1152
http://www.datasheetarchive.com/ADNS-2051-datasheet.html
http://www.amazon.com/?keywords=Dell+M-UVDEL1
http://www.amazon.com/?keywords=Dell+MS111-L
http://www.amazon.com/?keywords=IBM+MO09BO
http://www.amazon.com/?keywords=Logitech+M-BT58
http://www.alldatasheet.com/datasheet-pdf/pdf/520966/AVAGO/ADNS-2610.html
http://www.amazon.com/?keywords=Logitech+M-U0017
http://www.amazon.com/?keywords=Logitech+M-UV96
http://www.amazon.com/?keywords=Logitech+M100
http://www.amazon.com/?keywords=Logitech+MX310
http://www.amazon.com/?keywords=Kensington+Ci65+Wireless


processes the event and applies the transfer function to move
the system pointer (System pointer moved). Upon notification
of this pointer movement, the toolkit creates an event (Mouse-
Move event created) and dispatches it to the appropriate wid-
get (MouseMove event dispatched). The end-to-end latency
we measure is the time elapsed between Window repaint and
MouseMove event dispatched. Three probes inserted at steps
1, 2 & 3 (Fig. 4) allow us to further characterize this latency.

MouseMove
event

created

HID
report
sent

HID 
report

received

System
pointer
moved

MouseMove
event

dispatched

Window
repaint

mouse

USB
linkOS

app

time

On-screen 
texture
moveddisplay

toolkit

0

1

2

3

4

Figure 4: Conceptual pipeline between a (simulated) physical movement
of the mouse and the notification of this movement to the appropriate
on-screen widget. Our system is able to measure end-to-end latency by
inserting probes at different software locations, numbered from 1 to 4.

Comparison of different toolkits
We used libpointing7 [2] to get notifications of HID re-
ports reception and platform-specific code (Quartz event
taps) for notifications of system pointer updates on OS X.
We implemented these probes along with toolkit-specific
code for Mouse Move event creation and dispatching using
C++ / GLUT, C++ / Qt and Java / Swing on the Apple Mac-
Book Pro laptop previously described. All probes were im-
plemented as asynchronous and non-blocking callbacks. All
toolkits used double buffering for the display. Timestamps
were measured with sub-millisecond precision8.

We compared the measurements obtained on 1000 trials with
our three implementations using a Logitech MX310 mouse.
Table 2 shows the success rate (percentage of texture dis-
placements that resulted in a valid MouseMove event, i.e. one
that matches the sequence of observations illustrated by Fig-
ure 4), mean end-to-end latency (time between repaint and
the first dispatched MouseMove event) and the correspond-
ing standard deviation. Results show substantial differences
between GLUT and Swing or Qt in terms of mean latency
but comparable standard deviations. Note that in the three
cases, the latency introduced by the movement of the sys-
tem pointer and the toolkit is below 2 ms. Figure 5 shows
the distribution of lag measurements between repaint and the
7http://libpointing.org
8We used GetSystemTimeAsFileTime to query time on Windows 7
and gettimeofday on Linux and OS X.

first MouseMove. This plot shows a clear difference between
Java / Swing and C++ / Qt despite comparable mean values,
for which we are unable to provide a definite explanation. The
differences illustrated by Table 2 and Figure 5 clearly require
further investigation.

0

2

4

6

8

10

12

14
C++ / GLUT

0

5

10

15

20

25

30
Java / Swing

30 40 50 60 70 80
0

50

100

150

200

250
C++ / Qt

Figure 5: Distributions of the time (in ms) elapsed between Window
repaint and the first MouseMove event dispatched using the Logitech
MX310 and different toolkits on a MacBook Pro.

Comparison with other systems
We measured end-to-end latency on Linux Ubuntu 14.04,
Windows 7 Pro and web browsers, all on the same
machine, an Asus N53JQ (i7Q740@1.73GHz, 4Gio
DDR3@1333MHz, Nvidia Geforce GT425M 1Gio, 250 Gio
SSD). We used the previously described Dell 1905fp monitor
and the Logitech MX310 mouse. End-to-end latency was
measured using our Qt 5 application. For web browsers we
used an HTML5 / Javascript version performing the same
measures. Latency was measured from texture translation to
the mouse move event received by the toolkit.

Application mean std
Ubuntu 14.04 Qt 5 app 50.9 ms 7.6 ms

Chrome 41 71.3 ms 5.7 ms
Firefox 35 65.7 ms 6.6 ms

Windows 7 Qt 5 app 74.9 ms 9.2 ms
Chrome 41 62.2 ms 8.5 ms
Firefox 37 83.0 ms 9.7 ms

Table 3: End-to-end latency on different operating systems and web
browsers measured on the same computer (Asus N53JQ with a Logitech
MX310 mouse and a Dell 1905fp monitor).

On Linux Ubuntu 14.04, latency is comparable with OS X
10.10, although measured on a different machine. The web
browsers add between 15-20 ms latency compared to Qt 5
while jitter remains similar (Table 3). Results on Windows 7
are more surprising: latency on Chrome 41 is lower than the
one found on Qt 5. We repeated the measures several times
and we kept finding the same results.

https://developer.apple.com/library/mac/documentation/Carbon/Reference/QuartzEventServicesRef/index.html#//apple_ref/c/func/CGEventTapCreate
https://developer.apple.com/library/mac/documentation/Carbon/Reference/QuartzEventServicesRef/index.html#//apple_ref/c/func/CGEventTapCreate
http://libpointing.org
http://www.windowstimestamp.com/description
http://linux.die.net/man/2/gettimeofday


C++ / GLUT Java / Swing C++ / Qt
SR mean std SR mean std SR mean std

HID 100.0 % 46.2 ms 5.3 ms 97.9 % 62.0 ms 5.5 ms 99.9 % 65.4 ms 5.1 ms
sysPointer 100.0 % 46.5 ms 5.3 ms 97.9 % - - 99.9 % 65.7 ms 5.1 ms
tkEvent 100.0 % - - 97.9 % 63.2 ms 5.5 ms 99.9 % 65.9 ms 5.1 ms
tkMouseMove 100.0 % 46.7 ms 5.3 ms 97.9 % 63.3 ms 5.5 ms 99.9 % 66.0 ms 5.1 ms

Table 2: Comparison between GLUT, Swing and Qt implementations with four different probes on an Apple Macbook Pro with a Logitech MX310
mouse.

C++ / Qt Java / Swing
mean std mean std

< 5 % 54.2 ms 6.7 ms 51.3 ms 6.7 ms
25 % 71.9 ms 14.6 ms 59.7 ms 10.1 ms
50 % 70.1 ms 15.1 ms 71.6 ms 23.5 ms
75 % 77.3 ms 21.5 ms 71.0 ms 19.1 ms
100 % 83.6 ms 25.8 ms 75.6 ms 25.6 ms

Table 4: Influence of system load on end-to-end latency on Linux
Ubuntu, measured on the same computer (Asus N53JQ with a Logitech
MX310 mouse and a Dell 1905fp monitor). Comparison between C++/Qt
and Java/Swing.

Influence of system load
We investigated how the system load can affect the latency.
We simulated different loads on Ubuntu 14.04 using the
stress utility9 to control the load, with the command stress

--cpu CPU --io IO --vm VM --timeout 300s --verbose. The
load was simulated with an increasing number of CPU, IO
and memory allocation processes. For 25% load, we used
CPU=2, IO=5, VM=1; CPU=4, IO=10, VM=2 for 50% load; CPU=6,
IO=15, VM=4 for 75% load and CPU=8, IO=20, VM=8 for 100%
load. We used the Asus N53JQ computer, Logitech MX310
mouse and Dell 1905fp monitor. We performed 1000 mea-
sured using the C++/Qt and Java/Swing toolkits. Results are
summarized in Table 4. We can observe that both latency and
latency jitter increase with system load. With both toolkits,
latency increased by 25-30 ms and jitter by 20 ms between a
low system load and a 100% system load.

DISCUSSION
The methodology we followed helped us determine a pattern
and a texture that work with most optical mice (8 of 10 mice
we tested). Understanding exactly why it works with some
mice and not others is difficult: mouse sensors datasheets are
often unavailable and the algorithms for computing mice dis-
placements are never disclosed. Given that optical mice are
widely available, it is however easy to use another mouse if
one is not working. We could not make any laser mouse work
with our method. A first reason can be that laser mice see
primarily in the infra-red but they could also see in the visible
spectrum according to some datasheets we found2. A second
reason can be that the surface seen by the sensor is smaller
for laser mice than optical ones: laser mice are intended to
see finer details on surfaces not visible by optical ones. How-
ever, we hypothesize that optical and laser mice would have
9http://people.seas.harvard.edu/∼apw/stress/

the same latency as their sensors are similar. The main differ-
ence is that the red LED is replaced by an infra-red laser.

The results we found are consistent: measures obtained in
similar conditions give similar results. For example we obtain
a 50.9 ms mean latency for Linux Ubuntu 14.04 / Qt 5 using
the Logitech MX310 and Dell 1905fp monitor on an Asus
computer (Table 3) and 54.2 ms for the same system with
less than 5% system load (Table 4). With the same mouse
and monitor we obtain 55.2 on a Macbook Pro running OS
X (Table 1). These results are similar to the only comparable
result available in the literature that reported a 43.2 ms end-
to-end latency for a wired mouse with an LCD monitor [11].
In addition, when measuring latency at different positions on
a screen, we found lower latencies for the top of the display
and a difference between its bottom and top of around 16 ms,
which is consistent with the way LCD monitors are refreshed.

The different measures we performed indicate that latency
and latency jitter are similar on C++/Qt and Java/Swing, even
with different system loads. We expected that the Java virtual
machine would add some latency, but it is not the case. Our
GLUT implementation not only shows a lower latency but
also a different distribution of latency values from our Qt im-
plementation, which will require further investigation. Linux
and OS X show similar latencies around 50-55 ms with the
external Dell monitor and MX310 mouse. Windows 7 in con-
trast appears to show higher latency (75 ms). Web browsers
increase latency by 15-20 ms on average. System load in-
creases latency as well of about 25-30 ms with 100% load.
In addition we have shown that latency jitter increases with
system load while it remains otherwise below 10 ms. Note
that we performed these measures using the mouse having
one of the lowest latencies (Table 1). We measured latency
from the texture displacement to the mouse move event re-
ceived by the toolkit. Real usages would have to include the
latency introduced by the application-specific code running
upon reception of mouse events.

As discussed above, our method allows the insertion of
probes at different places in the system to provide reliable
time comparison. We observed that the time from when the
event exits the HID stack until it enters the mouse move call-
back is very low, below 2 ms. We expected it would be
higher considering the different application layers, computa-
tions to determine the widget beneath the mouse pointer and
the queues to go through. It means that most of the latency
we measured is caused by the display, mouse and low level
layers of the operating system. A 60 Hz display introduces a

http://people.seas.harvard.edu/~apw/stress/


latency of at most 16.67 ms (excluding the display’s response
time, which probably adds about 10 ms). A computer mouse
reports up to 125 Hz which adds another 8 ms on average.
This accounts for about 30 ms. Further investigations are re-
quired to clarify where the other 15-30 ms come from. The
literature has shown that performance degrades above 50 ms
latency and we have shown we are most of the time above
this value. This means it is important to report latency in HCI
experiments and that further work is needed to reduce latency
or to compensate it using appropriate techniques.

Our measures can be affected by both the function used to
query time and the resolution of the timers used by the ap-
plication, the toolkit or the system. Windows, OS X and
Linux functions8 to query time have sub-millisecond preci-
sion. On Windows the default timer resolution is of 15.6 ms
while it is 1 ms on Linux10 and OS X. In addition modern ver-
sions of Windows, Linux and OS X all use timer coalescing
techniques to reduce CPU power consumption. This certainly
contributes to some variability in the measured end-to-end la-
tency, but it can not be easily avoided. Overall, this is just
another source of (small) variability found in ”real life” con-
ditions. An advantage of our method over camera-based ones
is that it makes it possible to easily and quickly perform many
measures to estimate this variability.

CONCLUSION
We introduced a method that makes latency measure of desk-
top interfaces simpler. This method relies on cheap hardware
already in the hands of every users and a particular texture to
display, which can thus be easily replicated. We have shown
that our method works with most optical mice and provides
real time measures of latency. The measures we performed
can guide interface designers and HCI researcher to choose
appropriate toolkits, operating systems and hardware. More
generally we believe that our simple method for measuring
latency has the potential to change the way HCI researchers
run experiments and the way practitioners tune their inter-
active systems. An on-line interactive demo and additional
material are available at http://ns.inria.fr/mjolnir/lagmeter/

ACKNOWLEDGMENTS
This work was supported by ANR (TurboTouch, ANR-14-
CE24-0009).

REFERENCES
1. Bérard, F., and Blanch, R. Two touch system latency

estimators: High accuracy and low overhead. In
Proceedings of ITS ’13, ACM (2013), 241–250.

2. Casiez, G., and Roussel, N. No more bricolage! methods
and tools to characterize, replicate and compare pointing
transfer functions. In Proceedings of UIST ’11, ACM
(2011), 603–614.

3. Deber, J., Jota, R., Forlines, C., and Wigdor, D. How
much faster is fast enough? user perception of latency &

latency improvements in direct and indirect touch. In
Proceedings of CHI ’15, ACM (2015), 1827–1836.

10http://elinux.org/High Resolution Timers

4. Ellis, S. R., Young, M. J., Adelstein, B. D., and Ehrlich,
S. M. Discrimination of changes of latency during
voluntary hand movement of virtual objects. In
Proceedings of HFE ’99 (1999), 1182–1186.

5. Jota, R., Ng, A., Dietz, P., and Wigdor, D. How fast is
fast enough? a study of the effects of latency in
direct-touch pointing tasks. In Proceedings of CHI ’13,
ACM (2013), 2291–2300.

6. Kaaresoja, T., and Brewster, S. Feedback is... late:
measuring multimodal delays in mobile device
touchscreen interaction. In Proceedings of
ICMI-MLMI ’10, ACM (2010), 2:1–2:8.

7. Liang, J., Shaw, C., and Green, M. On temporal-spatial
realism in the virtual reality environment. In
Proceedings of UIST ’91, ACM (1991), 19–25.

8. MacKenzie, I. S., and Ware, C. Lag as a determinant of
human performance in interactive systems. In
Proceedings of CHI ’93, ACM (1993), 488–493.

9. Mine, M. Characterization of end-to-end delays in
head-mounted display systems. Tech. rep., University of
North Carolina at Chapel Hill, 1993.

10. Ng, A., Lepinski, J., Wigdor, D., Sanders, S., and Dietz,
P. Designing for low-latency direct-touch input. In
Proceedings of UIST ’12, ACM (2012), 453–464.

11. Pavlovych, A., and Stuerzlinger, W. The tradeoff
between spatial jitter and latency in pointing tasks. In
Proceedings of EICS ’09, ACM (2009), 187–196.

12. Pavlovych, A., and Stuerzlinger, W. Target following
performance in the presence of latency, jitter, and signal
dropouts. In Proceedings of GI ’11, Canadian
Human-Computer Communications Society (2011),
33–40.

13. Steed, A. A simple method for estimating the latency of
interactive, real-time graphics simulations. In
Proceedings of VRST ’08, ACM (2008), 123–129.

14. Swindells, C., Dill, J. C., and Booth, K. S. System lag
tests for augmented and virtual environments. In
Proceedings of UIST ’00, ACM (2000), 161–170.

15. Teather, R. J., Pavlovych, A., Stuerzlinger, W., and
MacKenzie, I. S. Effects of tracking technology, latency,
and spatial jitter on object movement. In Proceedings of
3DUI ’09, IEEE (2009), 43–50.

16. Ware, C., and Balakrishnan, R. Reaching for objects in
VR displays: Lag and frame rate. ACM ToCHI 1, 4
(Dec. 1994), 331–356.

http://ns.inria.fr/mjolnir/lagmeter/
http://mjolnir.lille.inria.fr/turbotouch/
http://doi.acm.org/10.1145/2512349.2512796
http://doi.acm.org/10.1145/2512349.2512796
http://doi.acm.org/10.1145/2047196.2047276
http://doi.acm.org/10.1145/2047196.2047276
http://doi.acm.org/10.1145/2047196.2047276
http://dx.doi.org/10.1145/2702123.2702300
http://dx.doi.org/10.1145/2702123.2702300
http://dx.doi.org/10.1145/2702123.2702300
http://elinux.org/High_Resolution_Timers
http://humansystems.arc.nasa.gov/publications/Ellis_1999_Discrimination_of_Latency.pdf
http://humansystems.arc.nasa.gov/publications/Ellis_1999_Discrimination_of_Latency.pdf
http://doi.acm.org/10.1145/2470654.2481317
http://doi.acm.org/10.1145/2470654.2481317
http://doi.acm.org/10.1145/2470654.2481317
http://doi.acm.org/10.1145/1891903.1891907
http://doi.acm.org/10.1145/1891903.1891907
http://doi.acm.org/10.1145/1891903.1891907
http://doi.acm.org/10.1145/120782.120784
http://doi.acm.org/10.1145/120782.120784
http://doi.acm.org/10.1145/169059.169431
http://doi.acm.org/10.1145/169059.169431
http://www.cs.unc.edu/techreports/93-001.pdf
http://www.cs.unc.edu/techreports/93-001.pdf
http://doi.acm.org/10.1145/2380116.2380174
http://doi.acm.org/10.1145/1570433.1570469
http://doi.acm.org/10.1145/1570433.1570469
http://dl.acm.org/citation.cfm?id=1992917.1992924
http://dl.acm.org/citation.cfm?id=1992917.1992924
http://dl.acm.org/citation.cfm?id=1992917.1992924
http://doi.acm.org/10.1145/1450579.1450606
http://doi.acm.org/10.1145/1450579.1450606
http://doi.acm.org/10.1145/354401.354444
http://doi.acm.org/10.1145/354401.354444
http://dx.doi.org/10.1109/3DUI.2009.4811204
http://dx.doi.org/10.1109/3DUI.2009.4811204
http://doi.acm.org/10.1145/198425.198426
http://doi.acm.org/10.1145/198425.198426

	Introduction
	Related work
	Impact of latency on performance
	Latency measurement techniques

	Measuring latency using an optical mouse
	Finding the right texture to display
	What the mouse sees
	What we decided to show

	Evaluating the texture in different conditions
	Measuring latency at different positions on a display

	Inserting probes in the system
	Comparison of different toolkits
	Comparison with other systems
	Influence of system load

	Discussion
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES 

