MINLP emerging applications in Air Traffic Management

Sonia Cafieri

Laboratoire MAIAA ENAC - École Nationale de l'Aviation Civile University of Toulouse France

Mixed-Integer Nonlinear Programming 2014 Carnegie Mellon University, Pittsburgh June 2014

Air Traffic Management (ATM)

ATM : making sure that aicraft are safely guided in the skies and on the ground

Air Traffic growing on the world scale

Eurocontrol forecast

Forecast indicators Annual traffic growth Growth 2012 to 2032 Middle East - Asia Pacific Within Latin America Within China Within Asia Pacific Incl. China Europe - Asia Pacific North America – Latin America Africa - Europe Within/to CIS Europe - Latin America Transpacific Within Europe North Atlantic Within North America Current Market Outlool 2013-2032

BOEING long-term market forecast

\Rightarrow needs increasing automation

Sonia Cafieri (ENAC)

June, 2014 2 / 3

Copyright @ 2013 Boeing. All rights reserved.

ATM applications

Aircraft separation for collision avoidance

Conflict-free trajectory planning

Design of TMAs: SID/STAR routes

Sonia Cafieri (ENAC)

MINLP in ATM

- 2 Conflict Avoidance in ATM
- 3 MINLP for aircraft conflict avoidance
 - Modeling
 - Numerical solution

MINLP in ATM

2 Conflict Avoidance in ATM

MINLP for aircraft conflict avoidance

- Modeling
- Numerical solution

4 Conclusions and Perspectives

MINLP for ATM applications

ATM applications \rightarrow MINLP

- Aircraft conflict avoidance
- Aircraft conflict-free trajectory planning
- Design of arrival and departure procedures (SID/STAR)

- integer variables: logical choices and possible different scenarios
- nonlinearities: complex ATM nonlinear processes:

- aircraft separation
- obstacle avoidance
- noise restrictions

- ...

• . . .

MINLP in ATM

2 Conflict Avoidance in ATM

MINLP for aircraft conflict avoidance

- Modeling
- Numerical solution

4 Conclusions and Perspectives

Aircraft Conflict Avoidance

Aircraft *i* and *j* are **in conflict** if their horizontal distance is less than *d*: $||x_i - x_j|| \le d$ (d = 5NM) their altitude difference is less than *h*: $||h_i - h_j|| \le h$ (h = 1000ft)

<ロト < 部 > < 国 > < 国 >

1 NM (nautical mile)= 1852 m1 ft (feet) = 0.3048 m

Aircraft Conflict Avoidance

- Resolution of conflicts currently still largely performed manually by air traffic controllers
- SESAR & NextGen projects: promote automation

Aircraft separation strategies

- *Heading angle deviation* or *altitude modification* ⇒ most used
- Speed adjustements

⇒ suggested by ERASMUS (En-Route Air Traffic Soft Management Ultimate System) project (2006-2009), allows one to perform a *subliminal control*

Aircraft conflict resolution: literature

- Optimal Control (Tomlin et al. 2004, Cellier et al. 2012)
- Evolutionary computation (Durand&Alliot 1995, 1998, Delahaye et al. 1996)
- Mathematical Programming based approaches: Mixed-Integer Linear and Nonlinear Optimization
 - Richards & How, 2002 (MILP)
 - Pallottino, Feron, Bicchi, 2004 (MILP)
 - Christodoulou & Costoulakis, 2004 (MINLP)
 - Vela et al., 2010 (MILP)
 - Alonso-Ayuso, Escudero, Martín-Campo, 2011, 2012 (MILP, MINLP)
 - Rey et al., 2012 (MILP)
 - Cafieri & Durand, 2013 (MINLP)
 - in general, subject to some hypoteses

(constant speed, all maneuvers performed at the same time, etc.)

MINLP in ATM

Conflict Avoidance in ATM

3 MINLP for aircraft conflict avoidance

- Modeling
- Numerical solution

Onclusions and Perspectives

MINLP in ATM

2 Conflict Avoidance in ATM

3 MINLP for aircraft conflict avoidance

- Modeling
- Numerical solution

Onclusions and Perspectives

ヘロト 人間 とくほとくほ

MINLP formulation overview

Decision variables

• $\forall k \in A \quad q_k$ speed change of aircraft *k* in set *A* Separation based on *speed regulation*

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

- ★ q_k = percentage of change (to be multiplied by v_k to obtain the new speed)
 - $q_k > 1$: acceleration, $q_k < 1$: deceleration, $q_k=1$: no speed change.
- ★ $\forall k 6\% v_k \le q_k \le +3\% v_k \implies$ subliminal control
- other variables, *both continuous and integer* used to model logical choices and as intermediate variables to express **separation**

Constraints: *nonlinear nonconvex* used to model aircraft **separation** and possible configurations that can occur

Separation condition for aircraft *i* and *j*:

 $\|\mathbf{x}_{ij}^{r}(t)\| \ge d \qquad \forall t \in (0,T)$

* d = minimum required separation distance

*
$$\mathbf{x}_{ij}^{r}(t) = x_i(t) - x_j(t) = \mathbf{x}_{ij}^{r0} + \mathbf{v}_{ij}^{r} t$$

 $\mathbf{x}_{ij}^{r0} = \text{relative initial position of aircraft } i \text{ and } j$
 $\mathbf{v}_{ij}^{r} = \text{relative speed of aircraft } i \text{ and } j$

Separation condition for aircraft *i* and *j*:

$$\|\mathbf{x}_{ii}^{r}(t)\| \ge d \qquad \forall t \in (0,T) \qquad \leftarrow \text{ depends on } t$$

* d = minimum required separation distance

*
$$\mathbf{x}_{ij}^{r}(t) = x_i(t) - x_j(t) = \mathbf{x}_{ij}^{r0} + \mathbf{v}_{ij}^{r} t$$

 $\mathbf{x}_{ij}^{r0} = \text{relative initial position of aircraft } i \text{ and } j$
 $\mathbf{v}_{ij}^{r} = \text{relative speed of aircraft } i \text{ and } j$

 $\|\mathbf{x}_{ij}^{r0} + \mathbf{v}_{ij}^{r} t\|^{2} \ge d^{2} \qquad \forall t \in (0, T)$

i.e.

$$(v_{ij}^r)^2 t^2 + 2(\mathbf{x}_{ij}^{r0} \mathbf{v}_{ij}^r) t + ((x_{ij}^{r0})^2 - d^2) \ge 0$$

By differentiation, the minimum occurs at

$$t_{ij}^m = -\frac{\mathbf{v}_{ij}^r \mathbf{x}_{ij}^{r0}}{(v_{ij}^r)^2}$$

Substituting:

$$(x_{ij}^{r0})^2 - \frac{(\mathbf{v}_{ij}^r \mathbf{x}_{ij}^{r0})^2}{(v_{ij}^r)^2} - d^2 \ge 0$$

By differentiation, the minimum occurs at

$$t_{ij}^m = -\frac{\mathbf{v}_{ij}^r \mathbf{x}_{ij}^{r0}}{(v_{ij}^r)^2}$$

Substituting:

$$(x_{ij}^{r0})^2 - \frac{(\mathbf{v}_{ij}^r \mathbf{x}_{ij}^{r0})^2}{(v_{ij}^r)^2} - d^2 \ge 0$$

(separation condition)

 \leftarrow does not depend on t

(ロ) (四) (三) (三)

By differentiation, the minimum occurs at

$$t_{ij}^m = -\frac{\mathbf{v}_{ij}^r \mathbf{x}_{ij}^{r0}}{(v_{ij}^r)^2}$$

Substituting:

$$(x_{ij}^{r0})^2 - \frac{(\mathbf{v}_{ij}^r \mathbf{x}_{ij}^{r0})^2}{(v_{ij}^r)^2} - d^2 \ge 0$$

(separation condition)

 \leftarrow does not depend on *t*

イロト イポト イヨト イヨト

Separation of *i* and *j*:

■ (separation in
$$t^0 = 0$$
): $x_{ij}^{r0} \ge d$ ← checked in preprocessing step
■ if $t_{ij}^m > 0$ then condition $(x_{ij}^{r0})^2 - \frac{(\mathbf{v}_{ij}^r \mathbf{x}_{ij}^{r0})^2}{(v_{ij}^r)^2} - d^2 \ge 0$

Variables:

• q_i , $(\geq q_{min}, \leq q_{max})$, $\forall i \in A$ percentage of velocity change of aircraft *i* (*continuous*)

- v_{ij}^{2r} , $\forall (i,j) \in A, i < j$ square of the relative velocity of *i* and *j*: $(v_{ij}^r)^2$ (continuous)
- p_{ij} , $\forall (i,j) \in A, i < j$ inner product $\mathbf{v}_{ij}^r \mathbf{x}_{ij}^{r0}$ (continuous)
- t_{ij}^m , $\forall (i,j) \in A, i < j$ (continuous)
- y_{ij} , $\forall (i,j) \in A, i < j$, used to check if $t_{ij}^m > 0$ (*binary*)

Objective:

$$\min\sum_{i\in A}(q_i-1)^2$$

イロト イロト イヨト イ

MINLP formulation: constraints

Constraints:

• definition of
$$v_{ij}^{2r}$$
 (quadratic)
 $v_{ij}^{2r} = \sum_{k=1}^{2} (q_i v_i u_{ik} - q_j v_j u_{jk})^2$ $\forall i, j \in A, i < j$

inner product in the separation condition (*linear*)

$$p_{ij} = \sum_{k=1}^{\infty} \left(x_i^0 u_{ik} - x_j^0 u_{jk} \right) \left(q_i v_i u_{ik} - q_j v_j u_{jk} \right) \qquad \forall i, j \in A, i < j$$

definition of
$$t_{ij}^m$$
 (bilinear)
 $t_{ij}^m v_{ij}^{2r} + p_{ij} = 0$ $\forall (i,j) \in A, i < j$

• check sign of t_{ij}^m (bilinear with binary var.) $t_{ij}^m (2y_{ij} - 1) \ge 0$ $\forall (i,j) \in A, i < j$

separation (quadratic + linear term, product with binary var.)

$$y_{ij}\left((x_{ij}^{0r}v_{ij}^{2r}) - (p_{ij})^2 - ((d)^2 v_{ij}^{2r})\right) \ge 0 \qquad \forall (i,j) \in A, i < j$$

MINLP modeling: further developments

• Mathematical Programming point of view:

reformulate nonlinear terms

• ATM modeling point of view:

get closer to a realistic situation avoiding separation maneuver performed simultaneously by all aircraft

イロン イロン イヨン イ

MINLP model reformulation

- Compute bounds on variables v_{ij}^r , p_{ij} and t_{ij}^m (\rightarrow obtain $(t_{ij}^m)_{min}$, $(t_{ij}^m)_{max}$) (taking into account bounds on q_i)
- Reformulate products of binary variables y_{ij} and continuous variables (exact reformulations):
 - reformulate

$$t_{ij}^m (2y_{ij} - 1) \ge 0 \qquad \qquad \forall (i,j) \in A, i < j$$

to

$$\begin{array}{lll} t^m_{i,j} & \geq & (t^m_{ij})_{min} \left(1 - y_{ij}\right) & \quad \forall (i,j) \in A, i < j \\ t^m_{i,j} & \leq & (t^m_{ij})_{max} \; y_{ij} \end{array}$$

reformulate

$$y_{ij}\left((x_{ij}^{0r} v_{ij}^{2r}) - (p_{ij})^2 - ((d)^2 v_{ij}^{2r})\right) \ge 0 \qquad \forall (i,j) \in A, i < j$$

to

$$(x_{ij}^{0r} - d^2) v_{ij}^{2r} - (p_{ij})^2 \ge bigM_{ij} (1 - y_{ij}) \qquad \forall (i,j) \in A, i < j$$

More general MINLP model

Main idea:

- each aircraft k can change its speed at time t_{k}^{1} and go back to its original speed at t_{k}^{2}
- for a pair of aircraft, no order *a priori* on instant times \Rightarrow several configurations possible
- 4 instant times to be handled for a pair of aircraft \Rightarrow 5 time windows where aircraft fly with their original speed v or with a changed speed v q

More general MINLP model

Key novelty in the model: handle time configurations and time intervals, for each of them impose separation for each pair of aircraft (velocity piecewise constant)

- \Rightarrow for each time "segment", consider
 - relative initial position of aircraft
 - relative distance
 - relative velocity
 - velocity of each aircraft

Binary variables: $z_{ij}^{\ell}, \ell \in \{1, \dots, 6\}$

state what is the *order of instant times* for each time configuration

Example:

$$\overline{z_{ij}^1 = 1} \iff t_i^1 \le t_j^1 \text{ and } t_j^1 \le t_i^2 \text{ and } t_i^2 \le t_j^2$$

 \rightarrow big M constraints

MINLP in ATM

2 Conflict Avoidance in ATM

3 MINLP for aircraft conflict avoidance

- Modeling
- Numerical solution

4 Conclusions and Perspectives

Solution approaches

- Global exact solution
- Matheuristic approach using clusters
- Global exact solution on the reformulated problem
- Feasibility Pump

Solution approaches

- Global exact solution
- Matheuristic approach using clusters
- Global exact solution on the reformulated problem
- Feasibility Pump

Test problems

deterministic Global Optimization: *spatial Branch-and-Bound* COUENNE software for MINLP (Belotti et al., 2008)

12	*	COUENNE
n	'	time (sec)
2	1×10^{2}	0.11
3	2×10^{2}	0.98
4	2×10^{2}	8.43
5	3×10^{2}	469.86
6	3×10^{2}	46707.03

deterministic Global Optimization: *spatial Branch-and-Bound* COUENNE software for MINLP (Belotti et al., 2008)

	r	COUENNE
n	'	time (sec)
2	1×10^{2}	0.11
3	2×10^{2}	0.98
4	2×10^{2}	8.43
5	3×10^{2}	469.86
6	3×10^{2}	46707.03

S. Cafieri & N. Durand, JOGO 58(4):613-629, 2014

Matheuristic approach

- ★ *Decompose the problem* in subproblems:
 - \rightarrow aircraft clusters (up to η aircraft at a time ($\eta < 4$))
- ★ Solve on clusters using an exact solver (COUENNE)
 - \rightarrow local exact solutions

Matheuristic approach

- ★ *Decompose the problem* in subproblems:
 - \rightarrow aircraft clusters (up to η aircraft at a time ($\eta < 4$))
- ★ Solve on clusters using an exact solver (COUENNE)
 - \rightarrow local exact solutions

Cluster: ABCD

Iteratively (until all conflicts are solved):

- get local exact solutions
- re-initialize aircraft speeds keeping acceleration/deceleration from local solutions
- perform local search to update the aircraft speeds and take into account bounds from ERASMUS

Matheuristic approach solution

n	r	COUENNE	Matheuristic	
		time (sec)	ncl	time (sec)
2	1×10^{2}	0.11	1	-
3	2×10^{2}	0.98	1	-
4	2×10^{2}	8.43	2	1.02
5	3×10^{2}	469.86	2	3.32
6	3×10^{2}	46707.03	2	48.97
7	3×10^{2}	-	2	88.67
8	3×10^{2}	-	2	121.88

promising results hybridizing heuristics and mathematical programming, but optimality only on subproblems

Matheuristic approach solution

n	r	COUENNE	Matheuristic	
		time (sec)	ncl	time (sec)
2	1×10^{2}	0.11	1	-
3	2×10^{2}	0.98	1	-
4	2×10^{2}	8.43	2	1.02
5	3×10^{2}	469.86	2	3.32
6	3×10^{2}	46707.03	2	48.97
7	3×10^{2}	-	2	88.67
8	3×10^{2}	-	2	121.88

promising results hybridizing heuristics and mathematical programming, but optimality only on subproblems

S. Cafieri & N. Durand, JOGO 58(4):613-629, 2014

Image: A match the second s

Global exact solution - reformulated problem

n	r	COUENNE	Ma	atheuristic	COUENNE ref.
		time (sec)	ncl	time (sec)	time (sec)
2	1×10^{2}	0.11	1	-	0.12
3	2×10^{2}	0.98	1	-	0.94
4	2×10^{2}	8.43	2	1.02	8.48
5	3×10^{2}	469.86	2	3.32	167.03
6	3×10^{2}	46707.03	2	48.97	7031.51
7	3×10^{2}	-	2	88.67	-
8	3×10^{2}	-	2	121.88	-

significantly faster than solution of the original problem, exact solution

General scheme of Feasibility Pump

for MINLPs $\begin{array}{l} \min f(x,y) \\ g(x,y) \leq 0 \\ x \in X \\ y \in Y \cap \mathbb{Z}^n \end{array}$

1: it=0;

- 2: while $(((\hat{x}^{it}, \hat{y}^{it}) \neq (\bar{x}^{it}, \bar{y}^{it}))$ or time limit) do
- 3: Solve (*P*1) (the problem obtained relaxing integrality requirements and minimizing a "distance" with respect to $(\hat{x}^{it}, \hat{y}^{it})$);
- 4: Solve (*P*2) (the problem obtained relaxing "complicated" constraints and minimizing a "distance" with respect to $(\bar{x}^{it}, \bar{y}^{it})$);
- 5: it++;
- 6: end while

イロト イポト イヨト イヨト

- (P1): NLP continuous relaxation of the (reformulated) MINLP
- (P2): MIQP quadratic objective, linear relaxation of the constraints
 - McCormick's relaxation for bilinear terms
 - Linear relaxation by tangents and secant for quadratic terms

with C. D'Ambrosio, work in progress

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Feasibility Pump for conflict avoidance (2/3)

At iteration it of FP:

• (P1)^{*it*}: nonconvex NLP

A feasible solution is computed minimizing the Hamming distance wrt to solution of $(P2)^{it}$:

Objective:
$$\min \sum_{i,j \in A, i < j: \ \hat{y}_{ij}=1} (1 - y_{ij}) + \sum_{i,j \in A, i < j: \ \hat{y}_{ij}=0} y_{ij}$$

If no feasible solution with y variables assuming values \hat{y}^{it} ,

solved to local optimality multiple times, using randomly generated starting points \rightarrow IPOPT

When an optimal solution is found, try to improve the objective of the original problem:

Optimality cut:
$$\sum_{i \in A} (1 - q_i)^2 \le \sum_{i \in A} (1 - \bar{q}_i)^2 - \epsilon$$

Feasibility Pump for conflict avoidance (3/3)

At iteration it of FP:

• (P2)^{*it*}: considering integrality requirements

Solved using CPLEX

Objective: $\min \sum_{i \in A} (q_i - \bar{q}_i)^2$ minimizing the distance wrt solution of $(P1)^{it-1}$

<ロト < 部 > < 国 > < 国 >

Feasibility Pump solution

n	r	COUENNE	Ma	atheuristic	COUENNE ref.	Feas. Pump
		time (sec)	ncl	time (sec)	time (sec)	time (sec)
2	1×10^{2}	0.11	1	-	0.12	0.69
3	2×10^{2}	0.98	1	-	0.94	8.86
4	2×10^{2}	8.43	2	1.02	8.48	7.08
5	3×10^{2}	469.86	2	3.32	167.03	15.12
6	3×10^{2}	46707.03	2	48.97	7031.51	54.53
7	3×10^{2}	-	2	88.67	-	81.24 *
8	3×10^{2}	-	2	121.88	-	315.25

feasible solution found quickly on large problems, no guarantee of optimality

< ロ > < 回 > < 回 > <</p>

Feasibility Pump solution

n	r	COUENNE	Ma	atheuristic	COUENNE ref.	Feas. Pump
		time (sec)	ncl	time (sec)	time (sec)	time (sec)
2	1×10^{2}	0.11	1	-	0.12	0.69
3	2×10^{2}	0.98	1	-	0.94	8.86
4	2×10^{2}	8.43	2	1.02	8.48	7.08
5	3×10^{2}	469.86	2	3.32	167.03	15.12
6	3×10^{2}	46707.03	2	48.97	7031.51	54.53
7	3×10^{2}	-	2	88.67	-	81.24 *
8	3×10^{2}	-	2	121.88	-	315.25

feasible solution found quickly on large problems, no guarantee of optimality

S. Cafieri & C. D'Ambrosio, work in progress

< ロ > < 回 > < 回 > <</p>

Solution: comparison

п	r	COUENNE	Ma	atheuristic	COUENNE ref.	Feas. Pump
		time (sec)	ncl	time (sec)	time (sec)	time (sec)
2	1×10^{2}	0.11	1	-	0.12	0.69
3	2×10^{2}	0.98	1	-	0.94	8.86
4	2×10^{2}	8.43	2	1.02	8.48	7.08
5	3×10^{2}	469.86	2	3.32	167.03	15.12
6	3×10^{2}	46707.03	2	48.97	7031.51	54.53
7	3×10^{2}	-	2	88.67	-	81.24 *
8	3×10^{2}	-	2	121.88	-	315.25

Time to find a feasible solution

n	COUENNE	COUENNE ref.
2	0.00	0.00
3	0.00	0.00
4	6.44	8.29
5	0.00	0.00
6	41649.91	3934.24
7	-	-
8	-	-

Objective function value

n	COUENNE	Feas. Pump				
2	0.002531	0.002572				
3	0.001667	0.001744				
4	0.004022	0.004030				
5	0.003035	0.003112				
6	0.006015	0.006091				
7	-	-				
8	-	0.008749				
(日)(四)((日)(日)(日)(日)						

MINLP in ATM

2 Conflict Avoidance in ATM

MINLP for aircraft conflict avoidance

- Modeling
- Numerical solution

4 Conclusions and Perspectives

- MINLP modeling and solution approaches interesting in the ATM context
- Future work:
 - extension of the computational approach to the more general MINLP model
 - testing on different kinds of instances
 - testing with other MINLP solvers (BARON, MINOTAUR, IBBA)
 - in FP, solving (P1) with a different technique, defining (P2) as a MILP
 - MINLP modeling: trajectory planning and optimal departure/arrival route design

+ = + + @ + + = + + =

Thank you!

(日)

Sonia Cafieri (ENAC)

MINLP emerging applications in Air Traffic Management

June, 2014 36 / 36