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Abstract. This paper presents a new concept of Genetic Algorithm
in which an individual is coded as a domain of the state space and is
evaluated with the help of order statistics. For this first version only
continuous criteria has been investigated. An hypercube domain of the
state space is associated with each individual and is randomly sampled
according to a distribution for which asymptotic extremes are known.
Regular fitnesses are computed for all the samples in each domain and
are combined to produce a prospectiveness criterion. A regular GA and
this new GA are compared on classical N dimensional functions such as
Sphere, Step, Ackley, Griewank for different values of N.
A final comparison is given on the classical Lennard-Jones Molecular
Conformation problem with 30 atoms.
For both versions, a regular GA has been used; the first one works on
state points and the other one on state domains. For all tests, and for
the same number of criterion evaluations, this new algorithm performs
much better than the classical one.
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1 Introduction

At the beginning of GA, binary coding was mainly used to encode optimization
problem (a good description of this kind of coding may be found in [2]). This
coding is easy to manipulate and is very adapted for discrete problems with
binary decision variables. The schema theory can be applied to this kind of
GA and produce some convergence theorems. Unfortunately, this coding is not
adapted for real vector optimization problems and direct real coding has been
developed [4]. Usually GAs work on state points and evaluate fitnesses on those
points with succession of exploration and exploitation phases. The exploitation
phase is guided by the selection and the exploration phase is guided by the
crossover and mutation operators.

In order to enforce and speed up those two phases, the present algorithm
works on state domains instead of state points. The principle is the same as the



one used for the Branch and Probability Bound [6]. For this B&B, the global
state domain is split into smaller parts which are evaluated with the help of
order statistics. The probability that the global optimum belongs to a domain
is then used to guide the branching phase.

The present GA works the same way by coding each individual by an N di-
mensional hypercube and uses order statistics to produce the associated prospec-
tiveness and then guide the exploration or the exploitation.

In a first part, a brief description of order statistics is given. The second part
describes how order statistics may be used to strongly enhance the performance
of a regular GA and how coding, fitness evaluation and operators have been
implemented. Finally, the third part gives some comparisons of both algorithms
on hard to optimize mathematical functions.

2 Order Statistics

Let (x1, . . . xN ) be a sample of N iid random variables. The orders statistics
associated with that sample is (ε1, . . . , εN ) where εi is the i-th largest value
of (x1, . . . , xn). It’s well known from classical extreme statistics theory[3] that
under mild assumptions the distribution of the max of N iid random variable
with common density function will converge point wise to one of the Frechet,
Weibull or Gumbell distributions. More precisely, one may find two sequences
(an)n∈N, an > 0 and (bn)n∈N such that :

∀x lim
n→+∞

Fn(anx+ bn) = G(x)

where G is one of :

G1α : x 7→ exp(−x−α) Frechet
G2α : x 7→ exp(−(−x)−α) Weibull
G3 : x 7→ exp(− exp(−x)) Gumbell

where α is a positive real number named “Tail index”. In most cases α has to be
estimated, which requires a considerable amount of samples to be accurate, but
for optimization purpose we will see that this value can be set a priori. Now, if
we let M(F ) = inf{x|F (x) < 1} we have the following result[5] :

– If M(F ) = +∞ , limt→+∞[1− F (tx)]/[1− F (t)] = x−α for x > 0
– If M(F ) < +∞ , limt→0[1−F (M(F )− tx)]/[1−F (M(F )− t)] = (−x)α for
x < 0

– As a limiting case , limt→M(F )[1 +F (T + g(t)x)]/[1−F (t)] = e−x for x ∈ R
and :

g(t) =

∫ M(F )

t

(1− F (u))du/(1− F (t))

which gives necessary and sufficient conditions for weak convergence of distribu-
tions.



If we now go back to the problem of maximizing a function f : Rn → R and
assuming that f can be approximated by a definite negative quadratic form in
a sufficiently small ball centered at each point of its domain, then one can prove
that conditions yielding to a Weibull limiting distribution are fulfilled and that
α = 2/n. If the function f is exactly a definite negative quadratic form :

f : x 7→ 〈x,HX〉

and if samples are drawn according to a probability measure µ, then we have :

F : t 7→ 1− µ( tQΛ−1/2B(0, t1/2))

where Q and Λ are respectively orthogonal and diagonal matrices arising from
the decomposition :

H = tQΛQ

and the notation B(0, t) stands for the open ball of center 0 and radius t. Now
by linearity, we have directly the de Haan condition[1] :

(1− F (ut))/(1− F (t)) = un/2

for u > 0. Of course, this result can be straightforwardly extended to the case
of a non zero maximum M(F ), yielding again to a Weibull limiting distribution
for the maximum :

lim
N→+∞

FN (M(F ) + aNx) = exp(−(−x)2/n)

with :
aN = M(F )− inf{t|1− F (t) ≤ N−1}+ o(1)

If the function f has several equivalent maxima, each of them satisfying the
de Haan condition locally, the Weibull distribution with 2/n as tail index is again
the limiting distribution of the maximum.

In the following, we will assume that the previous quadratic model is valid,
at least locally so that we may take α = 2/n. Note anyway that after a sufficient
number of samples has been drawn, it’s possible to have a sufficiently accurate
estimator of α which may speed up the algorithm. This refinement has not
been implemented in our test algorithm but will be in the final version. Several
estimators exists for α and can be found in [6].

3 Prospectiveness

In the following sampling will be done on an hyper-rectangle D defined by
its principal diagonal (x1, x2) with x1, x2 ∈ Rn. Let (ε1, . . . , εN ) be the order
statistics associated with sample (f(x1), . . . , f(xN )), the points x1, . . . , xN be-
ing drawn from D using uniform sampling (Markovian sampling may be used
too and gives the same limiting distribution). The prospectiveness criterion of



the domain D is an estimation of the probability that the true maximum of f
occurs in D. It can be computed using the first order statistics by :

c(D) =

(
1−

(
M − ε1
M − εk

)2/n
)k

with k = min(5, N/10) (this value is based on numerical experiments. see [6])
and M the maximum value of f observed so far (this value is updated after each
generation of the GA).

A high prospectiveness indicates that the domain must be exploited while a
low value shows that the domain is unpromising and must be either dropped or
expanded.

4 GA and order statistics

4.1 Introduction

The general scheme of our GA is quite the same as a regular GA: it first generates
an initial population, applies a selection to identify the best individuals and
diversify the population by applying operators. The main difference come from
the coding, and the fitness evaluation.

This GA works on state domains instead of state points and is able to iden-
tify the prospectiveness of a domain by computing order statistics. Then a low
fitness will be given to a domains with a low prospectiveness. The power of or-
der statistics enable to evaluate “large” domains with a “few” samples on it and
produces a fitness which summarize the property of an entire zone.

It may be noticed that this improvement may be adapted to any GA which is
working on continuous state space. It is independent of the selection, the scaling,
the sharing etc ....

The main adaption have to be done on the coding, the operators and on the
fitness evaluation.

4.2 Coding

The chromosomes used for our GA are hypercubes of a N-dimensional state
space which are encoded with two points on a diagonal (see figure 1)

After the building of a chromosome, only the field P1 and P2 are updated.
The other fields will be addressed by the evaluation of the associated fitness
and will be used by the operators in order to enhance the exploitation and the
exploration. During the evaluation, the domain is sampled and order statistics
are computed.

ε1-ε5 are the five first statistics, Pm is the position of the max in the domain
and C is the relative confidence of the first statistic.
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Fig. 1. Hypercube domain coding

4.3 Operators

Crossover Different crossover operators have been implemented but the one
which produce the best results uses the geometrical properties of the parent
domains (see figure 2).
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Fig. 2. Crossover operator

Two parent domains P1 and P2 are randomly selected and 2 situations have
to be investigated:

1. the two parents share a common sub domain (left part of figure 2). This
shared sub domain (shaded area) becomes one of the children (C1) and the
second one is given by the smaller domain which encompass the two parents
(dashed line).

2. the two parents are independents (right part of figure 2). An “inter-sub-
domain” is then built (shaded area) to create the first child C1 and, as in the



first case, the second child is given by the smaller domain which encompass
the two parents (dashed line).

Depending on the parents, this crossover enhance both, exploration and ex-
ploitation.

Mutation For 20% of mutation a full new drawing of the domain is applied
and in the others cases the mutation operator is guided by the prospectiveness
C which is computed during the fitness evaluation. C ∈ [0, 1], and is maximum
when the confidence about the computed max is maximum. So, when C is close
to “1” one has to enforce the exploitation (centering on Pm and contraction).
On the other side, when C is close to “0”, the exploration has to be enforced
(the operator draws a new domain). Finally when C is not on extrema (0 or
1) a compromise between exploration and exploitation is done (centering and
extension).

An example of the three previous situations is given on figure(see figure 3).

Pm

Pm

Pm

Contraction

0.25 < C < 0.9
Extension

New DrawingC < 0.25

C > 0.9
Centering

Centering

Fig. 3. Mutation operator

4.4 Fitness Evaluation

In order to apply the selection, individuals have to be evaluated with a fit-
ness function. When a chromosome has to be evaluated, its domain is randomly
sampled (30 draws) with the original criterium function (the one we want to op-
timize). The order statistics and the associated confidence are then computed.



The fitness given to the chromosome is then computed with the help of the
observed max and the confidence.

5 Test Functions

Different test functions have been used in order to compare our method with a
classical GA :

– Sphere function : f1(x) =
∑i=N
i=1 x2

i , −50.0 ≤ xi ≤ 50.0

– Step function : f2(x) =
∑i=N
i=1 dxi + 0.5e2 , −50.0 ≤ xi ≤ 50.0

– Ackley function : f3(x) = −c1. exp (S1(x))− exp (S2(x)) + c1 + e with

S1 = −c2
√

1
N

∑N
i=1 x

2
i

S2 = 1
N

∑N
i=1 cos (c3.xi)

c1 = 20 c2 = 0.2 c3 = 2π − 30.0 ≤ xi ≤ 30.0

– Griewank function :f4(x) = 1
400∗N

∑N
i=1 x

2
i −

∏N
i=1 cos ( xi√

i
) + 1

−600.0 ≤ xi ≤ 600.0

– Rosenbrook function :f5(x) =
∑N−1
i=0 100 ∗ (x2

i − xi+1)2 + (1− xi)2

−30.0 ≤ xi ≤ 30.0

– Lennard-Jones function : This function is coming from the famous Lennard-
Jones Molecular Configuration problem: the problem of finding the structure
or relative positions of a cluster of atoms that minimizes the potential energy
of the structure.The Lennard-Jones problems assume that the potential en-
ergy of the molecule is given by the sum of the pairwise interaction between
atoms. The position of atoms being given in the three dimensional space, a
problem with K atoms has N = 3.K real variables to be optimized.
The potential energy is then given by the following function:

f6(x) =
∑N/3
i=0

∑i−1
j=0

[
1
d6
ij
− 2. 1

d3
ij

]

dij = (xi − xj)2 + (xi+1 − xj+1)2 + (xi+2 − xj+2)2

min f5(x) = −128.287
N = 90(30 atoms)
−2.0 ≤ xi ≤ 2.0

All the function have to be minimized and have their minimum at 0 unless
the Lenard-Jones function for which only an experimental min is used (best
known min=-128.287 for 30 atoms). It must be noticed that both algorithm use
the same selection scheme (stochastic remainder without replacement which is
not the best) and do not use any scaling or sharing operators. From this point
of view both algorithm may be still enhanced.



Our goal being to compare the influence of domain chromosome and order
statistics we wanted them to work exactly the same way form the selection point
of view.

The number of evaluations being different at each generation for those two
algorithms, the number of generation has been adapted in order to maintain the
same number of evaluations for all experiments.

It must be noticed that the following curves have been adjusted in order to
represent both result on the same graph. Those adjustments have been done on
both axis. The “x” axis address the number of evaluations for our GA and must
be scaled for the standard GA (x 20). The “y” axis represent the fitness given
by both algorithms. The given results given are so differents that a logarithm
scale has been used to see both curves.

The parameters used for our GA are the following:

individuals 100 generations 500
probability of crossover 0.4 probability of mutation 0.3

For the Rosenbrook, Lennard-Jones the number of generation has been extended
to 1500 and 2500 respectively. The experiments have been done on a PentiumII
300 MHz and last 7 minutes for N=200 and 14 minutes for N=2000 (N:dimension
of the state space). It must be noticed that other experiments has been done
for the same functions with the optimum moved in the state space (without
symmetries) and the given results are quite the same.

Function f1 f2 f3 f4

Standard AG - N=200 10621 11598 11.98 20.11
Domain AG - N=200 2.28 0 0.32 0.96
Standard AG - N=2000 9105 8.7105 20.45 165.8
Domain AG - N=2000 622 222 3.38 1.11

Function f5 N=200 f6 N=90 (30 Atoms)
Standard AG 15.6106 -77.21
Domain AG 254 -125.9 1

6 Conclusion

This paper has given a good application of the gain which could be given by the
mix of different methods. On one side, the main advantage of order statistics for
optimization is their ability to summarize the properties of an entire domain with
a “small” sample. On the other side, the evolution process of GA is able to build
the most adapted chromosome to environment given by the fitness landscape.
The mix of both methods really increase the performances of GA by guiding the
exploration and exploitation phases. For all tests, the results given by this new
GA, are much better than the ones given by a standard GA.
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(a) Sphere Dimension 2000
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(b) Step Dimension 2000
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(c) Ackley Dimension 2000
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(d) Griewank Dimension 2000
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(e) Rosenbrook Dimension 200
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(f) Lennard-Jones with 30
Atoms

It must be noticed that this algorithm may be still improved the following
way:

– a better selection scheme may be used;
– the order statistics may also be used in order adapted the drawing random

law in the domains;
– pools of samples may be used for different domains which could be randomly

open on it. Those pools may be updated every K generations.
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