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ABSTRACT 

 

OBJECTIVES  

The aim of this paper is to present an extensive neurophysiological study of the Air-Traffic-

Controllers (ATCOs) during en route Air Traffic Control (ATC) simulations. In other words, the 

purpose was to extract neurophysiological features suitable for the evaluation of the learning progress 

and for the real-time estimation of the user’s workload level. 

METHODS 

In collaboration with the French Ecole Nationale de l'Aviation Civile (ENAC, Toulouse), it has been 

developed and tested a specific task for the en-route ATCO. The task’s difficulty can be altered 

according to how many aircrafts the participant have to control, the number and type of clearances 

required over the time and the trajectory of other interfering aircrafts. The subjects have been asked 

to learn how to complete the task within a training period of a week and, in the second week, to 

execute it under different difficulty levels. During the experiments, the Electroencephalogram (EEG), 

the Electrocardiogram (ECG), the Electrooculogram (EOG), the behavioral data and the perception 

of the workload have been collected. 

RESULTS 

The results showed that the frontal theta Power Spectral Density (PSD), the parietal alpha PSD, the 

heart rate (HR) and the eyeblinks rate (EBR) are reliable features by which evaluating the learning 

progress and the user’s workload.  

CONCLUSIONS 

It has been demonstrated that it could be possible i) to quantify how well the subjects can accomplish 

with a new task and ii) to compare subject’s performances, in terms of cognitive resources. In 

addition, it has been presented iii) a system able to significantly differentiate three workload levels, 

and iv) how the subjective features used for the workload evaluation remain stable over the time. 



INTRODUCTION 

Controlled airspace is divided into sectors. An en route sector is a region of airspace that is typically 

situated at least 50 km from an airport for which an associated ATCO has responsibility. ATCOs 

have to accept aircraft into their sector; check aircraft, issue instructions, clearances, and advice to 

pilots and hand aircraft off to adjacent sectors or to airports. When the aircraft leaves the airspace 

assigned to the ATCO, control of the aircraft passes onto ATCO controlling the next sector (or to the 

tower ATCO). As is typical in many real-world complex systems, this environment imposes multiple 

concurrent demands on the operator, in fact in the en route air traffic control environment, the system 

that confronts the air traffic controller comprises a large number of aircrafts coming from a variety 

of directions, at diverse speeds and altitudes, heading to different destinations [1]. ATCOs have two 

main goals. The primary goal is to ensure that aircraft under jurisdiction adhere to International Civil 

Aviation Organization (ICAO) mandated separation standards. For example, one of the most common 

separation standards requires that aircraft under radar control be separated by at least 1,000 feet 

vertically and 5 nautical miles horizontally. The secondary goal is to ensure that aircraft reach their 

destinations in an orderly and expeditious manner. These goals require the ATCO to perform a variety 

of tasks, including monitoring air traffic, anticipating loss of separation (i.e., conflicts) between 

aircraft, and intervening to resolve conflicts and minimize disruption to flow. (For an extensive 

compilation of the tasks and goals of en route control, see [2]). Total world airline scheduled 

passenger traffic in terms of passenger-kilometers is projected to grow at an annual average rate of 

4.4% over the period 2002 to 2015, according to forecasts prepared by the ICAO (2004). To 

accommodate predicted traffic growth there is a need to increase en route airspace capacity through 

the introduction of new air traffic management systems, controller tools and procedures. But, the 

consensus among research and operational communities is that it is really important to understand the 

factors that drive mental workload if they are to improve airspace capacity [3], [4]. Most research has 

focused on identifying characteristics of the air traffic picture that create task demand for ATCOs 

(e.g., [5]–[7]). Others argue that there is no simple linear relationship between task demand and 

workload (e.g., [8], [9]). Several current research groups agree with Sperandio’s [10] view that a 

relationship between task demand and workload can be better understood by considering how ATCOs 

use strategies to manage their resources and regulate their workload [4], [8], [11]–[14]. Factors such 

as skills, training, experience, fatigue and other “stressors” all mediate the relationship between task 

demands, safety and performance of the ATCO. Hence, it is easy to understand how quantitative 

information about skills level and mental states could help to evaluate the ATCO’s workload level 

and to decide if they might need more training before working into real environments. Several studies 

described the correlation of spectral power of the EEG bands with the complexity of the task that the 

subjects are performing [15]. In fact, an increase of electroencephalographic  power spectral density 

especially over the frontal cortex in the theta band (4 - 7 Hz) and an EEG PSD decrease in the alpha 

band (8 - 12 Hz) over the parietal cortex have been observed when the required mental workload, the 

task’s complexity and the amount of information to be processed increase. Furthermore, it has been 

suggested that also an increased Heart Rate (HR) could be related with an increased mental workload 

and engagement. On the contrary the eyesblink duration and rate are inversely correlated with the 

increase of the mental workload and attention levels [15]. The hypotheses of the study are that i) as 

the EEG theta PSD increases and the EEG alpha PSD decreases with these cognitive phenomena , at 

the end of the training period such PSDs increment and decrement should be different from the 

beginning of the training period , therefore such trends could be taken as indexes of the correct 

acquisition of procedural skills and of less request of cognitive resources for the correct execution of 

the task, ii) the combined use of EEG features and HR can improve the reliability of the measure with 

respect of using the single information. Also, these biosignals can be used for the real-time evaluation 

of the operator’s workload level, in a real Air Traffic Management (ATM) scenarios. Such hypotheses 

have been tested on a group of 6 subjects who succeeded in the 5-days-training-period and who were 

asked to execute the experimental task for two more weeks in order to evaluate their mental workload 

under three different difficulty levels. 



 

MATERIALS AND METHODS 

Experimental subjects and ATM simulation task 

A group of six healthy volunteers has been selected in terms of age (21±4 years) and previous computer 

game skills. The subjects have been asked to learn how to execute correctly an ATM task (labyrinth, 

LABY), that never did before, under easy (E), medium (M) and hard (H) conditions, randomly selected 

and proposed to them in order to avoid any habituation and expected effects. The LABY microworld 

is a functional simulation of Air Traffic Control (ATC), provided by the software engineers of the 

French ENAC, that captures the underlying processes involved in electronic air traffic management 

with a simplified version of the operational human-machine interface. Microworlds are computer-

based human-in-the-loop simulation environments that offer testing, behavioral/physiological 

measurement, and training capabilities, with the flexibility to build various scenarios [16], [17]. LABY 

is a dynamic environment whereby a controller must issue directional commands to guide aircrafts 

along a predetermined route, whilst avoiding potential conflicts and dealing concurrently with other 

incoming information. The LABY microworld is based upon the main task of guiding N plane(s) 

around a predetermined route, indicated by a green path (Fig. 1). Participants must input numerical 

values such as heading, flight level, speed, etc., in order to direct flight around the trajectory and to 

avoid any conflicts or obstacles which may occur during the flight-route. Penalties are applied if the 

aircrafts deviate off the route or if other constraints are not met. The difficulty of the task can be altered 

according to how many aircrafts the participant have to control, the number and type of clearances 

required over the time and the number/trajectory of other interfering flights. In the first week, the 

subjects trained for 5 consecutive days (SESSIONS T1÷T5) and their neurophysiological signals have 

been recorded in the first (T1), in the third (T3) and in the fifth (T5) session. The behavioral (task 

performance) and subjective workload perception data have been collected every day. After the 

training period, the subjects were asked to execute the LABY on two consecutive days in the second 

week and on a day after a week since the last experimental session. At the end of each experimental 

condition, the subjects filled the NASA-Task Load indeX (TLX, [18]) questionnaire for the evaluation 

of the perceived workload of the proposed task.  



Acquisition of the brain activity and of the physiological signals: Electroencephalogram (EEG) and 

physiological signals, including vertical electrooculogram (EOG) and electrocardiogram (ECG), have 

been recorded by the digital monitoring BEmicro system (EBNeuro system). The sixteen EEG 

channels (FPz, F3, Fz, F4, AF3, AF4, C3, Cz, C4, P3, Pz, P4, POz, O1, Oz and O2), the ECG and the 

EOG channels have been collected simultaneously with a sampling frequency of 256 (Hz). All the 

EEG electrodes have been referenced to both earlobes, and the impedances of the electrodes were 

kept below 10 (kΩ). The bipolar electrodes for the heart activity have been placed on the Erb’s point, 

while the bipolar electrodes for the EOG have been positioned vertically on the left eye. 

EEG analysis: The acquired EEG signals have been digitally band-pass filtered by a 4th order 

Butterworth filter (low-pass filter cut-off frequency: 30 (Hz), high-pass filter cut-off frequency: 1 (Hz)) 

and then segmented in epochs of 2 seconds, 0.125 seconds – shifted. The EOG signal has been used 

to remove eyes-blink artefacts from the EEG data by using the Gratton method [19]. The EEG PSD 

has then been estimated by using the Fast Fourier Transform (FFT) in the EEG frequency bands 

defined for each subject by the estimation of the Individual Alpha Frequency (IAF) value [20]. The 

PSDs in the theta and alpha bands have then been analyzed by estimating the Coefficient of 

Determination (r2), or r-square, between the considered experimental condition and the reference 

condition. As 0 < r2 < 1 by definition, a signed r2 has been derived by multiplying the coefficient of 

determination by the sign of the slope of the corresponding linear model of the regression analysis. In 

this way, it has been possible to obtain information not only about if the two datasets were different, 

but also about the direction of such difference. A Stepwise Linear Discriminant Analysis (SWLDA, 

[21]) has been used to select the most relevant spectral features to discriminate the mental workload 

levels. In particular, the classifier was trained using data from one triplet (Easy, Medium and Hard) 

and the extracted parameters were tested over the other remaining triplets within the same session 

(INTRA cross-validations) or the other sessions (INTER cross validations). Several moving average 

samples (NMA) have been applied to the output of the classifiers (WEEG,): NMA(1) = 0.125 (sec), NMA(8) 

= 1 (sec), NMA(16) = 2 (sec), NMA(32) = 4 (sec), NMA(64) = 8 (sec). The moving average was expected 

 

Figure 1.   



to increase the stability and the accuracy of the index with the drawback of introducing delays in the 

workload estimation, inducing a decrease of the workload refresh rate.  

ECG and EOG analysis: As well as for the EEG, the ECG and the EOG signals have been band - pass 

filtered, respectively 1-8 (Hz) and 8-16 (Hz), and then segmented in epochs of 8 seconds, 0.125 

seconds – overlapped. The HR and the EBR have been estimated by calculating the distance between 

consecutive peaks occurring in the ECG and in the EOG signals. In particular the R-peaks and the 

eyeblinks peaks have been used, and then they have been normalized by the z-score transformation 

with respect to the reference condition, in which the subjects watched the task interface without 

responding to them. As  for the EEG, also for the HR parameter a workload index (WHR) has been 

calculated by using the SWLDA at different output rates: NMA(1) = 0.125 (sec), NMA(8) = 1 (sec), 

NMA(16) = 2 (sec), NMA(32) = 4 (sec), NMA(64) = 8 (sec).) 

Fusion workload index: A Fusion workload index has been calculated as a combination of the WEEG 

and the WHR indexes. In particular, the two SWLDA classifiers outputs have been synchronized, 

because their different delays (EEG: 2 (sec) overlapped of 125 (msec); HR: 8 (sec) overlapped of 125 

(msec)), and then a new workload index (Fusion based workload index, WFusion) has been computed 

as a linear combination of the WEEG and the WHR score (Equation 1).  

𝑊𝐹𝑢𝑠𝑖𝑜𝑛 = 𝑎𝑊𝐸𝐸𝐺 + 𝑏𝑊𝐻𝑅                                                          (1) 

  

The coefficients a and b of the linear combination have been estimated for each subject by means of a 

simple LDA performed considering the EEG and the HR score distributions (WEEG and WHR) 

calculated over the cross validations for the three different difficulty levels (Figure 2). 

Classifier performance analysis: The dataset deriving from the three days of workload evaluation 

have been re - organized in 15 triplets (5 triplets per session) of runs (Easy, Medium and Hard). All 

the possible cross-validations have been considered, training the classifier with one triplet and testing 

the extracted features over the remaining triplets. The values of the Area Under Curve (AUC) of the 

Receiver Operating Characteristic (ROC, [22]), describing the accuracy of the system, have been 

calculated from the outputs of the classifier (for each of the different output rates).  

Workload score distributions analyses: The workload score distributions of the single conditions 

(Easy, Medium and Hard) has been calculated using the same approach of the AUC evaluation, thus 

 

Figure 2.   



by training the classifier with each triplet of runs within the sessions and testing the extracted features 

over all the other triplets. In addition, two types of cross-validations have been defined in order to 

investigate how well the classifier performs; considering the training and the testing dataset of the 

same day (INTRA) or considering the training set of one day and the testing set of the other  days 

(INTER). For summarize, the INTRA type refers to the cross-validations performed considering as 

training and testing sessions the same day. Contrariwise, the INTER type refers to the cross-

validations performed considering as training session one of the three days and as testing sessions 

those performed in the other two days. 

NASA-TLX analyses: Subjective workload perception was obtained by asking the subjects to fill the 

NASA-TLX questionnaire for each task condition (Easy, Medium and Hard). The NASA-TLX 

evaluates the perceived workload by considering six different factors: Mental Demand, Physical 

Demand, Temporal Demand, Frustration, Effort and Performance. The workload scores, ranged from 

0 to 100, are obtained as weighted linear combination of such factors. The subjective scores of the 

perceived workload were then compared to the mental workload indices estimated by the system.  

Statistical analyses: The results derived from the different analyses have been then validated by the 

statistical analyses performed by using the STATISTICA software (Statsoft). For the Training 

Protocol, the one-way repeated measures ANOVA (Confidence Interval, CI = .95) was used for all 

the neurophysiological data (dependent variables) with the SESSIONS (3 levels) as independent 

variable. Such factor has three levels, one for each day of the week in which the EEG recording was 

made (T1, T3 and T5). For the Workload Protocol, statistical analyses over the i) classifier 

performances, ii) workload scores distribution and iii) NASA-TLX scores have been performed.  

i) Three repeated measures ANOVA (CI = .95) have been performed, one for each classifier 

(EEG, HR and Fusion based), using the different comparison couples of difficulty levels 

(Easy vs Hard, Easy vs Medium and Medium vs Hard, 3 levels), and two of the “moving 

average lengths” (NMA(x), x={1, 64}, 3 levels) as within factors and the related AUC 

values as dependent variable, for all the subjects. We selected only two moving average 

values because the number of subjects. Also, a repeated measures ANOVA has been 

performed by considering the three classifiers (EEG, HR and Fusion based, 3 levels) and 

the two moving average lengths (NMA(x), x={1, 64}, 3 levels) as within factors, and the 

AUC values averaged for the three couples of conditions (Easy vs Hard, Easy vs Medium 

and Medium vs Hard) as dependent variables for all the subjects. In addition, a Duncan 

post-hoc test has been performed in order to test the effects between all the factors. 

ii) Three repeated measures ANOVA (CI = .95) have been performed, one for each classifier 

(EEG, HR and Fusion based), using the difficulty conditions (Easy, Medium and Hard, 3 

levels) and Cross-validation type (INTRA and INTER, 2 levels), for each subject, as 

independent variables and the related workload index distributions (WEEG, WHR and 

WFusion) as dependent variables..  

iii) A one-way ANOVA (CI=.95) was performed on the NASA-TLX scores (dependent 

variable) with the difficulty condition (Easy, Medium and Hard) as independent variable. 

 

 

 

 

 



RESULTS 

Training improvement assessment 

LABY performance analysis: Throughout the training sessions, the performance of the subjects 

increased continuously in terms of mean performance level and accuracy. Figure 3 shows the 

performance’s index adopted across the different training days. By the inspection of Fig. 3 it is easy 

to note the simultaneous increase of the performances level and the decrease of the amplitude of the 

standard deviations in the learning curve. On the second day of training, all the subjects reached at a 

good level of performance (almost the 90%) and since the third day (T3), they could reach 

performance level higher than 95%. The one-way ANOVA performed on the global LABY score 

showed significant differences across the sessions (F(4, 20) = 17.74 with a p < .00001, η2
p=.78). The 

Duncan post-hoc test showed that the first two sessions (T1 and T2) were statistically different from 

all the others (p < .0001) while the last three ones (T3, T4 and T5) were not statistically different to 

each other. 

 

 

Figure 3.   

 

Frontal PSD theta: The ANOVA results reported in Figure 4 show a statistical significant modulation 

of the of EEG PSD in theta band over the frontal areas (EEG channels: AF3, AF4, F3, Fz, and F4) 

across the different training sessions (F(2, 10) = 4.18, p < .048, η2
p=.45) and the Duncan’s post-hoc 

test confirmed these differences p < .03. It is evident that in the central session (T3), when the subjects 

have been supposed to have learnt how to execute correctly the task and focused the cognitive 

resources for improve their performances, the frontal PSD theta reached the highest increment respect 

all the other sessions. 

 



 

Figure 4.   

Parietal PSD alpha: Figure. 5 shows the trend of the parietal EEG PSD in alpha band over the EEG 

channels P3, Pz and P4, represented as variation of signed r-square. Repeated measures ANOVA 

showed significant differences of the parietal PSD alpha (F(2, 10)=9.95 with an associated  

p = .0042, η2
p=.67) and a decreasing trend of the spectral PSD from T1 to T5 across the training 

sessions. 

 

Figure 5.   

 

Heart Rate and Eyeblinks Rate analysis: Figure 6 and 7 show the results of the ANOVA analysis of 

the autonomic parameters of HR and of EBR, respectively. The HR shows that the subjects were 

emotively engaged in correspondence of the central training session (T3), as the HR in T3 was the 

highest one, and that at the end of the training period they were more relaxed with the experimental 

task, as both the HR and the EBR decreased and increased, respectively. 

 
 



 

Figure 6.   

 

In fact, the Duncan’s post-hoc tests reported significant (p<.01) differences between the HR and EBR 

values of the first (T1) and last (T5) training session. In addition, the EBR z-score shows how the 

subjects kept to pay attention to the task, as it was negative even at the end of the training. 

 

Figure 7.   

 

Perceived mental workload: NASA-TLX analysis: The one-way ANOVA for the NASA-TLX data 

(Figure 8) shows significant differences among the training sessions (F(4, 20)=7.67 and p< .00065, 

η2
p=.61). The post-hoc test allowed to found out that the average scores of the NASA-TLX were 

statistically different up to the fourth session (T4), whereas the T4 and T5 sessions were perceived 

similar in terms of perceived workload. 
 



 

Figure 8.   

 

Workload evaluation and classification 

Classifier performance analyses: The ANOVA analyses (Figure 9) revealed a significant increment 

in the classifier’ performance at higher moving average values for both the EEG (F(1, 5)=372.14, 

p=0.00001, η2
p=.99) and the Fusion based classifiers (F(1, 5)=18.13, p=0.008, η2

p=.78), while no 

differences have been highlighted for the HR based classifier (F(1, 5)=1.34, p=.29, η2
p=.21).  In 

addition, the post-hoc test showed that AUC values calculated using all the three classifiers in the 

“Medium vs Hard” couple were significantly lower (all p<.001) than the other two ones. Finally, the 

ANOVAs highlighted a significant interaction between the Classifiers and the Moving averages (F(2, 

10)=25.71, p=0.0001, η2
p=.84). In particular, post-hoc test showed that the fusion based classifier 

(WFusion) showed higher AUC values than the EEG based classifier (WEEG) at short refresh times 

(0.125s, p<.001), and higher AUC values than both the EEG and the HR classifiers at long refresh 

times (8s, p<.05). (Figure 9).  

 

 



 

Figure 9.   

Workload score distribution: The ANOVA analyses (Figure 10) revealed that the score distributions 

related to the different difficulty conditions (Easy, Medium and Hard) for all the three classifiers were 

significantly separated (EEG-based: F(2,10)=8.90, p=.006, η2
p=.64; HR-based: F(2,10)=4.93, 

p=.032, η2
p=.50, Fusion-based: F(2,10)=10.05, p=.004, η2

p=.67). Furthermore, no significant 

differences were found between the workload scores related to the INTER and the INTRA cross-

validations (EEG-based: F(1,5)=.22, p=.66, η2
p=.04; HR-based: F(1,5)=1.40, p=.29, η2

p=.22, Fusion-

based: F(1,5)=1.78, p=.24, η2
p=.26). 
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Figure 10.   

NASA-TLX analyses: The ANOVA results revealed a main effect of the difficulty levels (F(1,10)=8.38, 

p=.016, η2
p=.46). Subjective perception of the workload increased as the difficulty of the task 

increased. This result is consistent with the score distribution analyses (Figure 10), showing a high 

reliability of the estimated mental workload index.  

 

DISCUSSION 

The neurophysiological signals, the task performance scores and the experienced workload describe 

a story in which the subjects found their own strategies for the correct execution of the proposed task 

(LABY) and then got completely confident with the execution of it. At the central part of the training 

period (T3) the cognitive and emotive engagement reached the highest levels, as the frontal PSD theta 

and the HR showed the highest increment. The trends of the parietal PSD alpha and of the EBR 

showed how the subjects kept to pay attention to the execution of the task. In fact, the parietal PSD 

alpha and the EBR continued to decrease and to increase, respectively, up to the last training session 

of the first week (T5). From a perception point of view, the NASA-TLX scores demonstrated that the 

subjects experienced less workload throughout the sessions, especially at the end of the training 

period (T5) respect to the beginning of it (T1).  

Once the subjects became trained with the LABY task, an algorithm able to estimate in real-time the 

mental workload of the user has been tested on the next two weeks, by using the combination of EEG 

and ECG signals. There are several studies in literature in which these biosignals are used for 

assessing the mental workload, but normally they are used separately. In this study, it has been 

demonstrated that the combination of EEG and HR allows to differentiate significantly the workload 

level over three different difficulty levels, showing a high discrimination accuracy  

(AUC > .7). Furthermore, the fusion of the EEG and HR information allows to significantly increase 

the reliability of the algorithm with respect of using only EEG or HR alone. Also, the subjective 

features used for the evaluation of the mental workload remained stable over a week, between the 

“week 2” and “week 3” of the experimental protocol., so, even after a week, it might not be necessary 

to recalibrate the algorithm with new EEG data. The aspects related to the classifier stability and 



accuracy are highly important for the usability of the system. In fact, to use such system in real 

environments, it could be enough to calibrate the algorithm with the specific parameters of the 

operator only once and then just use them without further adjustments maintaining a high reliability 

and stability over, at least, a period of one week. Finally, the calculated workload index showed the 

same trend of the NASA-TLX workload assessment.  

 

CONCLUSIONS 

Two protocols have been presented in this study, the training and the workload evaluation of ATCOs 

by means of neurophysiological signals. The integration of information derived by the brain activity, 

through the EEG, and the physiological signals of ECG and of EOG with the supervision of Experts 

could be used as possible innovative “cognitive metric” for evaluating the degree of the learning and 

the training progress throughout their periods of formation. Also, this method could be applied when 

the comparison between subjects is required in terms of required cognitive resources for the execution 

of specific tasks. In fact, after a fixed period of training it could be possible i) to quantify how well the 

subjects can complete a task, in terms of cognitive resources necessary to the correct execution, and 

ii) to compare subject’s cognitive performances by estimating the neuro-physiological EEG, HR and 

EBR parameters presented in this study. In addition, an algorithm able to estimate the mental workload 

of an operator by using the combination of EEG rhythms and HR signals has been proposed. It has 

been demonstrated that i) the system is able to significantly differentiate three workload levels related 

to the three difficulty level of the task employed; ii) the subjective features used for the evaluation of 

the mental workload remain stable over a week; iii) the combination between the information derived 

from the EEG and the HR signals allows to significantly increasing the reliability of the system. 

Finally, iv) the subjective evaluation of the workload shows the same trend of the physiological 

workload indexes (WEEG, WHR, WFusion). The evaluation of the mental workload by using the 

information derived by biosignals, allows to have an objective and more reliable measure than using 

the subjective questionnaires, such as the NASA-TLX. Also, another advantage with respect to the 

subjective measurements (e.g. NASA-TLX) is the assessment of the real-time variations of the 

workload within the same task, e.g. each 125 msec. Further experiments will be performed to even 

further test and extend the long term use of the algorithm. The present study, carried out in a laboratory 

environment, should be replicated on a larger sample size (more than six subjects) and in a more 

realistic scenario involving professional operators. 
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FIGURE LEGENDS 

 

Figure 1. The LABY is a dynamic environment whereby an ATC must issue directional commands 

to guide N airplane(s) around a predetermined route, indicated by a green path, in order to avoid any 

conflicts or obstacles which may occur during the flight-route. LABY has been developed and tested 

with a professional ATCO in collaboration with ENAC in Tolouse.  

Figure 2. Fusion based workload index assessment (WFusion). The Fusion workload index (WFusion) 

has been calculated as a linear combination of the EEG and the HR based workload indices. The two 

classifiers outputs were synchronized before the computation of the fusion-based index. 

Figure 3. The trend of the global LABY score across the five different training sessions (T1-T5). The 

figure reports the mean performance value and the standard deviations for the sessions. A statistical 

significant increase of the performance was obtained at the end of the period when compared to the 

first day of training 

Figure 4. Mean EEG PSD (r-square) in theta band over the frontal EEG channels AF3, AF4, F3, Fz 

and F4 across the training sessions T1, T3 and T5. At T3, the frontal PSD theta reached the highest 

increment (p < 10-5). 

Figure 5. Parietal EEG PSD in alpha frequency band during the training period. The graph reports the 

signed r-square values estimated in the training sessions (T1, T3 and T5). The continuous decrement 

of the parietal PSD alpha is significant across all the training sessions (p<10-5). 

Figure 6. Heart Rate (z-score) values across the training sessions. The trend shows how in the central 

part of the training period (T3) the subjects showed an high emotive engagement, as the HR got the 

highest value. 

Figure 7. Eyesblink rate (z-score) values across the training sessions. The values are all negative 

because the subjects paid attention to the task for the whole training period and it shows how the 

subjects got more confident with task session after session. 



Figure 8. Average NASA – TLX scores of the training sessions. After each training session the 

subjects perceived the difficulty of the experimental task easier than the previous one. 

Figure 9. Mean values and related standard errors (CI = .95) of the AUC values achieved using the 

different classifiers (EEG, HR and Fusion-based) for each refresh time value. 

Figure 10. Mean values and related standard errors (CI = .95) of the distributions of the workload 

indices (WEEG, WHR and WFusion) evaluated by the three classifier (EEG, HR and Fusion based). 


