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Abstract. In this paper it is proposed a generic object tracker with real-
time performance. The proposed tracker is inspired on the hierarchical
short-term and medium-term memories for which patterns are stored as
discriminators of a WiSARD weightless neural network. This approach is
evaluated through benchmark video sequences published by Babenko et al.
Experiments show that the WiSARD-based approach outperforms most of
the previous results in the literature, with respect to the same dataset.

1 Introduction

The task of tracking objects with real-time requirement has many useful applica-
tions. In this context, SanMiguel et al. [1] proposed a framework for estimation
of the quality in video tracking algorithms, which features the capability of eval-
uating video trackers with multiple failures and recoveries over long sequences.
On the other hand, Percini and Del Bimbo [2] presented an object tracking
method where multiple instances of scale invariant local features were consid-
ered. Their method used a non parametric learning algorithm based on the
transitive matching property, presenting state of the art tracking performance
on public available benchmark datasets. Regarding the task of tracking an ob-
ject, given its position in the first frame of a sequence, authors in [3] considered
a Multiple Instance Learning algorithm for which the training data is provided
through labeled bags, instead of labeled instances.

Application of weightless neural network models on tracking tasks were re-
ported in [4], where the WiSARD model was successfully used by an artificial
vision system in order to follow the cadence of ships. The results hinted the pos-
sibility of applying the mechanism to model the movement of an observed vessel.
Furthermore, in [5] promising results were shown concerning the use of the WiS-
ARD weightless neural network on a real-time tracker application. In this work,
the same benchmark and metrics adopted in [3] were considered as means of
evaluating the accuracy of the proposed tracker. In contrast with the adopted
methodology in [2], this work makes use of a minimum number of features, with
the objective of maximizing tracking speed. In summary, the proposed tracker
has the objective of following an object identified in the first frame of a video
sequence.

∗The authors acknowledge the Brazilian Agencies CAPES and CNPq for partially funding
this research.
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This paper is organized as follows. The WiSARD model is reviewed in Section
2, followed by Section 3, which describes the short- and medium-term hierarchic
memory tracker. Experimental setup and results are presented in Section 4.
Finally, in section 5, some conclusions and future improvements are pointed out.

2 WiSARD

WiSARD is a weightless neural network and its name stands for Wilkie, Ston-
ham and Aleksander’s Recognition Device [6]. The WiSARD is structured as
a network of discriminators, which are composed of RAM-based neurons. Pat-
terns are represented as the energized paths from the network input to each
of the RAM-based neurons of the discriminators. Each RAM has a number of
input entries given by the binary address formed by its corresponding input sub-
pattern. In training mode, an addressed pattern is stored in a RAM position
as an integer value different from zero; non-addressed entries remain zero. Be-
sides, in classification mode, each discriminator outputs the number of addressed
RAM positions, for which the address was energized in training mode. Figure 1
illustrates the architecture of the WiSARD’s discriminator.
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Fig. 1: Discriminator: a basic unity for the WiSARD model [6].

3 Hierarchic memory tracker

Inspired by the human memory hierarchy, the proposed tracker is based on the
concept of short- and medium-term memories. It is assumed that the shape
changing of a object is seen as a new pattern to be learnt. For each pattern of
the followed object, the proposed tracker stores a number of discriminators, each
one representing a pattern learned in different moments of the tracking process.
Thus, the hypothesis is that it is possible to keep tracking the object even if it
changes its shape or becomes occluded for a period of time.

In the beginning of the process, the location of the object in the first frame
is used as an input to the tracker, which trains the first discriminator and stores
it in the hierarchic memory. For the next frames, the discriminator is used to
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find the object at the scene, locally searching around the last object’s location.
The discriminator returns a score to each position inside the searched region,
and the position that returns the higher score is assumed to be the location of
the object in the current frame. This process goes on until the classification
score reaches a pattern threshold. When the score falls below this threshold, the
tracker assumes that a new discriminator has to be trained in order to learn the
new object shape. The tracker then proceeds to storing the current discriminator
into the medium-term memory, and training a new discriminator to assume that
position into the short-term memory.

Fig. 2: Hierarchic Memory example: At first, the discriminator P1 is used to
find the object; in sequence, a new discriminator P2 is trained and placed in
the first position; then, if the discriminator P1 returns the best score, it goes to
the first place of the queue. In a future frame, P3 is trained and placed in the
first position, then, if discriminator P1 returns the best score, it goes to the first
position.

For each new frame, the tracker searches for the object pattern into both
memory queues. The discriminator that gives the best score is chosen to repre-
sent the object location at the current frame, and that discriminator is trans-
ferred to the first position of the queue. Both queues have a maximum number
of discriminators they can store. When this maximum number is reached, the
discriminator located in the last position is dropped. This process guarantees
that the most recently seen patterns are maintained in the hierarchic memory.
Using this strategy, the discriminator that has not been used for the longest
time, is naturally discarded when it is necessary to release memory to allocate a
new discriminator. Figure 2 illustrates an example of allocation at the hierarchic
memory with capacity to store four discriminators.
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4 Experimental setup and results

We ran the WHMTracker with default and tuned parameters in the same set of
videos1 examined in [3]. The video clips names and the corresponding default
and tuned parameters are shown in Table 1. All videos are in gray scale and
present some problematic situations for a tracking system to handle, such as
occlusion and shape changing over time. Before training a discriminator, the
cropped image of the object, given by the bounding box, is binarized. For this
purpose, the mean value of luminance is used as threshold. This process is em-
ployed while the tracker is searching for the object around a local neighborhood.

Table 1: Default and tuned parameters used in each tested video clip. Video
clips identified with * indicate that a background extraction procedure is also
part of the parameters.

Video Bits New disc. Memory Size Search area
Default params. 5 0.7 6 12

Tiger1* default 0.35 20 14
Tiger2* default 0.35 20 16

Occluded Face 3 0.5 10 10
Occluded Face 2 3 0.5 10 10
David Indoor 6 default default 10
Sylvester 3 0.8 default 5

Table 2: Average Center Location Errors (in pixels). Values marked with ’*’
indicate the best performance and boldfaced ones represent the second best
performances.

Video Clip MILTrack WHMTrack WHMTrackTuned FPS
Sylvester 11 22 8* 87
David Indoor 23 11 8* 22
Occluded Face 27 27 12* 17
Occluded Face 2 20 16 9* 28
Tiger 1 16 33 11* 45
Tiger 2 18 21 10* 43
Coupon Book 15 4* 4* 21

1The set of videos is available in: http://vision.ucsd.edu/~bbabenko/project_miltrack.
html
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Fig. 3: Figures 3a , 3b, 3c, 3d, 3e and 3f show a comparison among the tracker
in [3], WHMTracker and Tuned WHMTracker for Tiger1, Tiger2, DavidIndoor,
Sylvester, OccludedFace and OccludedFace2 video clips, respectively.
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In order to compare the results of the proposed tracker with the ones in [3],
the average bounding box center error was adopted. Each video clip includes
the associated ground truth data, which gives the position and size of the object
from 5 to 5 frames. The same linear interpolation as in [3] was used to get the
bounding box information for each frame. In addition, the tracker was executed
5 times for each video and the average error of the center location error was
computed. Figure 3 shows the results for the set of video clips. Each plot has
three pieces of information: the MILTrack result as well as the WHMTracker
with and without tuned parameters. Table 2 shows a comparison between the
results herein obtained and those in [3]2.

5 Final Remarks

In this paper, an object tracker for real time applications was presented. The
tracker uses a hierarchic memory architecture in order to store a queue of object
patterns represented by discriminators of the WiSARD model. This memory
architecture model was important to overcome problems such as occlusion, be-
cause a memory of a past seen object is stored and it is used as soon as the
object becomes visible again.

As shown by the experiments, the proposed tracker is able to surpass the
results presented in [3], using tuned parameters. The online training of a new
discriminator representing a new object pattern was possible due to the WiSARD
architecture, which allows for one shot learning. The main shortcoming of the
proposed solution is the parameterization search. Future improvement includes
search over the environment and object properties in order to propose a solution
for auto tuning the tracker parameters.
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