R Alligier

D Gianazza

N Durand

Machine Learning Applied to Airspeed Prediction During Climb

Keywords: aircraft trajectory prediction, speed intent, BADA, Machine Learning

In this paper, we apply Machine Learning methods to improve the aircraft climb prediction in the context of groundbased applications. Mass and speed intent are key parameters for climb prediction. As they are considered as competitive parameters by many airlines, they are currently not available to groundbased trajectory predictors. Consequently, most predictors today use reference parameters that may be quite different from the actual ones.

In our most recent paper ([1]), we have demonstrated that Machine Learning techniques provide a mass estimation significantly more precise than two state-of-the-art mass estimation methods.

In this paper, we apply similar techniques to the speed intent. We first build a set of examples by adjusting CAS/Mach speed profile to each climb trajectory in our database. Then, using the adjusted values (cas, M) in this database, we learn a model able to predict the (cas, M) values of a new trajectory, using its past points as input.

We apply this technique to actual Mode-C radar data and we consider 9 different aircraft types. When compared with the reference speed profiles provided by BADA, the reduction of the speed RMSE ranges from 36 % to 79 %, depending on the aircraft type. Using the predicted mass and speed profile, BADA is used to compute the predicted future trajectory with a 10 minute horizon. When compared with BADA used with the reference parameters, the reduction of the future altitude RMSE ranges from 45 % to 87 %.

INTRODUCTION

Trajectory prediction is a key feature to most Air Traffic Management and Control (ATM/ATC) operational concepts. The role of trajectory prediction is even more important in the future concepts and decision support tools envisioned in the European SESAR program ([START_REF]Milestone Deliverable D3: The ATM Target Concept[END_REF]) and its U.S. counterpart NextGen ([START_REF] Swenson | Next Generation Air Transportation System (NGATS) Air Traffic Management (ATM)-Airspace Project[END_REF]).

With the implementation of a data-link between aircraft and ground-based systems, one could think that the on-board trajectory prediction could be downloaded to the groundbased system. However, for some applications the groundbased trajectory prediction is still more relevant. Some of the most recent algorithms designed to solve ATM/ATC problems do require to test a large number of alternative trajectories and it would be impractical to download them all from the aircraft.

As an example of such algorithms, in [START_REF] Prats | Multi-objective optimisation for aircraft departure trajectories minimising noise annoyance[END_REF] an iterative quasi-Newton method is used to find trajectories for departing aircraft, minimizing the noise nuisance. Another example is [START_REF] Chaloulos | A simulation based study of subliminal control for air traffic management[END_REF] where Monte Carlo simulations are used to estimate the risk of conflict between trajectories in a stochastic environment. Some of the automated tools currently being developped for ATM/ATC can detect and solve conflicts between trajectories (see [START_REF] James | A review of conflict detection and resolution modeling methods[END_REF] for a review). These algorithms may use Mixed Integer Programming ([START_REF] Pallottino | Conflict resolution problems for air traffic management systems solved with mixed integer programming[END_REF]), Genetic Algorithms ([START_REF] Alliot | Genetic algorithms for solving ATC conflicts[END_REF], [START_REF] Durand | Automatic aircraft conflict resolution using genetic algorithms[END_REF]), Ant Colonies ([START_REF] Durand | Ant colony optimization for air traffic conflict resolution[END_REF]), or Differential Evolution or Particle Swarm Optimization ([START_REF] Vanaret | Benchmarking conflict resolution algorithms[END_REF]) to find optimal solutions to air traffic conflicts.

To be efficient, all these methods require a fast and accurate trajectory prediction, and the capability to test a large number of "what-if" trajectories. Such requirements forbid the sole use of on-board trajectory prediction, which is certainly the most accurate, but which is not directly available to ground systems.

Most trajectory predictors rely on a point-mass model to describe the aircraft dynamics. The aircraft is simply modeled as a point with a mass, and the second Newton's law is applied to relate the forces acting on the aircraft to the inertial acceleration of its center of mass. Such a model is formulated as a set of differential algebraic equations that must be integrated over a time interval in order to predict the successive aircraft positions, knowing the aircraft initial state (mass, current thrust setting, position, velocity, bank angle, etc.), atmospheric conditions (wind, temperature), and aircraft intent (thrust profile, speed profile, route).

Unfortunately, the data that is currently available to groundbased systems for trajectory prediction purposes is of fairly poor quality. The speed intent and aircraft mass, being considered competitive parameters by many airline operators, are not transmitted to ground systems. The actual thrust setting of the engines (nominal, reduced, or other, depending on the throttle's position) is unknown. Weather and Radar data are uncertain. The problem of unknown parameters such as the mass, thrust law, and target speeds, is of particular importance when predicting the aircraft climb. Figure 1 illustrates the climb prediction problem, when using a physical model of the aircraft dynamics. Some studies ([START_REF]Study of the acquisition of data from aircraft operators to aid[END_REF], [START_REF]ADAPT2. aircraft data aiming at predicting the trajectory[END_REF], [START_REF] Coppenbarger | Climb trajectory prediction enhancement using airline flight-planning information[END_REF]) detail the potential benefits that would be provided by additional or more accurate input data. In other works, the aircraft intent is formalized through the definition of an Aircraft Intent Description Language ([START_REF] Lopez-Leones | The aircraft intent description language: A key enabler for airground synchronization in trajectory-based operations[END_REF], [START_REF] Lopes-Leonés | The Aircraft Intent Description Language[END_REF]) that could be used in air-ground data links to transmit some useful data to ground-based applications. All the necessary data required to predict aircraft trajectories might become available to ground systems someday. In the meantime, by applying Machine Learning techniques, we propose to learn Applying Machine Learning techniques on the trajectory prediction problem is not a new idea. A decade ago, [START_REF] Fablec | Prévision de trajectoires d'avions par réseaux de neurones[END_REF] has applied artificial neural network on this problem. It has also been investigated more recently using different Machine Learning techniques ([START_REF] Tastambekov | Aircraft trajectory forecasting using local functional regression in sobolev space[END_REF], [START_REF] Hamed | Méthodes non-paramétriques pour la prévision d'intervalles avec haut niveau de confiance: application à la prévision de trajectoires d'avions[END_REF], [START_REF] Hrastovec | Machine learning model for aircraft performances[END_REF]). With these approaches, the obtained model directly predicts the trajectory. It is a blackbox hiding what comes from the aircraft performances and what comes from the airline procedures, i.e. the way it is operated. In this context, the originality of our work is that we keep the physical model in the loop. The physical model describes the aircraft performances and the data-driven models describe how the aircraft is operated i.e. the mass and the speed intent.

In current operation, the trajectory is predicted by using the reference mass and the reference (cas ref , M ref) values from the Eurocontrol Base of Aircraft Data (BADA) (see Figure 2). These values describe the speed profile of a climbing aircraft. The aircraft climbs at constant CAS (Calibrated Airspeed) equals to cas till the transition altitude is reached, then it climbs at a constant Mach M . Although BADA associates one (cas, M) value to each aircraft type, these values might be different among aircraft of the same type due to different cost-index for instance. In this paper, using all the information available, we want to predict a (cas, M) value specific to the considered aircraft.

Figure 3 describes the approach developed in this paper to improve trajectory prediction using Machine Learning techniques. Using these techniques allows us to build the predictive models h m , h cas and h M . In previous paper [START_REF] Alligier | Machine learning and mass estimation methods for ground-based aircraft climb prediction[END_REF], we describe how the model h m predicting the mass is obtained. We demonstrated that the model h m was significantly more precise than two mass estimation methods previously compared in [START_REF] Alligier | Ground-based estimation of aircraft mass, adaptive vs. least squares method[END_REF]. In the current paper, we want to predict the speed profile. To do so, we build a set of examples by adjusting a cas, M speed profile to each trajectory of a recorded set of trajectories. Then, using Machine Learning techniques on The rest of this paper is organized as follows: Section I presents some useful Machine Learning notions that help understanding the methodology applied in our work. Section II details the data used in this study. The application of Machine Learning techniques to our speed profile prediction problem is described in section III, and the results are shown and discussed in section IV, before the conclusion.

I. MACHINE LEARNING

This section describes some useful Machine Learning notions and techniques. For a more detailed and comprehensive description of these techniques, one can refer to [START_REF] Hastie | The Elements of Statistical Learning[END_REF], [START_REF] Bishop | Pattern recognition and machine learning[END_REF].

As explained in the previous section, we want to predict a variable y, here the adjusted cas and M values of a given trajectory, from a vector of explanatory variables x, which in our case is the data extracted from the past trajectory points and the weather forecast. This is typically a regression problem. Naively said, we want to learn a function h such that y = h(x) for all (x, y) drawn from the distribution (X, Y). Actually, such a function does not exist, in general. For instance, if two ordered pairs (x, y 1) and (x, y 2) can be drawn with y 1 = y 2 , h(x) cannot be equal to y 1 and y 2 at the same time. In this situation, it is hard to decide which value to give to h(x).

A way to solve this issue is to use a real-valued loss function L. This function is defined by the user of function h. The value L(h(x), y) models a cost for the specific use of h when (x, y) is drawn. With this definition, the user wants a function h minimizing the expected loss R (h) defined by equation (1). The value R (h) is also called the expected risk.

R(h) = E (X,Y) [L (h(X), Y)] (1)
However, the main issue when choosing a function h minimizing R (h) is that we do not know the joint distribution (X, Y). We only have a set of examples of this distribution.

A. Learning from examples

Let us consider a set of n examples S = (x i , y i) 1 i n coming from independent draws of the same joint distribution (X, Y). We can define the empirical risk R empirical by the equation below:

R empirical (h, S) = 1 |S| (x,y)∈S L (h(x), y) . (2)
Assuming that the values (L(h(x), y)) (x,y)∈S are independent draws from the same law with a finite mean and variance, we can apply the law of large numbers giving us that R empirical (h, S) converges to R(h) as |S| approaches +∞. Thereby, the empirical risk is closely related to the expected risk. So, if we have to select h among a set of functions H minimizing R(h), using a set of examples S, we select h minimizing R empirical (h, S). This principle is called the principle of empirical risk minimization.

Unfortunately, choosing h minimizing R empirical (h, S) will not always give us h minimizing R(h). Actually, it depends on the "size"1 of H and the number of examples |S| ([START_REF] Vapnik | The necessary and sufficient conditions for consistency of the method of empirical risk minimization[END_REF], [START_REF] Vapnik | The nature of statistical learning theory[END_REF]). The smaller H and the larger |S| are, the more the principle of empirical risk minimization is relevant. When these conditions are not satisfied, the selected h will probably have a high R(h) despite a low R empirical (h, S). In this case, the function h is overfitting the examples S.

These general considerations above have practical consequences on the use of Machine Learning. Let us denote h S the function in H minimizing R empirical (., S). The expected risk using h S is given by R(h S). We use the principle of empirical risk minimization. As stated above, some conditions are required for this principle to be relevant. Concerning the size of the set of examples S: the larger, the better. Concerning the size of H, there is a tradeoff: the larger H is, the smaller min h∈H R(h) is. However, the larger H is, the larger the gap between R(h S) and min h∈H R(h) becomes. This is often referred to as the bias-variance tradeoff.

B. Accuracy Estimation

In this subsection, we want to estimate the accuracy obtained using a Machine Learning algorithm A. Let us denote A[S] the prediction model found by algorithm A when minimizing R empirical (., S) 2 , considering a set of examples S.

The empirical risk R empirical (A[S], S) is not a suitable estimation of R(A[S]): the law of large numbers does not apply here because the predictor A[S] is neither fixed nor independent from the set of examples S.

One way to handle this is to split the set of examples S into two independent subsets: a training set S T and another set S V that is used to estimate the expected risk of A[S T], the model learned on the training set S T . For that purpose, one can compute the holdout validation error Err val as defined by the equation below:

Err val (A, S T , S V) = R empirical (A[S T], S V). (3)
Cross-validation is another popular method that can be used to estimate the expected risk obtained with a given learning algorithm. In a k-fold cross-validation method, the set of examples S is partitioned into k folds (S i) 1 i k . Let us denote S -i = S\S i . In this method, k trainings are performed in order to obtain the k predictors A[S -i]. The mean of the holdout validation errors is computed, giving us the cross-validation estimation below:

CV (A, S) = k i=1 |S i | |S| Err val (A, S -i , S i). (4
)
This method is more computationally expensive than the holdout method but the cross-validation is more accurate than the holdout method ([START_REF] Blum | Beating the hold-out: Bounds for k-fold and progressive cross-validation[END_REF]). In our experiments, the folds were stratified. This technique is said to give more accurate estimates ([START_REF] Kohavi | A study of cross-validation and bootstrap for accuracy estimation and model selection[END_REF]).

The accuracy estimation has basically two purposes: first, model selection in which we select the "best" model using accuracy measurements and second, model assessment in which we estimate the accuracy of the selected model. For model selection, the set S V in Err val (A, S T , S V) is called validation set whereas in model assessment this set is called testing set.

C. Hyperparameter Tuning

Some learning algorithms have hyperparameters. These hyperparameters λ are the parameters of the learning algorithm 2 Actually, depending on the nature of the minimization problem and chosen algorithm, this predictor A[S] might not be the global optimum for R empirical (., S), especially if the underlying optimization problem is handled by local optimization methods.

A λ . These parameters cannot be adjusted using the empirical risk because most of the hyperparameters are directly or indirectly related to the size of H. Thus, if the empirical risk was used, the selected hyperparameters would always be the ones associated to the largest H.

These hyperparameters allow us to control the size of H in order to deal with the bias-variance tradeoff. These hyperparameters can be tuned using the holdout method on a validation set for accuracy estimation. In order to find λ minimizing the accuracy estimation, we used a grid search which consists in an exhaustive search on a predefined set of hyperparameters. The Algorithm 1 is a learning algorithm without any hyperparameters. In this algorithm, 20% of the training set is held out as a validation set.

function TUNEGRID(A λ ,grid)[T] (T T , T V) ← split (80%,20%) (T) λ * ← argmin λ∈grid Err val (A λ , T T , T V) return A λ * [T] end function

II. DATA USED IN THIS STUDY

A. Data Pre-processing Recorded radar tracks from Paris Air Traffic Control Center are used in this study. This raw data is made of one position report every 1 to 3 seconds, over two months (July 2006, and January 2007). In addition, the wind and temperature data from Météo France are available at various isobar altitudes over the same two months.

The raw Mode-C altitude3 has a precision of 100 feet. Raw trajectories are smoothed using splines. Basic trajectory data is made of the following fields: aircraft position (X,Y in a projection plane, or latitude and longitude in WGS84), ground velocity vector V g = (V x , V y), smoothed altitude (H p , in feet above isobar 1,013.25 hPa), rate of climb or descent dHp dt . The wind W = (W x , W y) and temperature T at every trajectory point are interpolated from the weather datagrid. The temperature differential ∆T is computed at each point of the trajectory.

Using the position, velocity and wind data, we compute the true air speed V a . The successive velocity vectors allow us to compute the trajectory curvature at each point. The aircraft bank angle is then derived from true airspeed and the curvature of the air trajectory.

Along with these quantities derived from the Mode-C radar data and the weather data, we have access to some quantities in the flight plan like the Requested Flight Level for instance.

With the weather datagrid, we have also computed the temperature differential ∆T (weather grid) and the wind along W along (weather grid) at each altitude of the grid. This is done by using the V aXY , the time, the latitude and the longitude of the considered point. W along is the wind along the true air speed in the horizontal plane V aXY .

All the computed quantities are summarized in Table I

B. Filtering Climb Segments

Our dataset includes all flights departing from Paris-Orly (LFPO) or Paris-Charles de Gaulle Airport (LFPG). Needless to say, this approach can be replicated to other airports.

The trajectories are filtered so as to keep only the climb segments. An additional 80 seconds is clipped from the beginning and end of each segment so as to remove climb/cruise or cruise/climb transitions. It is worth noticing that the trajectories have not been filtered on the speed profile but only on the rate of climb and the altitude.

C. Building the Sets of Examples

The climb segments are sampled every 15 seconds. From these sampled segments, we build examples containing exactly 51 points. In these examples, the first 11 points (past trajectory) are used to predict the mass and the speed profile. The remaining points (future trajectory) are used to compute the error between the predicted and actual trajectory.

From one sampled climb segment we build as many examples as we can. For instance, from a sampled climb segment containing 54 points, we can build 4 examples containing exactly 51 successive points. These 4 examples share the 48 points in the middle of the climb segment. Once these examples are built, we only keep the examples with the 11 th point at an altitude superior to 15,000ft for the B744 aircraft type and 18,000ft for all the other aircraft types. Using this method, we have considered 9 aircraft types and we have built one set of examples for each aircraft type. Some of the chosen aircraft types are very different: the E145 is a short haul aircraft with a 18,500 kg reference mass while the B744 is a long haul aircraft with a 285,700 kg reference mass. Looking at Table II

D. Adjusting the Speed Profile to Observed Points

We want to learn the future speed profile. x is the information we have at t 0 and before. The future speed intentis y. From a set of examples (x, y), we learn a model h predicting the speed profile from x. The predicted speed profile h(x) will be hopefully equal to the actual speed intent y.

However, the actual speed intent y is not available in our data, thus we do not have the set of examples (x, y), yet. We have to extract it from the observed trajectory. In BADA, the speed intent is characterized by two values, the cas and the M . The aircraft climbs at a constant CAS equals to cas till the transition altitude H p trans (cas, M) is reached. Then, the aircraft climbs with a constant Mach M . The parametrized speed is given by the equation below where f is a function given by [START_REF] Nuic | User manual for base of aircarft data (bada) rev.3.9[END_REF], T is the temperature, R and κ are physical constants.

V a (cas, M, H p , T) = f (cas, H p , T) if H p H p trans (cas, M) M √ κRT otherwise
In this subsection, we describe how we have adjusted the parameters (cas, M) in order to have the parametrized speed profile fit the observed speed. To do so, we find the parameter cas, M ∈ Ω = R + * × R + * minimizing the function Φ defined below.

Φ(cas, M) = n i=1 V a (cas, M, H p i , T i) -V ai 2 = i/Hp i Hp,trans(cas,M) f (cas, H p i , T i) -V ai 2 + i/Hp,trans(cas,M)<Hp i M κRT i -V ai 2
As the aircraft is climbing, the H p i is an increasing sequence of altitude. In order to solve this, we split the domain in sub-domains specified below.

Ω =O M ∪ O cas ∪ n-1 k=1 O k ∪ n k=1 F k with O M = H p trans -1]0; H p 1 [O cas = H p trans -1 H p n ; +∞ O k = H p trans -1 H p k ; H p k+1 F k = H p trans -1 H p k
The minimum cas, M on the domain Ω is also a minimum of one sub-domain. Then cas, M is the minimum among the minimum of each sub-domain.

The minimum on F k can be easily found because we have the constraint H p trans = H p k allowing us to compute M as a function of cas. The other sub-domains are open sets, consequently the minimum on each sub-domain has to satisfy Φ (cas, M) = 0. Finally, if we want to learn the future speed intent, our y will be the cas, M adjusted on the 41 future points of one example.

III. APPLYING MACHINE LEARNING TO OUR PROBLEM

We want to learn the speed intent cas, M . To do so, we apply a Machine Learning method separately on cas and then on M giving us a model h cas predicting cas and another model h M predicting M . The final predictive model h is h(x) = (h cas (x), h M (x)).

A. The Explanatory Variables

The explanatory variables x is a tuple composed of all the known variables at t 0 and before. We consider the derivatives ∆T (weather grid) and W along (weather grid) are computed on the last point of the past trajectory. These quantities are computed at the 10 different altitudes of the weather grid giving us 10 explanatory variables for each quantity. The 9 remaining quantities in Table I are not point-wise quantities, they are associated to the example giving us 9 variables to add to x. The variables AO, DEP and ARR given by the flight plan are categorical variables whereas all the other variables in x are numerical.

Finally, the tuple x is composed of 324 explanatory variables.

B. Gradient Tree Boosting

The stochastic gradient boosting tree algorithm was introduced in [START_REF] Friedman | Stochastic gradient boosting[END_REF]. It applies functional gradient descent ([31] using regression trees [START_REF] Breiman | Classification and Regression Trees[END_REF].

The functional gradient descent is a boosting technique. The model h is iteratively improved. At each iteration we consider the gradient of the loss

g i = ∂L(ŷ,yi) ∂ ŷ (h (x i) , y i). A Machine
Learning algorithm is applied to a modified Machine Learning problem where the set of examples is (x i , g i) 1 i n . Then the model g obtained is used to update the model h: the updated model is h +1 (x) = h(x) -ρg(x), where ρ is a constant minimizing the empirical risk. In the next iteration we consider h +1 instead of h.

In the Gradient Tree Boosting, the Machine Learning algorithm used in the functional gradient descent is a regression tree algorithm [START_REF] Breiman | Classification and Regression Trees[END_REF]. The model obtained by this algorithm is a binary tree representing a binary recursive partition of the input space. At each node, the input space is split in two according to a condition x j s. Though, the J leaves describe a partition (R j) 1 j J of the input space. Each region R j is associated to a constant γ j and when x falls into R j , then γ j is predicted. Regression trees have some advantages. This regression tree algorithm is insensitive to input monotonic transformations. Using x j , log(x j) or exp (x j) leads to the same model. As a consequence, this algorithm is robust to outliers. It can easily handle categorical variables and missing values. However it is known to have a poor performance in prediction.

The latter drawback is very limited when used in combination with functional gradient descent as it is done in the gradient tree boosting algorithm. In our experiments we used the gbm package ([START_REF] Ridgeway | Generalized boosted models: A guide to the gbm package[END_REF]) in the R software. This algorithm optimizes the risk given by a quadratic loss L(ŷ, y) = (ŷ -y) 2 .

Let us note GBM (m,J,ν) this algorithm, where m is the number of boosting iterations, J is the number of leaves of the tree and ν is the shrinkage parameter. The obtained model is a sum of regression trees. J allows us to control the interaction between variables, as we have J -1 variables at most in each regression tree. ν is the learning rate. The hyperparameters grid used for this algorithm is presented in Table III. Table III: Grid of hyperparameters used in our experiments.

IV. RESULTS AND DISCUSSION

All the statistics presented in this section are computed using a stratified 10-fold cross-validation embedding the hyperparameter selection. Figure 4 illustrates how the data is partitionned, denoting λ the hyperparameter vector. Our set of examples S is partitioned in 10 folds (S i) 1 i 10 . The hyperparameters used to learn from S -i are selected using 20% of the fold S -i as a validation set. The model learned with these hyperparameters on S -i is then used to predict the mass on the test set S i . Obviously, the intersection of the training set S -i and the test set S i is empty: they do not share any example trajectory. Overall, our set of predicted values (masses or altitudes) is the concatenation of the ten T uneGrid(A λ , grid)[S -i] (S i) (see algorithm 1). Therefore, all the statistics presented in this section are computed on test sets.

For the 9 aircraft types, each set of examples S was split in 10 folds (S i) 1 i 10 in a particular way. This split was made using the climbing segments. The results obtained with the Machine Learning algorithm are reported in Table IV. In this table we compare the speed profile V a cas, M, H p i , T i to the observed speed V ai on points i with t i 0. We have tested different settings: "adj" denotes the adjusted values cas, M , "ref" denotes the baseline values given by BADA (cas ref , M ref), "mean" denotes the values given by the mean of the adjusted values cas, M and "GBM" denotes the predicted values (cas GBM , M GBM). The "adj" setting result of the adjustment described in II-D. It is the lowest RMSE we can get using a CAS/Mach speed profile.

According to this table, using the baseline, the RMSE is around 20 kts for all the aircraft types except for the B744, the E145 and the F100. For these two aircraft types, the RMSE is reduced by at least 41 % with the "mean" method. With this method, the RMSE reduction is less spectacular for the six other aircraft types with nearly no reduction for some aircraft types. This indicates that the reference speed parameters are in accordance with mean parameters of the observed trajectories for these aircraft types. However, even for these aircraft types, the prediction can still be improved by predicting a (cas, M) value specific to the considered aircraft. This is what is done when a GBM model is used. When compared to the "mean" method, the GBM method reduces the RMSE by at least 21 %.

B. Computing the Predicted Trajectory Using Machine Learning and BADA

In order to actually predict a trajectory using the BADA model and assuming a max climb thrust, one still has to specify Table IV: These statistics, in knots, are computed on the differences between the predicted speed and the observed speed V a cas, M, H p i , T i -V ai for i such as t i 0 (i.e. i 11).

a mass and a speed profile. Both are usually unknown from ground systems. In our experiment, we want to evaluate the impact of the predicted mass and the predicted speed profile on the trajectory prediction. The prediction of the mass was introduced in a previous paper [START_REF] Alligier | Machine learning and mass estimation methods for ground-based aircraft climb prediction[END_REF] using a similar approach: a mass m is adjusted on future points and a model predicting this adjusted mass m from known variables is learned using GBM. This approach has been demonstrated more accurate than mass estimation methods introduced in [START_REF] Schultz | Adaptive trajectory prediction algorithm for climbing flights[END_REF], [START_REF] Alligier | Ground-based estimation of aircraft mass, adaptive vs. least squares method[END_REF]. In the current paper, we adjust a CAS/Mach speed profile, and we learn two GBM models predicting the adjusted values cas and M . The overall process to predict the future trajectory is described in Figure 5. The mass and the speed profile are specified using the three predictive models h m , h cas and h M .

C. Prediction of the Future Altitude

The results obtained with our methods are described in Table V. The "ref" parameter is the BADA reference parameter. The "GBM" parameter for the mass is obtained by using the model h m . The line with "GBM" for the mass and "adj" for the speed cannot be used in an operational context as it When a fresh trajectory is observed, the input variables x are computed from the observed points and the predictive models are used to predict the mass and the speed profile. uses adjusted values. This line is only used for comparison purpose. All the other lines can be used in an operational context. The baseline method, referred as BADA ref , is the line with "ref" for the mass and the speed. Our approach, referred as BADA GBM , is the line with "GBM" for the mass and the speed. These two setups can be used in an operational context: they use only the information available at the time the prediction is computed.

When compared with the baseline BADA ref , the use of the predicted mass and the reference speed profile reduce the RMSE on the altitude by at least 29 % for any aircraft type except the E145. Note that for this latter, the gap between the reference speed profile and the observed speed profile is fairly high with a RMSE of 76.1 kts while it is around 20 kts for the other aircraft types (see Table IV).

If we consider the "mean" speed, the RMSE on the altitude is noticeably reduced only for the E145 and the F100. This was expected because these two aircraft types have the largest RMSE on the speed when using the "ref" parameter.

Using the predicted speed profile, we consider the BADA GBM . If we compare this latter to the BADA ref setup, the RMSE on the altitude is reduced by at least 45 % for all the aircraft types, including the E145. This reduction reaches 87 % for the B772.

Aircraft state at t 0 :Figure 1 :

 01 Figure 1: The ground-based aircraft climb prediction problem.

Figure 2 :Figure 3 :

 23 Figure 2: Baseline method : the BADA prediction of the future aircraft climb

Algorithm 1 :

 1 Hyperparameters tuning for an algorithm A λ and a set of examples T (training set).

m

 = {1000, 1500, 2000} J = {3, 5, 10, 15} ν = {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05}

Figure 4 :

 4 Figure 4: Cross-validation for model assessment, with an embedded holdout validation for hyperparameter tuning.

Aircraft state at t 0 :Figure 5 :

 05 Figure 5: This figure describes how the future trajectory is predicted by applying Machine Learning techniques. The examples set is used to build predictive models (h m , h cas , h M).When a fresh trajectory is observed, the input variables x are computed from the observed points and the predictive models are used to predict the mass and the speed profile.

Figure 6 :

 6 Figure 6: This figure portrays the error on the altitude obtained by BADA ref and BADA GBM for nine different aircraft types. Each time step, a boxplot shows the 5 %, 25 %, 50 %, 75 % and 95 % quantiles. The whiskers (resp. box) of the boxplot contains 90 % (resp. 50 %) of the data.

Table I :

 I . This table summarizes the quantities available in our study.

	quantities		description
	Hp		geopotential pressure altitude
	Vg		Ground Speed
	Va		True Air Speed
	Va XY		True Air Speed in the (X,Y) plane
	d air		distance flown w.r.t. the air
	d ground		distance flown w.r.t. the ground
	∆T		temperature differential (cf. [28])
	W		wind
	W along		wind along Va XY
	Wacross		wind across Va XY
	W Z		vertical wind
	θc		drift angle
	CAS		Calibrated Air Speed
	Mach		Mach number
	1/r sol		curvature w.r.t. the ground
	1/r air		curvature w.r.t. the air
	φ		bank angle
	e = Va dVa dt + g 0 ew = e + → T -∆T T -W . -→ Va	dHp dt	specific energy rate specific energy rate corrected from
			the wind effect
	∆T (weather grid)		temperature differential on a grid of
			different Hp
	W along (weather grid)	wind along Va XY on a grid of dif-
			ferent Hp
	mLS		estimated mass from past points us-
			ing least square method [21]
	e LS		root mean square error obtained on
			the past points using the least square
			method
	mAD		estimated mass from past points us-
			ing adaptive method [29]
	RFL		Requested Flight Level
	Speed		requested speed
	distance		distance between airports
	AO		aircraft operator
	DEP		departing airport
	ARR		arrival airport

Table II :

 II we see the size of the different sets. Size of the different sets. Only the climbing segments generating at least one example in our final examples set are counted here.

	type	number of climbing segments number of examples
	A319	1863	15702
	A320	5729	65514
	A321	1866	21789
	A332	1475	28629
	B737	344	2178
	B744	350	2750
	B772	910	8525
	E145	851	8310
	F100	660	7430

 the quantities in Table I between H p and ew are computed on the 11 past points. Thus, these 27 quantities gives us 297 variables. However d air11 and d ground 11 are always equal to zero, then only 295 are included in x. The other quantities in Table I are also included in x.

	dHp dt ,	d 2 Hp dt 2 ,	dWalong dt ,	dVg dt , dVa dt , dW Z dt , dCAS dt	and dMach dt	. The
	latter quantities and			

 Thus, all the examples generated by one climbing segment are only in one fold S i . It guarantees that the fold S i have examples independent from the ones in S -i = S\S i .

	Select	Valid
	Training set for	Test set for

The "size" of H refers here to the complexity of the candidate models contained in H, and hence to their capability to adjust to complex data. As an example, if H is a set of polynomial functions, we can define the "size" of H as the highest degree of the functions contained in H. In classification problems, the "size" of H can be formalized as the Vapnik-Chervonenkis dimension.

This altitude is directly derived from the air pressure measured by the aircraft. It is the height in feet above isobar 1013.25 hPa.

However, the reduction obtained on the altitude by using the predicted speed profile is large only for the E145 and the F100. The impact of the speed error reduction is hidden by other sources of error. Firstly, the weather model and the BADA model are not perfect. Secondly, we have assumed a max climb thrust setting which might not be a relevant assumption for all the climb trajectories. Thirdly, the mass used is a predicted mass. Even if the cas, M values were perfectly predicted, the trajectory prediction will not be perfect. The error made in this perfect case can be read at the line with "GBM" for the mass and "adj" for the speed. Thus, even with an RMSE around 8 kts on the speed profile, the RMSE on the altitude is reduced but not greatly reduced. at the time t = 600 s.

Figure 6 portrays the error on the altitude at different time horizons. More specifically, boxplots are presented at each time step. The whiskers (resp. box) of the boxplot contains 90 % (resp. 50 %) of the data.

CONCLUSION

To conclude, let us summarize our approach and findings, before giving a few perspectives on future works. In this article we have described a way to predict the future speed profile. Using Machine Learning and a set of examples, we have built models predicting the values (cas, M) of a CAS/Mach speed profile. Using real Mode-C radar, this approach has been tested on the 9 different aircraft types. In order to evaluate the accuracy of the Machine Learning method, a cross-validation is used. When compared to the reference speed profiles provided by BADA, the RMSE on the speed is reduced by at least by 36 % using GBM, a Machine Learning method. Concerning the E145, this RMSE is reduced by 79 %.

In order to predict the future trajectory, this approach is used in conjunction with a similar approach described in [START_REF] Alligier | Machine learning and mass estimation methods for ground-based aircraft climb prediction[END_REF]. This latter is used to predict the mass. Then using the predicted mass and speed profile, the BADA physical model is used to compute the predicted future trajectory with a 10 minutes horizon. The RMSE on the future altitude is reduced by at least 45 %. This reduction reaches 87 % for the B772.

From an operational point of view, the resulting improvement in the climb prediction accuracy would certainly benefit air traffic controllers, especially in the vertical separation task as shown in [START_REF] Schultz | Adaptive trajectory prediction algorithm for climbing flights[END_REF]. Furthermore, even if it was not computed in our study, the proposed method probably reduces the along track error and the Top Of Climb prediction error.

We only have considered a CAS/Mach speed profile. However, as said before, the climbing trajectories in our data does not always follow a CAS/Mach speed profile. In order to improve the trajectory prediction, we might consider other climb procedures. For future work, we might consider a procedure in which the aircraft climbs at a constant CAS cas 1 till the altitude H p cas , then accelerates/decelerates till the CAS reaches cas 2 and finally follows a (cas 2 , M) CAS/Mach speed profile. However, in order to use this, we would have to adapt our method to predict cas 1 , H p cas , cas 2 , M .

BIOGRAPHIES