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Abstract
Recently, for spinless non-relativistic particles, Norsen1, Norsen, Marian and Oriols2 show that in

the de Broglie-Bohm interpretation it is possible to replace the wave function in the configuration

space by single-particle wave functions in physical space. In this paper, we show that this replacment

of the wave function in the configuration space by single-particle functions in the 3D-space is also

possible for particles with spin, in particular for the particles of the EPR-B experiment, the Bohm

version of the Einstein-Podolsky-Rosen experiment.
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I. INTRODUCTION

A major difficulty of wave function interpretation of N particles in quantum mechanics

is its definition in a 3N-dimensional configuration space. Since the Solvay Conference in

1927, de Broglie and Schrödinger considered the wave function of N particles introduces by

Schrödinger in the 3N-dimensional configuration space as fictitious and proposed to replace

it by N single-particle wave functions in 3D-space:

"It appears to us certain that if one wants to physically represent the evolution of a

system of N corpuscles, one must consider the propagation of N waves in space, each N

propagation being determined by the action of the N-1 corpuscles connected to the other

waves. Nevertheless, if one focusses one’s attention only on the corpuscles, one can represent

their states by a point in configuration space, and one can try to relate the motion of this

representative point to the propagation of a fictitious wave Ψ in configuration space. It

appears to us very probable that the wave

Ψ = a(q1, q2, ..., qn)cos
2π

h
ϕ(t, q1, ...qn),

a solution of the Schrödinger equation, is only a fictitious wave, which in the Newtonian

approximation, plays for the representative point of the system in configuration space the

same role of pilot wave and of probability wave that the wave Ψ plays in ordinary space in

the case of a single material point." de Broglie3 (cited by Norsen1)

"This use of the q-space [configuration space] is to be seen only as a mathematical tool,

as it is often applied also in the old mechanics; ultimately... the process to be described is

one in space and time." Schrödinger4 (cited by Norsen et al.2 p.26)

But, as noted by Norsen et al.2, this program to replace the wave function in a

3N-dimensional configuration space by N single-particle wave functions was prematurely-

abandoned. It was recently re-opened by Norsen1, Norsen, Marian and Oriols2. For spinless

non-relativistic particles, these authors show that it is possible in the de Broglie-Bohm pilot-

wave theory to replace the wave function in the configuration space by N single-particle wave

functions in physical space2. These N wave functions in 3D-space are the N conditional wave

functions of a subsystem introduced by Dürr, Goldstein and Zanghi6,7. For a N-particle wave
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function Ψ(x1, x2, ..., xN , t), the N conditional wave functions are:

Ψ1(x, t) = Ψ(x, x2, ..., xN , t)|x2=X2(t);xN=XN (t)

Ψ2(x, t) = Ψ(x1, x, ..., xN , t)|x1=X1(t);xN=XN (t)

ΨN(x, t) = Ψ(x1, ..., xN−1, x, t)|x1=X1(t);xN−1=XN−1(t)

where Xi(t) is the position of the particle i at time t in the Bohmian mechanics. The

evolutions of these positions X(t) = {X1(t), X2(t), ..., XN(t)} are given by the guidance

formula:
dXi(t)

dt
=

~
mi

Im
∇iΨ

Ψ
|x=X(t) ≡

~
mi

Im
∇Ψi

Ψi

|x=Xi(t)

We discuss in8 the pertinence of this passage from the configuration space to physical

space.

The aim of this paper is to show that this replacement of the wave function in the

configuration space by single-particle functions in the 3D-space is also possible for particles

with spin, in particular for the particles in the singlet state of the EPR-B experiment, the

Bohm version of the Einstein-Podolsky-Rosen experiment.

To realize this decomposition of a pair of entangled atoms into two states, one for each

atom, we consider a two-step version of the EPR-B experiment and we use an analytic

expression of the wave function. The explicit solution, obtained via a complete integration

of the two-body Pauli equation over time and space for the two-step version of the EPR-B

experiment, is presented in section 2.

In section 3, we show how, in the de Broglie-Bohm interpretation, we can replace the

singlet spinor of the two-step version of the EPR-B experiment by two single-particle spinors.

II. EXPLICIT SOLUTION OF THE SPINOR IN CONFIGURATION SPACE FOR

THE TWO-STEP VERSION OF EPR-B EXPERIMENT

Fig.1 presents the Einstein-Podolsky-Rosen-Bohm experiment. A source S creates in O

pairs of identical atoms A and B, but with opposite spins. The atoms A and B split following

the y-axis in opposite directions, and head towards two identical Stern-Gerlach apparatuses

A and B.
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FIG. 1: Schematic configuration of the EPR-B experiment.

The electromagnet A "measures" the A spin in the direction of the z-axis and the elec-

tromagnet B "measures" the B spin in the direction of the z’-axis, which is obtained after a

rotation of an angle δ around the y-axis.

We assume, at the moment of the creation of the two entangled particles A and B,

that each of the two particles A and B has an initial wave function ΨA
0 (rA, θA0 , ϕA0 ) and

ΨB
0 (rB, θB0 , ϕB0 ) with spinors that are opposite spins; for example

ΨA
0 (rA, θA0 , ϕ

A
0 ) = f(rA)

(
cos

θA0
2
|+A〉+ sin

θA0
2
eiϕ

A
0 |−A〉

)
(1)

and

ΨB
0 (rB, θB0 , ϕ

B
0 ) = f(rB)

(
cos

θB0
2
|+B〉+ sin

θB0
2
eiϕ

B
0 |−B〉

)
(2)

with θB0 = π − θA0 , ϕB0 = ϕA0 − π, where r = (x, z), f(r) = (2πσ2
0)−

1
2 e
−x

2+z2

4σ2
0 and where |±A〉

(resp. |±B〉) are the eigenvectors of the spin operators ŝzA (resp. ŝzB) in the z-direction

pertaining to particle A (B): ŝzA|±A〉 = ±(~
2
)|±A〉 (resp. ŝzB |±B〉 = ±(resp.~

2
)|±B〉). We

treat the dependence on y classically: speed −vy for A and vy for B.

Note that we represent a particle with spin by a spinor with a spatial extension (1) and

not from a simplified wave function without spatial extension:

ΨA
0 (rA, θA0 , ϕ

A
0 ) =

(
cos

θA0
2
|+A〉+ sin

θA0
2
eiϕ

A
0 |−A〉

)
(3)

In the usual textbooks on quantum mechanics9–12, the spatial extension of the spinor is not

taken into account and its spatial integration in the Pauli equation is not possible. We lose

any possibility of taking the spin evolution into account during the measurement13,14.

Then the Pauli principle tells us that the two-body wave function must be antisymmetric;

it is written:

Ψ0(rA, θA, ϕA, rB, θB, ϕB) = Ψ0
A(rA, θA, ϕA)Ψ0

B(rB, θB, ϕB)−Ψ0
A(rB, θB, ϕB)Ψ0

B(rA, θA, ϕA)
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i.e. Ψ0(rA, θA, ϕA, rB, , θB, ϕB) = f(rA)f(rB)[(cos θA
2
|+A〉 + sin θA

2
eiϕA|−A〉)(cos θB

2
|+B〉 +

sin θB
2
eiϕB |−B〉)− (cos θB

2
|+A〉+sin θB

2
eiϕB |−A〉)(cos θA

2
|+B〉+sin θA

2
eiϕA|−B〉)], and after cal-

culation we obtain:

Ψ0(rA, θA, ϕA, rB, θB, ϕB) = −eiϕAf(rA)f(rB)(|+A〉|−B〉 − |−A〉|+B〉)

which is the same as the singlet state (4), factor-wise:

Ψ0(rA, rB) =
1√
2
f(rA)f(rB)(|+A〉|−B〉 − |−A〉|+B〉) (4)

Note that our initial singlet wave function (4) has a spatial extension contrary to the usual

wave function (5), which is a simplifield function without spatial extension:

Ψ0(rA, rB) =
1√
2

(|+A〉|−B〉 − |−A〉|+B〉). (5)

And this spatial extension is essential to solve the Pauli equation in space!

The wave function Ψ(rA, rB, t) of the two identical particles A and B, which is electrically

neutral and with magnetic moments µ0, subject to magnetic fields BA and BB, admits

4 components Ψa,b(rA, rB, t) in the basis |±A〉 and |±B〉and verifies the two-body Pauli

equation22 p. 417:

i~
∂Ψa,b

∂t
=

(
− ~2

2m
∆A −

~2

2m
∆B

)
Ψa,b + µBAj (σj)

a
cΨ

c,b + µBBj (σj)
b
dΨ

a,d (6)

with the initial conditions:

Ψa,b(rA, rB, 0) = Ψa,b
0 (rA, rB) (7)

where the σj are the Pauli matrixes and where the Ψa,b
0 (rA, rB) correspond to the singlet

state (4).

We take as numerical values those of the Stern-Gerlach experiment with silver atoms13,23.

For a silver atom one has m = 1, 8 × 10−25 kg, vy = 500 m/s , σ0=10−4m. For the

electromagnetic field B, Bx = B′0x; By = 0 and Bz = B0 − B′0z with B0 = 5 Tesla,

B′0 =
∣∣∂B
∂z

∣∣ = −
∣∣∂B
∂x

∣∣ = 103 Tesla/m over a length ∆l = 1 cm. The time in the magnetic

field is ∆t = ∆l
vy

= 2× 10−5s. The screen that intercepts atoms is at a distance D = 20 cm

(time tD = D
vy

= 4× 10−4s) from the exit of the magnetic field.

One of the difficulties of the interpretation of the EPR-B experiment is the existence

of two simultaneous measurements. By doing these measurements one after the other, the

interpretation of the experiment will be facilitated. That is the purpose of the two-step

version of the experiment EPR-B studied below.

5



A. First step: Measurement of A spin

In the first step we make, on a couple of particles A and B in a singlet state, a Stern

and Gerlach "measurement" for atom A, then in the second step a Stern and Gerlach

"measurement" for atom B. It is the experiment first proposed in 1987 by Dewdney, Holland

and Kyprianidis20.

Consider that at time t0 the particle A arrives at the entrance of electromagnet A. 4t is

the duration of the crossing electromagnet A and t is the time after the A exit. The wave

function can be calculated, from the wave function (4), term to term in basis [|±A〉, |±B〉].

After this exit of the magnetic field A, at time t0+4t+t, the wave function (4) becomes13–15:

Ψ(rA, rB, t0 +4t+ t) =
1√
2
f(rB)

×
(
f+(rA, t)|+A〉|−B〉 − f−(rA, t)|−A〉|+B〉

)
(8)

with

f±(r, t) ' f(x, z ∓ z4 ∓ ut)ei(
±muz

~ +ϕ±(t)) (9)

and

z∆ =
µ0B

′
0(∆t)2

2m
= 10−5m, , u =

µ0B
′
0(∆t)

m
= 1m/s.

The atomic density ρ(zA, zB, t0 + ∆t + t) is found by integrating Ψ∗(rA, rB, t0 + 4t +

t)Ψ(rA, rB, t0 +4t+ t) on xA and xB:

ρ(zA, zB, t0 + ∆t+ t) =

(
(2πσ2

0)−
1
2 e
− (zB)2

2σ2
0

)
(10)

×

(
(2πσ2

0)−
1
2

1

2

(
e
− (zA−z∆−ut)

2

2σ2
0 + e

− (zA+z∆+ut)2

2σ2
0

))
.

We deduce that the beam of particles A is divided into two, while the B beam of particle

stays whole.

Moreover, we note that the space quantization of particle A is identical to that of an

untangled particle in a Stern and Gerlach apparatus: the distance δz = 2(z∆ + ut) between

the two spots N+ (spin +) and N− (spin −) of a family of particles A is the same as the

distance between the two spots N+ and N− of a particle in a classic Stern and Gerlach

experiment13. We finally deduce from (10) that:

• the density of A is the same, whether particle A is entangled with B or not,
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• the density of B is not affected by the "measurement" of A.

Only spins are involved. We conclude from (8) that the spins of A and B remain opposite

throughout the experiment15.

B. Second step: "Measurement" of B spin.

After a first step of a Stern and Gerlach "measurement" on the A atom between t0 and

t0 +4t+ tD, the second step comprises a Stern and Gerlach "measurement" on the B atom

with an electromagnet B forming an angle δ with A between t0 +4t+tD and t0 +2(4t+tD).

At time t0+4t+tD, the wave function in configuration space is given by (8). Immediately

after the "measurement" of A, still at time t0 +4t + tD, if the A measurement is ±, the

conditionnal wave function of B is:

ΨB/±A(rB, t0 +4t+ tD) = f(rB)|∓B〉. (11)

To measure B, we refer to the basis |±′B〉 where |±′B〉 are the eigenvectors of the spin

operators ŝz′B in the z’-direction pertaining to particle B. We note r′ = (x′, z′). So, after the

measurement of B, at time t0 + 2(4t+ tD), the conditional wave functions of B are:

ΨB/+A(r′B, t0 + 2(4t+ tD)) = cos
δ

2
f+(r′B, tD)|+′B〉+ sin

δ

2
f−(r′B, tD)|−′B〉, (12)

ΨB/−A(r′B, t0 + 2(4t+ tD)) = − sin
δ

2
f+(r′B, tD)|+′B〉+ cos

δ

2
f−(r′B, tD)|−′B〉. (13)

We therefore obtain, in this two-step version of the EPR-B experiment, the same results

for spatial quantization and correlations of spins as in the EPR-B experiment.

III. THE TWO SINGLE-PARTICLE SPINORS FOR THE TWO-STEP VERSION

OF THE EPR-B EXPERIMENT

We assume, at moment of the creation of the two entangled particles A and B, that each

of the two particles A and B has an initial wave function ΨA
0 (rA, θA0 , ϕA0 ) and ΨB

0 (rB, θB0 , ϕB0 )

with spinors which are opposite spins given by equations (1) and (2), with θB0 = π − θA0 ,

ϕB0 = ϕA0 − π.

In the de Broglie-Bohm interpretation, we assume therefore that the intial position of the

particle A is known (xA0 , yA0 = 0, zA0 ) as well as the particle B (xB0 = xA0 ,yB0 = yA0 = 0,zB0 =

zA0 ).
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A. Step 1: Measurement of A spin

Equation (8) shows that the spins of A and B remain opposite throughout step 1. Equa-

tion (10) shows that the densities of A and B are independent; for A equal to the density of a

family of free particles in a classical Stern Gerlach apparatus, whose initial spin orientation

has been randomly chosen; for B equal to the density of a family of free particles.

The spin of a particle A is oriented gradually following the position of the particle in its

wave into a spin + or −. The spin of particle B follows that of A, while remaining opposite.

In equation (8) particle A can be considerd independent of B. We can therefore give it

the wave function

ΨA(rA, t0 +4t+ t) = cos
θA0
2
f+(rA, t)|+A〉+ sin

θA0
2
eiϕ

A
0 f−(rA, t)|−A〉 (14)

which corresponds to a free particle in a Stern Gerlach apparatus and whose initial spin

is given by (θA0 , ϕA0 ). For an initial polarization (θA0 , ϕA0 ) and an initial position (zA0 ), we

obtain, in the de Broglie-Bohm interpretation24, an evolution of the position (zA(t)) and of

the spin orientation of A (θA(zA(t), t))13. In the interval [t0, t0 + ∆t], we obtain:

dzA
dt

=
µ0B

′
0t

m
cosθ(zA, t)

with tan
θ(zA, t)

2
= tan

θ0

2
e
−µ0B

′
0t

2zA
2mσ2

0 (15)

with the initial condition zA(t0) = zA0 ; and in the interval t0 + ∆t+ t (t ≥ 0):

dzA
dt

= u
tanh( (z∆+ut)zA

σ2
0

) + cos θ0

1 + tanh( (z∆+ut)zA
σ2

0
) cos θ0

and tan
θ(zA(t), t)

2
= tan

θ0

2
e
− (z∆+ut)zA

σ2
0 . (16)

Fig.2 presents in x0y a set of 10 particles A trajectories of which initial characteristics

(θA0 , ϕ0, z
A
0 ) have been randomly chosen: θA0 and ϕA0 with a uniform law and zA0 with the

Gauss law N(0, σ0). The spin orientation θ(zA(t), t) is represented by arrows.

We can see that the final orientation, obtained after the decoherence time tD, will depend

on the initial particle position zA0 in the wave packet and on the initial angle θA0 of the atom

magnetic moment with the z axis.

The case of particle B is different. B follows a rectilinear trajectory with yB(t) = vyt,

zB(t) = zB0 and xB(t) = xB0 . By contrast, the orientation of its spin is driven by the

orientation of the spin of A: θB(t) = π − θ(zA(t), t) and ϕB(t) = ϕ(zA(t), t)− π.
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FIG. 2: 10 silver atom trajectories after the A electro-magnet; Arrows represent the spin orientation

θ(zA(t), t).

We can then associate the wave function:

ΨB(rB, t0 +4t+ t) = f(rB)

(
cos

θB(t)

2
|+B〉+ sin

θB(t)

2
eiϕ

B(t)|−B〉
)
. (17)

During the first step, the singlet spinor in configuration space (8) can be replaced by the

two single-particle spinors given by Equations (14) and (17).

B. Step 2: "Measurement" of B spin

Until time t0 +4t + tD, we are in step 1. Immediately after the "measurement" of A

at the time t0 + ∆t + tD, if the A measurement is ±, the conditional wave function of B is

given by (11).

Then particle B is in position (xB0 , z
B
0 ). We are exactly in the case of a particle in a Stern

and Gerlach magnet B which is at an angle δ in relation to A. To measure the spin of B,

we refer to the basis |±′B〉. So, after the measurement of B, at time t0 + 2(4t + tD), the

conditional wave functions of B are given by (12) and (13), and we again find the quantum

correlations.
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IV. CONCLUSION

We have show that it is possible to replace the singlet spinor in configuration space (8)

by the two single-particle spinors given by Equations (14) and (17).

From the wave function of two entangled particles, we have determined spins, trajectories

and also a wave function for each of the two particles.

In this interpretation, the quantum particle has a local position like a classical particle,

but it has also a non-local behaviour through the singlet wave function.

As we saw in step 1, the non-local influence in the EPR-B experiment only concerns the

spin orientation, and not the motion of the particles themselves. This is a key point in the

search for a physical explanation of non-local influence.
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