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ABSTRACT 

Consisting of three pairs of accelerometers, the 
gradiometer is an ideal sensor for passive navigation. 
This paper proposes the use of gravity gradients for 
spacecraft positioning and the real-world GOCE EGG 
data are tested to investigate the feasibility. The basic 
observation equation is first formulated by considering 
white noise only, and a Least-Square position searching 
method is developed. The raw GGT measurements are 
preprocessed before the test in order to remove the low-
frequency errors. By using a 120-degree EGM2008 
gravity model as a reference map, position solutions 
with an accuracy of hundreds of meters are obtained. A 
further semi-simulation study shows that an accuracy of 
tens of meters could be achieved with a better 
gradiometer. 
 
1. INTRODUCTION 

The application of gravity gradiometry in navigation has 
been pursued for a long time. The gradiometer was first 
identified as an aid for the inertial navigation system 
(INS) in the 1960s with an intention to reduce errors 
from geodetic uncertainties [1].  Several integration 
methods were proposed and analysed around that time 
and laid the foundation for following studies [2-4]. In 
1990, Affleck and Jircitano presented a passive 
gradiometer-aided INS based on gravity gradient map-
matching technique [5]. The measured gravity gradient 
disturbances were compared with map values accessed 
by estimated positions, and the difference was processed 
by an optimal filter to provide corrections to position 
estimates, gradiometer error as well as map residual 
error. A combination of covariance and simulation 
analysis was carried out for low speed airborne and 
shipborne systems. Gleason continued the work and 
developed an efficient Fast Fourier Transformation 
algorithm to generate gridded gravity gradient maps [6]. 
Richeson presented discussions on the implementation 
of the map-matching method in his dissertation, and the 
navigation performance for a hypersonic cruise was 
investigated [7]. Simulation results showed that a 
hypothetical future grade gravity gradiometer 
instrument (GGI) with a noise level of 1 mE could 
provide GPS-like performance and bound the position 
error at decimetres. A comprehensive feasibility 
investigation was also conducted by Rogers in 2009, 

and DeGregoria presented a thorough methodology 
study on aircraft navigation aiding in 2010 [8-9]. 
The common motivation in the studies of gravity 
gradient map-matching is that the gravity gradients 
contain useful position information and they are 
measured in a nonemanating way. Spoofing or jamming 
is impossible unless the local gravity field is changed. 
However, two obstacles concerning to ultra-low-noise 
gradiometers and accurate gravity gradient maps must 
be overcome in order to make this technology a reality, 
as stated in the study of Rogers [8]. The first instrument 
problem is easing due to the emerging superconducting 
technology as well as innovative researches in cold 
atom interferometry [7].  By contrast, the gravity 
gradient map construction faces a theoretical obstacle 
that the Earth mass density variability is unknown. A 
compromising method is to use global gravity models to 
compute gravity gradients. Terrain elevation data must 
also be included at low altitudes [6].  
Things will be a little different when it comes to a low 
earth orbit (LEO) satellite. First, unlike vehicles at or 
near the Earth’s surface, the spacecraft are not subject to 
large non-gravitational forces and thus follows a nearly 
free-fall motion. This ideal stabilization provides a good 
measurement platform for gradiometers. For example, 
the Electrostatic Gravity Gradiometer (EGG) onboard 
the ESA’s GOCE satellite demonstrated an accuracy of 
0.01 E/√Hz in the designed measurement bandwidth 
(MBW) when enhanced with a drag-free flight mode 
[10]. Second, since the gravity gradients attenuate 
proportional to distance cubed, some of the terrain 
contributions to the gravity field will be negligible at 
sufficiently high altitudes. Referring to analysis in [7], a 
satellite in a 300 km altitude orbit with a space-grade 
0.01 E GGI noise level would only be affected by 
terrain effects greater than about 500 m tall. Thus a 
truncated spherical harmonic gravity model will be 
accurate enough for space users to generate gradient 
maps. Last but not least, high-precision attitude 
measurements can be easily obtained from star trackers 
for a spacecraft. The importance of the attitude 
information will be explained in the next section. 
This paper investigates the feasibility of using gravity 
gradients as an observable for spacecraft navigation. 
Different from the filter updating map-matching 
technique for inertial navigation aiding [5, 7-9], the 
method proposed in this paper aims to resolve position 



 

directly from epoch-wise gravity gradient measurements. 
An assumption is made that there are no measurement 
bias or information missing and only the white noise 
disturbance needs to be considered. It is a practical 
assumption in that any bias or missing information can 
be compensated or recovered by estimation and 
calibration techniques. To evaluate the observability and 
to test the positioning performance, the GOCE EGG 
data are used. The GOCE satellite was the first-ever 
satellite to carry a gradiometer in space, and large 
amounts of gravity gradients were measured from an 
unprecedented low altitude of about 260 km [11]. Two 
high performance GPS receivers and three advanced 
star trackers were also mounted on the satellite. The 
GPS measurements have already been processed by 
ESA to generate precise orbit solutions (PSO) with an 
accuracy of about 2 cm [12]. The known orbits are used 
to validate the accuracy of position estimates obtained 
from gravity gradient observations. 
The remainder of this paper is organised as follows.  
Section 2 introduces the mathematical model of gravity 
gradients as functions of position, and the observation 
equation in the gradiometer reference frame (GRF) is 
formulated. Section 3 presents an Eigen-Decomposition 
algorithm for initial position determination followed by 
a Least-Square estimator to iterate positions. Covariance 
analysis equation is also given to estimate the position 
errors. Section 4 describes the error characteristics of 
GOCE EGG measurements as well as the preprocessing 
work needed before the test. Section 5 summarized the 
test results and Section 6 presents the conclusions. 
 
2. GRAVITY GRADIENTS AS FUNCTIONS OF 

POSITION 

The gravity gradients (“gravitational gradients” more 
precisely) are the spatial derivatives of the gravitational 
acceleration, and are expressed as a second-order tensor 
in mathematics: 
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where g is the gravitational acceleration, r is the 
position vector, and (gx, gy, gz) and (x, y, z) are the 
vector components of g and r with respect to a specific 
cartesian coordinate system. 
The gravity gradient tensor (GGT) is unique for position 
relative to the Earth (but not exactly for a central 
gravitational force field). The Earth-Centered Earth-
Fixed (ECEF) coordinate system is a natural reference 
frame for GGT representation and a spherical harmonic 
model is provided in geodesy to express the gravity 

gradients as functions of position: 
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where E
ijV are components of GGT in the ECEF frame, i 

and j take values from x, y and z, G is the gravitational 
constant, M is the mass of the Earth, R is the radius of 
the Earth, n and m are degree and order, and Cnm and Snm 
are spherical harmonic coefficients. Anm and Bnm are 
functions of position and defined as: 
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where r, ϕ and λ are the geocentric coordinates of the 
observation position in ECEF, and Pnm is the Legendre 
function. 
A full-tensor gradiometer cannot sense E

ijV directly, and 
it only measures GGT in its reference frame, which is 
defined by the three orthogonal arms of the six 
accelerometers. Let VE and VG denote GGTs in the 
ECEF and GRF frame respectively. VE can be 
transformed to VG by the following equation: 

  TG G E G
E EV R V R   (4) 

where G
ER  is the rotation matrix from ECEF to GRF. 

As GGT is symmetric, the GOCE gradiometer outputs 6 
components of VG. By introducing the column vectors: 
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an observation equation is formulated as follows: 
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where Z is the column set of observations, andν is the 
measurement noise. G

ET is a 6×6 matrix composed of  
elements from the rotation matrix G

ER : 

G
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where cij is the ith row and jth column of .G
ER A similar 

expression is also found in [7]. 



 

The observations contains both position and attitude 
information. Recalling Eq. 2, E

lV is a function of 
position only. Rotation matrix G

ER  is in reality a 
production of two matrices: 

 G G I
E I ER R R   (8) 

where I
ER is the rotation matrix from ECEF to the 

inertial frame, and G
IR is the rotation matrix from the 

inertial frame to GRF. Earth Orientation Parameters 
(EOP) as well as gradiometer attitudes are required to 
compute these matrices. Star trackers nowadays can 
provide attitude measurements with an accuracy of a 
few arcseconds [13], corresponding to a rotation 
precision of 5×10-6. The transformation error of gravity 
gradients due to attitude error is around 0.01 E. The 
precision of rotation matrix I

ER is even better. The latest 
IERS report shows an accuracy of better than 1×10-8 has 
been achieved for the Earth rotation matrix [14]. The 
GGT transformation error caused by EOP error is 
smaller than 0.1 mE. The transformation errors are all 
incorporated into the measurement noise, which will be 
discussed in the next section. Thus, with EOP data and 
high precision attitude measurements provided, Eq. 6 
becomes an observation for position only. 
 
3. POSITION ESTIMATION AND 

COVARIANCE ANALYSIS 

This section investigates the use of a nonlinear Least-
Square estimator to resolve position. An initial value 
must be provided at first. Since GGT is a symmetric 
matrix, Eigen-Decomposition can be performed. In a 
central gravitational force field, VE has a simple 
expression: 
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The Eigen-Decomposition of VE is: 

 E TV ΦΓΦ   (10) 

where: 
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The diagonal elements of Γ are eigenvalues, and the 
three column vectors in Φ are the corresponding 
eigenvectors. From Eq. 11, the eigenvalues are function 

of r only, and the eigenvectors are functions of ϕ and λ. 
Let ξ denote the maximum eigenvalue and η denote the 
corresponding eigenvector, i.e.: 
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Then an initial position can be obtained by ξ and η: 
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It must be noted that a sign ambiguity exists for η. This 
positive/negative problem is due to the centrosymmetric 
property of the central gravitational force field. The 
problem will be addressed later. 
With the initial values (±) provided by Eq. 13, an 
iterative nonlinear estimator using a high-degree gravity 
model will be applied to search the exact positions at 
which the computed GGTs match the observations. In 
this paper, a 120-degree EGM2008 gravity model is 
used as a reference map to compute gravity gradients. 
The error sources of the measurement noiseν in Eq. 6 
include not only the gradiometer noise but also the GGT 
transformation uncertainties as well as the map residual 
error. In this paper the components of the measurement 
noiseν are assumed to be independent and zero-mean 
Gaussian random variables. Let Q denote the noise 
covariance matrix. The Least-Square iteration is given 
as follows: 
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where Hk is the Jacobian matrix of G
lV with respect to 

r at the kth estimated position: 
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The computation of Hk involves the partial derivatives 
of E

lV with respect to position: 
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where i, j and p take values from x, y and z. A low-
degree gravity model could be used to compute these 
partial derivatives. In this paper, the maximum degree 
and order for this computation is 2 and 0. 
The covariance of the position estimates can be 
determined via the covariance analysis: 
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Each component’s standard deviation (SD) can be used 
as a measure of estimated spacecraft position accuracy. 



 

Recall the sign ambiguity problem. A statistical tool can 
be used. The observation residuals are expected to be 
normally distributed with zero mean and variance Q: 
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Any mismatches in the statistical means or the standard 
deviations will be applied to identify the incorrect 
solutions iterated from the initial values with wrong 
signs. 
 
4. PREPROCESSING OF GOCE EGG DATA 

FOR POSITIONING TEST 

The measurement data used in the test are the 
EGG_GGT_1i data block from the EGG_NOM_1b 
product. These data contain in-flight calibrated gravity 
gradients without temporal correction (the tidal and 
nontidal effects) or external calibration, and can be 
viewed as raw measurements. Actually, the temporal 
terms of gravity gradients are negligible compared with 
the measurement error, and the in-flight calibrated 
parameters (scale factors) are accurate enough [15]. 
In the observation equation (Eq. 6 in Section 2) the 
measurement error is modelled as low-level white noise. 
The GOCE EGG sensor, however, only minimizes GGT 
error in MBW between 5 mHz and 0.1 Hz. Below 
MBW the error power spectral density (PSD) has a 1/f 
behaviour. And the error dominates the signal below the 
orbit revolution frequency [15]. This kind of error 
cannot be handled by the position estimation technique 
directly. Thus the 1/f error must be removed before 
using the GGT measurements for position fix. 
A Fourier series model is adopted in this paper to model 
the 1/f error in each gravity gradient observation 
component: 
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where  is the 1/f error, is bias,  is trend, f0 is the 
base frequency and equals the orbit revolution 
frequency, and ak and bk are Fourier coefficients. The 
maximum order of the sinusoid terms, K, is chosen to 
satisfy that Kf0 = 5 mHz. Thus, the model can represent 
most of the error below MBW in one orbit period. 
To resolve the 2+2K unknown coefficients , ,  ak, and 
bk, precise model reference values must be computed. A 
300-degree EGM2008 gravity model are selected, and 
precise position and attitude information from 
SST_PSO_2 and EGG_IAQ_1i are also utilized. The 
coefficients are resolved by a linear Least-Square 
estimator every orbit period and then subtracted from 
the GGT measurements. 
An alternative is to treat the 1/f error as a state variable 
and to estimate it along with position estimation. This is 
the truth for the navigation process. However the 

objective of the test in this paper is to investigate the 
observability of GGT for positioning. The error 
preprocessing is reasonable. 
 
5. TEST RESULTS 

The data collected on 8 September 2013 covering 16 
orbit periods are tested. With a sampling rate of 1 Hz 
and a mean orbit period of 5339 s, the total number of 
epochs is 85424. The 1/f error is first calculated and 
removed from the gravity gradients by the 
preprocessing techniques described in Section 4. The 
accuracy of the recovered gravity gradients is shown in 
Fig. 1. 
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Figure 1. The Error of the Recovered Gravity Gradients 
(unit, E) 

 
From Fig. 1, large errors exist at some epochs because 
the outlier detection is not applied. The mean errors of 
the 6 components are all near zero, and the standard 
deviations (SDs) are 0.0097 E, 0.012 E, 0.013 E, 0.33 E, 
0.013 E and 0.49 E respectively, which indicates that 
only the low-level flat noise is left. The noise 
covariance matrix Q is set to: 
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The Eigen-Decomposition method produces two sets of 
initial positions. Fig. 2 plots the errors of the correct set 
of initial positions in the ECEF frame, with a mean 
three dimensional (3D) error of 1.2×104 m. 
With these initial values, the nonlinear Least-Square 
estimator performs iterations according to Eq. 14 until 
the update is below 1 m. The search process usually 
ends after 4 or 5 iterations. Fig. 3 gives the errors of the 
final searched positions (correct ones) in ECEF as well 
as the standard deviations (red lines) obtained from 
covariance analysis. It is seen that the standard 



 

deviations can well describe the actual position errors. 
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Figure 2. Errors of the Three Components of Initial 
Positions (correct ones）in the ECEF Frame 
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Figure 3. The Errors (black points) and Standard 
Deviations (±, red lines) of the Final Searched Positions 

(correct ones） 

 
From Fig. 3, the errors of the x and y components show 
sinusoidal changes with the same period of 12 hours. 
That is because the relative orientation of the GRF 
frame with respect to the ECEF frame repeats every 12 
hours (not considering the positive/negative direction) 
and the two noisy observation components of G

xyV and 
G
yzV are closely related to the x and y components (seen 

from Eq. 9). The maximum and minimum standard 
deviations of the x and y components are 800 m and 8 m 
respectively, and the standard deviation of the z 
component is nearly constant with mean value of 109 m. 
The mean 3D position error is 620 m. 
The incorrect position solutions are identified from the 
observation residuals. Tab. 1 lists the statistical means 
and standard deviations of the observation residuals. It 
is shown that the residuals corresponding to the correct 
solutions satisfy the expectation given in Eq. 18, 
whereas some mismatches exist in standard deviations 
(in bold) for the incorrect solutions.  

 
Table 1. Statistical Means and Standard Deviations of 

the Observation Residuals 

Component
Mean ± Standard Deviation (E) 

Correct solutions Incorrect solutions 

xx 8.9×10-5 ± 0.010 -1.6×10-3 ± 0.11 

yy -2.3×10-4 ± 0.015 1.4×10-3 ± 0.11 

zz -7.5×10-5 ± 7.6×10-3 -7.5×10-5 ± 7.6×10-3 

xy 2.8×10-3 ± 0.33 2.1×10-3 ± 0.35 

xz 1.2×10-6 ± 8.9×10-5 -4.9×10-5 ± 9.4×10-4 

yz -6.4×10-3 ± 0.24 -0.11 ± 2.2 
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Figure 4. The Errors (black points) and Standard 
Deviations (±, redlines) of Position Estimates (correct 

ones）for the Semi-Simulation Case 

 

To assess the improvement in position accuracy by 
using a more accurate gradiometer, a semi-simulation 
test is carried out. The noisy observation components 
of G

xyV and G
yzV are replaced with simulated measurements 

which have the same noise level as the other 4 



 

components, i.e., 0.11 E. As illustrated in Fig. 4, the 
mean standard deviations of three position components 
are reduced to 15.4 m, 15.4 m and 13.0 m respectively, 
and the mean 3D position error is reduced to 33.4 m. 

 
6. CONCLUSIONS 

This research presents a promising use of gravity 
gradiometry for space navigation. The GOCE EGG data 
are tested to investigate the feasibility of spacecraft 
positioning from gravity gradients. The developed 
Least-Square approach makes use of high-degree 
spherical gravity models to search positions at which the 
computed gravity gradients match the observations. 
Eigen-Decomposition of GGT provides initial values 
but produces sign ambiguity at the same time. Statistical 
analysis of observation residuals is suggested in this 
paper to kick out the incorrect position solutions. The 
GOCE real data show a limited ability to fix positions 
due to the two noisy observation components. However, 
tens of meters of accuracy is achieved in the semi-
simulation analysis using a better gradiometer. With the 
development of gradiometer technology as well as 
gravity models, it is foreseen that improvements in the 
navigation performance will be realized one day. 
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