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Abstract—In this paper, an algorithm to plan a continuous
wind-optimal path is proposed, and simulations are made for
aircraft trajectories. We consider a mobile which can move in
a two dimensional space. The mobile is controlled only by the
heading direction, the speed of the mobile is assumed to be
constant. The objective is to plan the optimal path avoiding
obstacles and taking into account wind currents. The algorithm
is based on Ordered Upwind Method which gives an optimality
proof for the solution. The algorithm is then extended to spherical
coordinates in order to be able to handle long paths.

Index Terms—Obstacle avoidance, path planning, wind, air-
craft trajectory.

I. INTRODUCTION

Planning optimal trajectories is a rich and dynamic research
domain with many application areas like robotics, space or
aviation. Depending on the problems needs, the issues are
different in nature and so are the techniques used to solve
them. Here, we are interested in finding the global optimal
path in presence of currents in a two dimensional space.
Several methods, as Dijkstra algorithm [1] or A* algorithm [2],
discretize the domain and work on the generated network
to find the optimal path. These algorithms are very efficient
but the computed solution is restricted to the network. Thus,
the quality of the solution depends on it. With the proposed
algorithm, the solution is not constrained to follow a network
and is computed on the continuous space. The algorithm is
based on front propagation methods as Level Set methods,
Fast Marching methods and Ordered Upwind methods. These
different algorithms are developed by Sethian in [3].

In [4], Pêtrès adapts the Fast Marching Method to path
planning for Autonomous Underwater Vehicles taking into
account underwater currents. However, his algorithm cannot
be applied to vehicles featuring behaviours more complex
than a linear reaction to currents. In [5], Alton uses the
Ordered Upwind algorithm with the Semi-Lagrangian method
to generate optimal trajectories. The drawback of this approach
is the need of a local minimization at each mesh point used
to discretize the space, which increases the computation time.
Here, we base our algorithm on the Ordered Upwind algorithm
with the Eulerian method.

The main contribution of this paper is, first, to model the
optimal path planning in order to use the Eulerian discretiza-
tion in the Ordered Upwind Method. Usually, the drawback

of this discretization is the need to find the roots of a non-
linear equation. In our case, we will show that the resolution
is easy since the equation is reduced to a quadratic equation.
The second contribution of the paper is to adapt the algorithm
to the spherical space to be able to handle long paths around
the Earth.

The paper is organized as follows. Section II presents
the modelling of the problem. In Section III, we present
the algorithm to plan wind-optimal path. Simulations and
experiments are performed to validate the proposed approach
in Section IV. Finally, conclusions of the work are given in
Section V.

II. MODELLING PATH PLANNING PROBLEM

In this section, we present the mathematical formulation of
the problem. The goal is to drive the mobile to reach a goal
position (x f ,y f ) from a start position (x0,y0) in a minimum
time while avoiding obstacles. The speed of the mobile is
constant. The research area is a two dimensional space with the
presence of currents. In this paper, we talk about wind currents
since we are interested in aircraft trajectories but it can be also
valid for other types of currents such as underwater currents.

A. Equation of Motion

Considering wind currents, the motion of the mobile is
defined as follows:{

ẋ(t) =Va sin(θ(t))+Wx(x,y)

ẏ(t) =Va cos(θ(t))+Wy(x,y)

where (x,y) is the mobile position, θ is the heading angle
relative to North direction, Va is the constant speed of the
mobile, Wx(x,y) is the east component of the wind, and Wy(x,y)
is the north component of the wind.

B. Optimization Problem

The control parameter of the optimal path is the heading
angle θ . The optimization problem is then to find the best
control θ over time to minimize the total travel time. The



optimization problem can be written as:

min
θ

(t f − t0)

s.t. ẋ(t) =Va sin(θ(t))+Wx

ẏ(t) =Va cos(θ(t))+Wy

(x(t0),y(t0)) = (x0,y0)

(x(t f ),y(t f )) = (x f ,y f )

It is convenient to let the control variable be
a(t) = (sin(θ(t)),cos(θ(t))), a unit vector in the direction of
motion of the mobile. In this case, the optimization problem
becomes: 

min
a∈A

(t f − t0)

s.t. Ẋ = f (X(t),a(t))
X(t0) = X0 and X(t f ) = X f ,

(1)

where X is the mobile position, and f (X(t),a(t)) is the real
speed of the mobile taking into account wind currents at time
t.

III. PATH PLANNING BASED ON ORDERED UPWIND
METHOD

The problem (1) is a standard formulation of optimal control
problems. One resolution method is to write this problem as
an Hamilton-Jacobi equation and to solve it. The form of the
Hamilton-Jacobi equation is based on Bellman’s optimality
principle in discrete case [6]. The details of the calculations
can be found in [7].

A. The Hamilton-Jacobi Equation

In our problem, the Hamilton-Jacobi equation correspond-
ing to the optimal control problem (1) is given by:

max
a∈A
{−∇u(X). f (X,a)}= 1 (2)

The resolution of this Partial Differential Equation (PDE) on
the whole space gives a necessary and sufficient condition for
optimality. The principle of the resolution is to decompose
recursively the problem into linked sub-problems as in Dy-
namic Programming for a discrete problem. The resolution
can be seen as a front expansion problem where the wavefront
represents the minimum time to reach the arrival point. The
wavefront is computed gradually from the previous front
positions. It is based on the Huygen’s principle which that
states every point reached by a wavefront becomes a source
of a spherical wavefront; the sum of these secondary waves
determines the form of the wavefront at any subsequent time.
The evolution of the wavefront is described by (3):

‖∇u(X)‖F(X,
∇u(X)

‖∇u(X)‖
) = 1 (3)

where: F(X,n) is the front speed in the direction n, with n the
outward unit vector normal to the front at point X, and u(X)
represents the minimum time to reach the end point starting
from the point X.

With (3) and by rewriting (2) as (4), we obtain a relation
between the speed of the wavefront, F(X,n), and the speed of
the mobile, f (X,a).

‖∇u(X)‖max
a∈A

{
− ∇u(X)

‖∇u(X)‖
. f (X,a)

}
= 1 (4)

The optimal path problem can then be written as a front
expansion problem where the speed of the wavefront, F(X,n),
depends on the speed of the mobile, f (X,a).

F(X,n) = max
a∈A
{−n. f (X,a)} (5)

To design the optimal path between the departure point and
the arrival point, we have to follow the characteristics of the
Hamilton-Jacobi PDE from the departure point until we reach
the arrival point since we know that these characteristics are
the optimal trajectories of the corresponding control problem.

B. Ordered Upwind Algorithm

The Ordered Upwind algorithm was developed by Sethian
and Valdirminsky to approximate the solution of the Hamilton-
Jacobi equations in [8]. In [9], Sethian proved that the al-
gorithm converges to the viscosity solution of the Hamilton-
Jacobi equations, a weak solution of the PDE (3).

The principle of the Ordered Upwind algorithm is to avoid
iterations thanks to a careful use of the information about the
characteristic directions of the PDE. It uses the fact that the
value function, u, is strictly increasing along the characteristics
and then verifies the causality property. The value function
u(X) is then constructed gradually using the previous smaller
values u(X) along the characteristic. This principle makes the
algorithm highly efficient. In general, characteristic directions
of the PDE are not known in advance. The strength of the
Ordered Upwind method is the ability to compute information
about the characteristics as the solution is constructed. In
our problem, the characteristics of (2) represent the optimal
trajectories.

To compute the value function, u, we consider a 2D non-
regular triangular mesh. Let (X,X j,Xk) be a simplex, the
value of u(X) is computed from u(X j) and u(Xk) if the
characteristic direction at mesh point X lies inside the simplex
(X,X j,Xk). Let h be the maximum distance between two
adjacent mesh points (i.e. if the mesh points X j and Xk are
adjacent, then

∥∥X j−Xk
∥∥6 h). All mesh points belong to one

of the following classes (see Fig.1):
• Accepted is the set of mesh points where the function u

has been computed. Such points are considered frozen.
• Considered is the set of mesh points where an estimate v

of u has been computed but not frozen.
• Far is the set of all other mesh points where an estimate

v of u has not been computed yet.
Two other sets are also defined:
• AcceptedFront is the subset of Accepted mesh points that

are adjacent to some not-yet-accepted (i.e. Considered)
mesh points.
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Fig. 1. All the mesh points are assigned to three different sets: Accepted,
Considered, and Far. AcceptedFront is a subset of the Accepted set. The AF
set describes the front.

• AF is the set of line segments [X j,Xk], such that X j and
Xk are adjacent mesh points on the AcceptedFront, and
X j and Xk are adjacent to a Considered mesh point X.

For each Considered mesh point X, we define a new set
called NearFront (NF). It is the subset of AF segments that
are close to the Considered mesh point X:

NF(x) =
{
(x j,xk) ∈ AF |∃x̃ on (x j,xk)s.t.‖x̃−x‖6 h

f2
f1

}
,

where f1 and f2 are respectively the minimum and the maxi-
mum speed of the mobile taking wind into account.

Ordered Upwind Algorithm
1) Start with all the mesh points in Far (u = + ∞);
2) Move the initial point X0 to Accepted (u(X0) = 0);
3) Move all the mesh points X adjacent to the initial point

into Considered and evaluate the trial value v(X) as:

v(X) := min
xi∈NF(x)

vxi(X)

4) Find the mesh point X̄ with the smallest value of v
among all Considered;

5) Move X̄ to Accepted (u(X̄) = v(X̄)), and update the
AcceptedFront;

6) Move the Far mesh points X adjacent to X̄ in Considered,
and compute their trial values by:

v(X) := min
x jxk∈NF(x)

vx jxk (X) (6)

7) Recompute the values for all the other Considered X
such that X̄Xi ∈ NF(X) by:

v(X) = min
{

v(X), min
x̄xi∈NF(x)

vx̄,xi(X)

}
8) If Considered is not empty, then go to step 4.

Two equivalent methods are presented in [9] to compute
the trial value v(X) from a simplex (X,X j,Xk). The Semi-
Lagrangian method requires performing a local minimization
at each mesh point, whereas the finite-differences upwind
update formula (Eulerian discretization) requires finding the
roots of a non-linear equation. In our case, the speed of the
wavefront F has a closed form, and the value vx jxk(X) in (6)
can be computed using a finite-differences upwind formula of

the Hamilton-Jacobi equation (4). The discretized equation is
then a quadratic equation.

By modelling the mobile speed as f (X,a) = Vaa + W in
(5), the speed of the wavefront is equal to:

F(X,n) = Va − 〈 n,W 〉 (7)

More details about the calculus of the speed of the wavefront
are given in [10]. From this definition of the wavefront speed,
(3) is discretized using an upwind finite-difference discretiza-
tion on the simplex (X,X j,Xk) to compute the value vX jXk(X).
Equation (3) becomes:∥∥P−1w(X)

∥∥2
V 2

a =
(
1+ 〈P−1w(X),W 〉

)2
(8)

The vector P−1w(X) is the discretization of ∇u(X) from the
directional derivatives of u in the directions defined by the
edges of the simplex (x,x j,xk) (see [10] for the details). We
note that (8) is a quadratic equation of the form:

Av2
x jxk

(X)+Bvx jxk(X)+C = 0 (9)

with :

A =V 2
a 〈P−1

α,P−1
α〉−〈P−1

α,W 〉2

B = 2V 2
a 〈P−1

α,P−1
β 〉−2〈P−1

α,W 〉
(
〈P−1

β ,W 〉+1
)

C =V 2
a 〈P−1

β ,P−1
β 〉−

[
〈P−1

β ,W 〉+1
]2

The value vx jxk is then computed by solving (9). To ensure
that vx jxk is a good approximation of the value function, u, at
the point X, the characteristic direction for the mesh point X
needs to lie inside the simplex (X,X j,Xk). It is shown in [10]
how to check this property.

The optimal trajectory is built by moving from the initial
point to the destination point along the characteristic direction
determined by:

dX
dt

=−Va
∇u(X)

‖∇u(X)‖
+ W (X)

The computational complexity of this algorithm is
O(ϒN logN), where N is the number of mesh points and ϒ the
anisotropy ratio: the ratio of the fastest to slowest propagation
speed for each point (see [9] for more details).

C. Obstacles Avoidance

We propose to modify the speed of propagation. We slow
down the wavefront in parts of the environment that have to
be avoided. Thus, the value function u is increased, penalizing
the passage through these areas. We create a map of values
ξ as a function of the obstacles. The values ξ are between 0
and a maximum value ξmax. The scaled values ξ are then used
to slow down the wavefront speed as follows: (1−ξ )F(X,n).
The maximum value ξmax needs to be less than 1 to keep the
wavefront speed strictly positive.



D. Adaptation to Spherical Coordinates

The algorithm presented above works on a Cartesian grid;
it therefore relies on the assumption that geodesics are straight
lines. Recall that geodesics are shortest paths in terms of
distance between two points in a given space. In order to work
with long paths for which the wind-optimal trajectories offer
the most benefits, we have to take into account the sphericity
of Earth where geodesics are then segments of great circles.
We approximate the form of Earth by a sphere, and we adapt
the algorithm to spherical coordinates. The idea is to project
the spherical coordinates on a plane with Cartesian coordinates
via a map projection.

The map projection, ψ , used in this work is a transformation
of latitudes, φ , and longitudes, θ , of points on the surface of
a sphere into points on a plane:

ψ : [−180;180]× [−90;90]→ R×R
(θ ,φ)→ (x,y)

However, projecting points on a sphere into a plane is not
sufficient to use the Ordered Upwind Method since all map
projections cause distortion in the shapes, areas, or distances.
Different map projections exist in order to preserve some of
these properties. Earth being represented by a sphere, any flat
representation generates distortions such that angles and areas
cannot both be maintained simultaneously, and distances can
never be preserved. This last point explains why the Ordered
Upwind Method needs adaptations to be used on a sphere.

The principle of the Ordered Upwind Method is to compute
the minimum time to reach a point of the space from the
propagation of the front by solving (3). To keep the equation on
the map, the projection needs to preserve the relation between
vectors. The projection of a vector −→v on a sphere in spherical
coordinates into a vector −→w on a plane in Cartesian coordinates
by an application ψ can be done as follows.

Let γ be a path on the sphere and x be a point on this
path: γ :]− ε,ε[→ S ⊂ R3 and γ(0) = x. The speed vector in
spherical coordinates −→v at the point x is defined by γ ′(0). By
the application ψ , the speed vector −→w on the map projection
is equal to:

−→w = (ψ ◦ γ)′ (0) = ψ
′ (γ(0))︸ ︷︷ ︸
Jψ (x)

.γ ′(0) = Jψ(x).−→v (10)

Thus, the inner product of two projected vectors w1 and w2 is
equal to:

〈Jψ(θ ,φ) v1,Jψ(θ ,φ) v2〉= 〈JT
ψ (θ ,φ) Jψ(θ ,φ) v1,v2〉

For the Ordered Upwind algorithm, the inner product has to
be preserved up to a positive multiplicative constant. To meet
this requirement, the projection has to be conformal meaning
that the matrix Jψ(θ ,φ) is a positive multiple of a rotation
matrix. Equivalently, the matrix JT

ψ (θ ,φ)Jψ(θ ,φ) is a positive
multiple of the identity. Under this assumption, the distortion
induced by the projection is isotropic and can be corrected by
scaling. However, note that the scaling factor depends on the
point where the correction has to be applied.

In the presented algorithm, we first project the points into
the plane, and then adapt the Ordered Upwind Method by
correcting the distance distortions at the neighbourhood of each
point on the plane. The optimal trajectory will be computed on
the plane and then projected back on the sphere by the inverse
projection.

1) Lambert Conformal Conic Projection: The map projec-
tion, ψ , used here is a Lambert conformal conic projection.
It is a conformal map. The general principle of the projection
construction is as follows (see [11] for more details on different
map projections). The idea is to seat a cone over the sphere
of Earth and projects conformally onto the cone. The cone
is unrolled to give a plane, and the parallel touching the
sphere is assigned unitary scale and is called the reference
parallel or standard parallel. The transformation is based on
two key points: first, as the projection is conform, the angles
are preserved; secondly, the distance between points on the
standard parallel is preserved on the plane. The scale factor m
is then equal to 1 for the latitude of the reference parallel. The
equations to project a point on the surface of the sphere into
a point on a plane by the Lambert conformal conic projection
are presented in [11] .

2) Scale Factor: The scale factor m gives the distortion
of the projection in the area of interest. It is the ratio of
the scale at a given point to the true scale. Scale distortions
exist at locations where the scale factor is smaller or larger
than 1. Distortions increase as the distance from the standard
point (tangent plane) increases. The scale factor is not con-
stant, changing with direction and location. It depends on the
properties of the projection, and is defined at a given point by:

m =
Distance on the map projection

Distance on the sphere

The scale factor is a key point in the adaptation of the
Ordered Upwind Method since we will used it to compute the
value function u(X). As we saw in Section III-B, the time
at each point is determined using two neighbouring points.
We use the distance between points and the speed of the
propagation to compute a time. Thus, if the distance between
projected points is not equal to the real distance on the sphere,
the computed time in the flat map will not be correct. The
distance between projected points has to be corrected using
the scale factor. This correction is only valid as long as points
are not too far from each other.

As we consider two neighbouring points X j and Xk to
compute the time at one point X, the distance between these
three points is not large. Thus, we assume that on the triangle
described by X, X j and Xk, a straight line approximates
the geodesic. With this reasonable hypothesis, the distance
between X, X j and Xk can be corrected using the computed
scale factor. And based on this critical distance correction on
the triangle X, X j and Xk, we can use the same steps of the
Ordered Upwind algorithm to compute the minimum time at
the point X.

As in (7), the speed of propagation F depends on the
aircraft speed, the wind speed and the normal vector of the



propagation front, all of these parameters have to be in the
same coordinates systems. The normal of the propagation front
is computed within the algorithm; this vector is already in
Cartesian coordinates and takes distortions into account. Thus,
instead of correcting the projected distance, we work with
the projected speed of propagation F on the map using the
scale factor. As the normal vector of the propagation front is
already computed on the map, we only have to modify the
aircraft speed and to project the wind speed on the map. The
aircraft speed is multiplied by the scale factor to offset the
distortions, and the wind speed is projected on the map. Finally,
the propagation speed on the map is equal to:

F(X,n) = m Va − 〈 n,WP 〉

where WP is the wind vector projected on the map and m is
the scale factor at the point X.

3) Algorithm: Let us summarize the different steps of the
adaptation of the algorithm.

1) Discretization of the workspace and transformation of
the grid points in longitude/latitude coordinates into the
plane by a Lambert conformal conic projection;

2) Transformation of winds data into the plane;
3) Application of the Ordered Upwind algorithm on the

projected map using scale factor to correct distortions;
4) Computation of the trajectory. This step is detailed

below.
5) Inverse transformation of the trajectory points from

Cartesian coordinates into longitude/latitude coordinates.
The optimal trajectory is built by moving from the initial

point to the destination point along the characteristic direction
by solving the following equation:

dX
dt

=−m Va
∇u(X)

‖∇u(X)‖
+ WP(X)

To compute the gradient ∇u(X), we compute the gradient
∇u(θ ,φ) using finite differences on the regular grid on the
sphere. The gradient ∇u(θ ,φ) can be written as a function
of the gradient ∇u(x,y) and of the map projection ψ . Equa-
tion (11) gives the relation between the gradient in spherical
coordinates and the gradient in Cartesian coordinates (with Jψ

the Jacobian matrix of ψ):

〈∇u(x,y),−→w 〉= 〈∇u(x,y),Jψ(θ ,φ)
−→v 〉

= 〈JT
ψ (θ ,φ)∇u(x,y)︸ ︷︷ ︸

∇u(θ ,φ)

,−→v 〉

= 〈∇u(θ ,φ),−→v 〉

(11)

The gradient ∇u(X) used to construct the optimal trajectory
is then obtained in (12) from the gradient ∇u(θ ,φ):

∇u(X) = (JT
ψ (θ ,φ))

−1
∇u(θ ,φ) (12)

IV. SIMULATIONS AND RESULTS ANALYSIS

A. Trajectory Simulation with Obstacles

Our first test problem aims at emphasizing the impact of
wind on trajectories while avoiding obstacles. From the point

Fig. 2. Optimal trajectory with obstacles: 1. Without wind (green), 2. With
wind (red)

of view of airlines’ operations, these obstacles could model
some adverse weather conditions such as storms or turbu-
lences. In Fig. 2, the optimal trajectories without wind (1.) and
with wind (2.) have been computed using the Ordered Upwind
algorithm with the Eulerian discretization. The obstacles are
described by coloured iso-contours, red represents impassable
obstacles and the colour goes toward the blue as the importance
of the obstacles decreases. In the north part, wind is in the east
direction and increases northwards. In the south part, wind is
in the west direction and increases southwards.

The trajectory taking into account the wind takes advantage
of favourable winds. The two trajectories do not behave in the
same way to get around the obstacles. This is attractive to
take into account the wind to plan the aircraft trajectory. The
wind-optimal trajectory can be far from the optimal trajectory
computed without wind.

B. Trajectory Simulation in Spherical Coordinates

1) Traffic Data for Simulations: The data used comes from
a simulation of one day of traffic in Europe. The traffic sample
contains 28,278 flights with different types of aircraft flying at
different speeds. We only select a part of the flights: the cruise
phase. We assume that during this phase, the altitude remains
constant. In the simulation, we first deal with all the flights.
Then, we concentrate on the longest trajectories (¿800km) to
study the benefit of wind-optimal routes. An analysis of the
traffic data can be found in Table I.

2) Wind Data for Simulations: Three days of wind forecast
over Europe are considered: September 30th, October 2nd, and
October 4th 2013. An analysis of the wind data for the three
days is displayed in Table II. Figure 3b shows the wind forecast
on September 30th 2013. Wind vectors (arrows) represent
the direction and speed of the wind. Colours also show the

TABLE I
AVERAGE TRAFFIC DATA

Aircraft number Speed Distance Flight time
(kt) (km) (min)

All traffic 28278 403 850 64

> 800km 10911 460 1700 120



(a) Trajectories: 1. Direct Route (blue), 2. Optimal Route (red) (b) Wind forecast on September 30th 2013

Fig. 3. Simulation results for one flight: JWD020.

different speeds, red colour symbolizes the maximum wind
speed and blue colour denotes the minimum wind speed. The
optimal route of each flight is computed with the three different
wind conditions, and is compared with the direct route.

Table III presents the benefit in time if aircraft follow
optimal routes rather than direct routes. Q1, Q2 and Q3 denote
respectively the first, second and third quartile of the time
benefit. Depending on the day, the average time benefit is
different. For half of the flights, the direct route is the best
solution; the time benefit is thereby null and the algorithm
finds the direct route. In the three cases, it is interesting to
note that optimizing the longest trajectories is most beneficial.
About three-quarters of these flights get a time benefit.

The direct and optimal routes computed for one particular
flight, JWD020, have been depicted in Fig. 3a in which the blue
trajectory (aircraft 1) is the direct route and the red trajectory
(aircraft 2) is the wind-optimal one. Table IV illustrates the
difference between the optimal and the direct routes for the
flight JWD020. The optimal route is deviated from the direct
route to take advantage of tail winds. The travelled distance is
then longer but the flight time is shorter. The obtained benefit
is around 6 minutes.

V. CONCLUSION

We presented in this paper a new model for the optimal
path planning problem of a single trajectory. We proposed an
analytical solution of the discretized equation for the Ordered
Upwind algorithm. Thus, this model has the advantage to avoid
an iterative algorithm for the resolution of the equation. The
results show the benefits of taking into account currents while
avoiding obstacles to plan optimal path especially for long
paths or for strong currents.

TABLE II
WIND DATA

Average (kt) Min (kt) Max (kt)

2013/09/30 40 0.25 130

2013/10/02 48 0.58 114

2013/10/04 42 0.6 115
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TABLE III
TIME BENEFIT OF OPTIMAL ROUTE COMPARED WITH DIRECT ROUTE

Average Min Max Q1 Q2 Q3
(s) (s) (s) (s) (s) (s)

2013/09/30
All traffic 10.24 0 1950 0 0 7
> 800km 25.99 0 1950 3 10 25

2013/10/02
All traffic 30.48 0 3415 0 1 13
> 800km 76.88 0 3415 7 21 79

2013/10/04
All traffic 18.55 0 5084 0 0 7
> 800km 46.71 0 5084 3 12 49

TABLE IV
COMPARISON BETWEEN OPTIMAL AND DIRECT ROUTES FOR THE FLIGHT

JWD020 ON 2013/09/30.

Speed (kt) Distance (km) Time (min) Benefit (min)

Direct
511

5346 315
6

Optimal 5403 309


