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a b s t r a c t

Deployment of software systems is a complex post-production process that consists in making software

available for use and then keeping it operational. Itmust dealwith constraints concerning both the systemand

the target machine(s), in particular their distribution, heterogeneity and dynamics, and satisfy requirements

from different stakeholders. In the context ofmobility and openness, deploymentmust react to the instability

of the network of machines (failures, connections, disconnections, variations in the quality of the resources,

etc.). Thus, deployment should be an uninterrupted process which also works when software is running

and requires adaptiveness in order to continually satisfy the constraints and the requirements. Originally

managed “by hand”, software deployment demands an increasing level of automation and autonomy.

This article first provides up-to-date terminology and definitions related to software deployment. Then, it

proposes an analytical framework and reviews recent research works on automatic deployment with refer-

ence to this framework, and synthesizes the results. The review shows that existing solutions are incomplete,

and possibly inefficient or unusable, when distribution, heterogeneity, scalability, dynamics and openness are

primary concerns. In particular, they barely support dynamic reactions to unforeseeable events. Additionally,

abstraction level and expressiveness at design time are rather limited regarding deployment complexity.

1. Introduction

Software deployment is a complex post-production process that

consists in making software available for use and then keeping it

operational. It concerns a number of inter-related activities such as

release, installation, activation, update, etc.

Current software products are no longermonolithic but organized

as a set of components assembled as a system and operating together.

The term “component” refers to (weak definition) an element of a

system in a context of modularity, or to (strong definition) a unit of

composition with contractually defined interfaces that is subject to

composition by third parties (Crnkovic et al., 2011; Szyperski, 2002).

In the latter case, interfaces specify both the functions or services

provided by the component and those required by the component

from other ones or its environment. Many models of software com-

ponents exist such as JavaBeans (Oracle, 2013b), Corba Component

Model (ObjectManagement Group, 2006a), or Fractal (Bruneton et al.,

2006; OW2 Consortium, 2009). Component-based technologies ease
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deployment (among other things, components may provide inter-

faces dedicated to administration and configuration) and components

can be deployed independently. Therefore, the use of software com-

ponents as units of packaging, delivery and deployment, becomes a

common practice. Note that component-based technologies are not

limited to the application level but may operate at the system level

(Coulson et al., 2008). This approach has been proposed in order to

build an open configurable and dynamically reconfigurable grid mid-

dleware, GridKit (Coulson et al., 2006), where overlay pluggable com-

ponents adapt the system to the application and/or execution context.

Deployment of distributed component-based software systems

must take into account dependencies both between the components

themselves (software dependencies) and between the components

and their runtime environment (system and hardware dependencies)

which provides resources for the execution. Thus, deployment must

satisfy a set of constraints (e.g. a logging component needs Linux and

50 Gb of memory to work) and requirements (e.g. a GUI component

should be present on every smartphone connected to a given WiFi

network) from different stakeholders.

Originally, software deployment was managed “by hand”. Nowa-

days, deployment requires increasing level of automation and auton-

omymainly due to distribution, to mobility and pervasiveness, to the

increasing number of devices (and users) and their heterogeneity,



to the evolutivity of software systems, more generally to hardware

and software increasing dynamics. As complexity of software systems

grows, complexity of deployment grows too.

1.1. Background

As Weiser imagined more than 20 years ago (Weiser, 1999), the

concept of invisible and ubiquitous computers seamlessly integrated

into the physical environment has become a reality. Interconnecting

spatially distributed devices, equipped with a minimal set of com-

munication and computing capacities, has led lately to the concept of

“Internet of Things” (IoT) (Miorandi et al., 2012). The meaning of IoT

has evolved since the first use of the term by K. Ashton in 1999 in the

context of supply chain management (Ashton, 2009). Here, we mean

more or less smart devices (physical objects), possiblymobiles, which

compose heterogeneous, unstable and open systems, but not purely

Wireless SensorsNetworks (WSNs).Nowadays, systemsmaycombine

the Internet of Things with mobility of devices and users, and due to

hardware and software limitations, these systems demand remote

computing resources which can be provided by cloud infrastructures

(Gubbi et al., 2013). Thus, recent research works have identified the

need to make WSNs, ubiquitous, mobile and cloud computing sys-

tems collaborate, so as to build “multi-scale” systems (Flinn, 2012;

Kessis et al., 2009; van Steen et al., 2012). At the end of these sys-

tems, WSNs on one hand and cloud infrastructures on the other hand

are connected through gateways machines. Multi-scale systems are

heterogeneous, open, highly dynamic, decentralized, andmay be dis-

tributedoverwireless sensornetworks, smart objects,mobile devices,

gateway machines, fixed servers or clouds.

In such a context, deployment should manage a huge number of

heterogeneous devices and network links and a mass of components

and software versions as in the case of large-scale systems (Flissi

et al., 2008). At the age of “many computers for everyone” (Weiser,

1996), in a context of high heterogeneity and variability, deployment

requires the push mode. In the push mode, deployment is initiated

and remotely managed by administrators (or by software producers),

contrary to the traditional pull mode (which should remain available)

where deployment is left to software users.

Faced with mobility, disconnections, and variations in the avail-

ability and the quality of the resources and the services, deployment

must also change and adapt dynamically in order to permanently sat-

isfy constraints and requirements (i.e. preserve expected properties):

it should deal with the dynamics and openness of both the network

of hosts (e.g. appearance and disappearance of devices) and the de-

ployed software system (e.g. new components to integrate, removal

or displacement of existing ones).

Therefore, while deploying applications in a satisfactoryway com-

monly requires human intervention, deployment of modern dis-

tributed software systems demands automation: appropriate meth-

ods and tools are necessary to design the deployment (e.g. to express

deployment constraints and requirements), control and automate the

deployment process, and automatically resolve the problems related

to instability and openness. However, to the best of our knowledge,

there is no turnkey solution.

1.2. Aim and scope of the article

Automating deployment is not a newproblem. Different technolo-

gies provide support for software deployment such as Linux Redhat

Package Manager (Bailey, 2000), Microsoft Windows, Microsoft

.Net, Enterprise JavaBeans (Oracle, 2013a), Corba Component Model

(Object Management Group, 2006a), OSGi (OSGi Alliance, 2009),

or for virtualization like VMware products (VMware Inc., 2008).

However, these deployment technical solutions are often limited

to the pull mode and installation only. Reviewing them is out of

the scope of this article but readers can refer to Dearle (2007) or to

Heydarnoori (2008) where several technologies are introduced.

In the industry, configuration management tools such as Chef

(Chef Software, Inc., 2014), Puppet (Puppet Labs, 2014), Octopus

Deploy (Octopus Deploy Pty. Ltd., 2014), and Ansible (Ansible, Inc.,

2014) are widely used. They support software installation and

update, with dependence solving, in enterprise networks i.e. on

server machines, PCs or virtual machines. As they operate basically in

a client–server mode, machines which enter the domain can require

the (centralized) server for a configuration and then launch locally

an installation script. While Chef and Puppet are not specialized for

a particular operating system, Octoplus Deploy is dedicated to the

.NET environment. With Ansible, unlike others, machines are not

required to install and run background daemons which connects

to the server; this reduces the network overhead by avoiding the

machines to periodically poll the server. Finally, as these industrial

solutions do not target deployment of component-based systems

and suppose that the deployment domain is quite stable (otherwise,

that its variations are controlled), we do not go onwith their analysis.

Therefore, in this article, we aim at providing a state of the art of

research works on automatic deployment.

Note that in WSN or cloud context, deployment has specific prop-

erties and constraints: for example, domain homogeneity and lit-

tle openness, or resource limitations in the former case, dynamic

resource allocation, transfer of computations or accounting require-

ments in the latter case. Deployment inWSNsmust carefully consider

resource consumption such as energy (Levis et al., 2004;Marrón et al.,

2006). There, several solutions have been proposed but, generally,

they are platform-specific and suppose domain homogeneity. In this

article, we are interested in more “agnostic” solutions, which are not

tied with a particular platform.

1.3. Plan of the article

Before reviewing the state of the art, we set an up-to-date ter-

minology about software deployment and we propose a framework

which supports the analysis of the differentworks. Then, 19 recent re-

search works are presented and analyzed, and a synthesis is provided

with reference to this framework. The review shows that, in a context

of distribution, heterogeneity, scalability, dynamics andopenness, ex-

isting solutions are incomplete, and possibly inefficient or unusable.

Additionally, abstraction level and expressiveness in design proves to

be limited regarding the complexity of the deployment problem.

The article is organized as follows. Next section provides a refer-

ence terminology and definitions related to software deployment. In

Section 3, the analytical framework is presented. Section 4 reviews re-

searchworks according to the analytical framework. Finally, Section 5

provides a synthesis of the review and concludes the discussion.

2. Definitions

The reference papers on software deployment are those of

Carzaniga et al. in 1998 and Dearle in 2007. Generic concepts have

also been specified by the OMG in the D&C specification (Object

Management Group, 2006b).

Carzaniga et al. analyze the issues and the challenges, and propose

a characterization framework for software deployment technologies

(Carzaniga et al., 1998). The main issues identified are the manage-

ment of changes, dependencies among components, content delivery,

coordination between deployment and use of the software, hetero-

geneity, security, changeability of the deployment process, and inte-

gration with the Internet. The characterization framework is based

on four criteria: deployment process coverage, deployment process

changeability, interprocess coordination, and support for modeling.

Given that framework, the authors review a set of technologies:



installers, package managers, application management systems, con-

tent delivery technologies, and standards for system description.

Dearle provides an overview of software deployment and identi-

fies some issues such as binding, the use of containers and inversion

of control, reflection, the use of metadata (Dearle, 2007). Then, he ex-

amines some issues in the field and how theymight be addressed: the

focus is placed on the granularity of containers, distributed deploy-

ment, middleware, adaptation and autonomicity, and architectural

specification. Among other things, he underlines the potential com-

plexity of autonomic deployment and of the dynamic adaptation of

the process.

Our understanding of software deployment is based on the defi-

nitions of Carzaniga et al. and Dearle. In this section, we take these

definitions as a basis for constructing up-to-date or new ones.

2.1. Roles

Stakeholders of the deployment process can play different roles.

Dearle introduces two such roles: software producer and software de-
ployer. For both design and management of deployment, many au-

thors consider only the role of deployment manager (i.e. software

deployer). Conversely, we consider separately the roles of deploy-
ment designer and deployment operator, which have their own re-

quirements, skills and permissions. In the same way, two additional

roles should be considered: system administrator and software user. In
our opinion, refining roles helps to master the increasing complexity

of deployment and to identify the requirements.

• Software producer. The software producer is the creator of the

software system; he also provides the software installer. He acts

upstream software delivery, but he has to take into account re-

quirements from deployment.
• Deployment designer. The deployment designer expresses de-

ployment commands or only a specification of the deployment

(i.e. constraints and requirements), and may use a framework or a

dedicated language for that purpose.
• Deployment operator. The deployment operator is responsible

for the supervision and the execution of deployment. If necessary,

he may interact with the system in charge of the deployment.
• System administrator. The system administrator manages the

resources of the targeted device(s).
• Software user. The software user is the end-user of the deployed

software. He acts downstream, but may add some requirements

and preferences on the deployment process. The software user is

at the core of ambient systems, and the software system has to,

above all, take into account his preferences and requirements.

Obviously, one person may play several roles in the deployment

process. For example, the owner of a smartphone may be the system

administrator, the deployment designer and operator, and the user of

the deployed software. Besides, automatic deployment supposes that

the deployment operator role is played (possibly partially) by a non-

human entity (a program). Conversely, several persons can play the

same role : for instance, there may be as many system administrators

as devices in the case of systems with multiple administration.

2.2. Distribution

Basically, deployment of a software product involves a producer
site and a consumer site (Carzaniga et al., 1998): the producer site

hosts the software elements including the installation procedures,

the consumer site is the target site of the deployment process on

which software is to be run later. A deployer site may be involved if

deployment is managed by a third party.

Additionally, in case of distributed software systems, the deploy-

ment process is itself distributed over the network.

• Deployment domain. The deployment domain is the set of net-

worked machines or devices (consumer sites) which hosts the

components of the deployed software system.
• Deployment plan. The deployment plan is a mapping between

a software system and the deployment domain, increased by

data for configuration (andmanagementof dependencies between

components). Additionally, like for any architectural artefact, ra-

tionale at the origin of the plan can be included.

2.3. Activities

For Carzaniga et al., software deployment is a crucial step in the

software life cycle. It refers to all the activities that make a software

system available for use, such as release (at the end of the produc-

tion process), installation in the execution environment, activation,

deactivation, update, and removal of components (Carzaniga et al.,

1998).

For Dearle, software deployment is a post-production activity

which can be defined as the processes between the acquisition and

the execution of software, consisting in a number of inter-related

activities (Dearle, 2007).

We define software deployment as a process which organizes
and schedules a set of activities in order to make software avail-
able for use and to keep it up-to-date and operational. From an

operational point of view, activities range from software release to

software retire on the producer site or to software removal from the

consumer site. Someof themoccur before or after software execution,

while others occur when software is running on the consumer site(s).

There is no consensus about the set of activities and their names.

Referring to Carzaniga et al. and Dearle, we set up unified definitions

and select a representative name for each activity.

• Release. Release concerns all the operations needed to prepare

the software component(s) for assembly and distribution (assem-

bling into packages containing sufficient metadata to describe the

resources on which the software depends).
• Installation. Installation is the initial “integration” of the software

component(s) in the consumer site(s). It requires the software

component(s) to be transferred (delivery) and configured in order

to prepare it (them) for activation.
• Activation. Activation covers all the operations required to start

the software system or to install triggers that will launch the soft-

ware system at an appropriate time. For complex software sys-

tems, it may require other services and processes to be started.
• Deactivation. Deactivation is the reverse of activation, i.e. all op-

erations required to stop the software system. It may require the

dependencies to be taken into account in order to warn about the

deactivation.
• Deinstallation. Deinstallation removes the software compo-

nent(s) from the consumer site(s).
• Retire. Retire concerns all the operations done on the producer

site, by the software producer in order tomark the software as ob-

solete. Themain consequence of retiring a software is that no new

version will be produced (however, current or previous versions

may remain usable).

After installation, operations are necessary to overhaul the de-

ployed software and provide evolutions.

• Update. Update is triggered by an event on the producer site: a

release of a new version of a piece of the software system (a com-

ponent) by the producer. It consists in replacing the old compo-

nent by the new one. It is similar to installation, but less complex,

because most dependencies have already been resolved.

The next operations are triggered by amodification in the software

environment on a consumer site such as a change in the available



Fig. 1. Scheduling of the deployment activities.

resources in the runtime environment or a request from the operator

or the user.

• Reorganization. Reorganization modifies the logical structure of

the systemof components, by replacing a component ormodifying

configuration parameters and/or links between components.
• Redistribution. Redistribution modifies the physical structure of

the system of components, that is to say the deployment plan. It

may be required when there is a change of the network topology.

It possibly demands a new location for the component(s) to be

chosen, and consists in moving the component(s) while preserv-

ing dependencies, constraints, and requirements. The term “rede-

ployment” is sometimes used as a synonym for redistribution.

2.4. Process

The deployment process organizes the set of activities on the soft-

ware system, some of them occurring when the system is running.

Fig. 1 shows a standard order between the activities. It is worth point-

ing out that retire is not precededbydeinstallation: indeed, a software

can be obsolete (retired on the producer site) without having been

deinstalled (on the consumer site).

In a software system, any component has three possible states (af-

ter release): deployable, inactive, active. The component is deployable
when the software producer has accomplished all the necessary op-

erations in order to make it ready for deployment. The component

is inactive when it is available for use but not yet running. Then, it is

active when it is in use. The state machine illustrated in Fig. 2 shows

how the activities impact the state of one component and when they

can occur (depending on its current state). Update supposes previous

deactivation of the component – here, we disregard the possibility of

running the newversion in parallelwith the old one, for amore secure

and dependable multi-version application, as proposed in Hosek and

Cadar (2013) – as well as redistribution. Reorganization may occur

in the active state, but if so, it can be limited to (individual) setting

of new configuration parameters. In order to simplify the process,

the retire operation is not considered: it does not impact the state

of the currently deployed component except that it can no longer be

updated.

Reorganization of a software systemmay demand reconfiguration

of existing components, but also component addition or removal:

adding a component to a system, or removing a component, consists

in changing the bindings between components, possibly after instal-

lation and/or activation of the new component in case of addition,

or deactivation and/or deinstallation in case of removal. Redistribu-

tion consists in moving one or several components from one site to

another; deactivation (and possibly deinstallation) on the origin site

should arrive before moving, and then (installation and) activation

should be done on the destination site.

2.5. Design

The activities introduced above are related to an operational point

of view on deployment, that is to say to the realization of the deploy-

ment plan. However, while Carzaniga et al. and Dearle place the focus

on them, we consider that in a situation of growing complexity an

essential activity concerning deployment is design.

• Design. Deployment design aims at building a deployment plan.

Design should consider different but inter-related activities and

deal with both constraints concerning the deployment domain, the

application and its components, and requirements which may come

from different stakeholders.

The deployment plan may be constructed “by hand” or computed

more or less automatically from a specification, namely the expres-

sion of a set of expected properties (constraints and requirements)

and goals. Note that the deployment plan may be combined with

a schedule for its operation, which defines when the deployment

should be realized.

Planning is occasionally used as a synonym for design

(Heydarnoori, 2008).

2.6. Timeline

Fig. 3 shows the timeline of deployment in relation to the de-

ployed application. Basically, deployment activities also occur when

the application is running. Before running, the application is installed

and activated: this sequence of activities is commonly named initial
deployment. After running, the application is deactivated andmaybe

deinstalled. Deployment runtime is the period when the deployment

plan is run (and possibly modified), covering application runtime.

Fig. 2. Impact of the activities on the state of the software.



Fig. 3. Deployment timeline.

Especially in the context of open and unstable systems, deploy-

ment is not a time-bounded operation because of the dynamic evolu-

tion of both the application and the deployment domain (appearing

or disappearing devices, loss of domain connexity, etc.). Thus, we de-

fine two special forms of deployment: incremental deployment and

continuous deployment.

• Incremental deployment. Incremental deployment consists in

deploying a new software component within an already deployed

software system.
• Continuous deployment. Continuous deployment consists in

managing the deployment of a software component on a device

entering (or leaving) the deployment domain.

Incremental deployment concerns operations related to the dy-

namics of the deployed software system while continuous deploy-

ment concerns those related to the dynamics of the deployment do-

main. Both impact the deployment plan.

3. Analytical framework

Thepurpose of this section is to define a framework for the analysis

and the characterization of the solutions for software deployment. In

order to do that, four basic questions must be considered.

• “What is deployed?” The first question concerns the nature of the

deployed software and of its components, and its changeability.
• “Where is the software deployed?” Symmetrically, this question

concerns the nature of the deployment domain, its dynamics,

openness, and size.
• “How is the deployment performed?” This question relates to the re-

alization of deployment: activities, organization and architecture,

constraints and assumptions, limits.
• “How is the deployment designed?” Since deployment complex-

ity grows as distribution, heterogeneity, pervasiveness, mobility,

dynamics, and openness grow, designing deployment is another

challenging issue.

In order to analyze the state of the art, we refine the four questions

in eleven main points.

First, for the deployed software, we consider two points:

1. Nature of the software: Does the analyzed solution target amono-

lithic software or a component-based system? If so, is the number

of components considered?

2. Software changeability: Does the solution take into account the

software dynamics i.e. component(s) evolution, addition or re-

moval of components at runtime?

Concerning the deployment domain, our analysis focuses on the

three following points, the two last ones being particularly important

in the context presented in Section 1:

3. Nature of the domain:What kind of deployment domain does the

solution target? May it be heterogeneous?

4. Number and scalability: Does the solution take into account the

number of devices, and is it scalable?

5. Dynamics of the domain: Is the domain open, does its composition

change over time as connections, disconnections or failures occur?

Is thevariationof thequality and theavailability of resources taken

into account?

In order to analyze the solutions from a realization perspective, we

highlight three points:

6. Activities: What are the handled deployment activities?

7. Control: Is deployment controlled in a centralized or decentral-

ized way? Decentralizing the control is a major requirement in a

context of large-scale distribution.

8. Bootstrap: On what kind of bootstrap1 does the solution rely on.

This question relates to the specificity of the solution and its de-

pendency to particular technologies.

There are other points related to the achievement of deploy-

ment, as for example reliability or efficiency or, more generally, non-

functional properties of the deployment. Automatization is the first

answer to the reliability requirement. Efficiency is a basic require-

ment in the context of resource-limited devices. Then, few specific

proposals exist (we mention them in the survey when it is relevant).

Another issue is the scheduling of deployment operations, and the

impact of deployment on the running application. Since dealing with

non-functional properties or scheduling is not central in the state of

the art, we do not highlight these points in our framework. But we

discuss them in Section 5.2.

The last part of the framework concerns deployment design,which

becomes an essential activity and demands abstraction and expres-

siveness. It is worth to notice that directly expressing the deploy-

ment plan is not always desirable or even possible: withmobility and

openness, devices may be unknown at design time but nevertheless

be discovered at runtime and be part of the deployment domain. Ad-

ditionally, in large-scale domains, it could be useful to be allowed to

designate devices or subdomains by means of an abstract character-

istic property.

Our analysis focus on how design is supported i.e. on the level of

expressiveness and on the skills expected from the designer.

9. Nature of the specification: What must the designer(s) express?

Is he forced to construct the deployment plan “by hand” and give

it (to be interpreted as a set of deployment commands)? Or can he

only express an abstract specification of the expected properties

from which the plan is computed?

10. Domain transparency: Can the designer specify deployment

without designating explicitly the devices or with some level of

abstraction, so that the binding between components and devices

is delayed? This issue is strongly linked to the dynamics of the

domain and the ability to discover devices dynamically.

1 A bootstrap a basic executable program on a device, or a runtime environment,

which the system in charge of the deployment relies on.



Fig. 4. Analytical framework.

11. Skills: What are the skills required to use the solution and to ex-

press the deployment properties? Should stakeholders be experts,

and what should be their level of expertise? This last question re-

lates to the usability of the solution, as deployment design may

involve different persons playing different roles.

Fig. 4 illustrates the analysis framework and the decomposition of

the four questions in the 11 points.

Note that, in Heydarnoori (2008), Heydarnoori compares sev-

eral deployment techniques proposed in the research community

focusing on the deployment activities that are supported, and classi-

fies these techniques in eight categories (QoS-driven, model-driven,

agent-based, grid-oriented, etc.) but without relying on a consistent

framework as we propose to do.

4. Review

In this section, we review the state of the art of automatic de-

ployment. We consider research works and related projects in which

solutions for automatic deployment have been designed. In order

to organize the survey only, and independently from the analytical

framework, we grouped them in five categories depending on their

main goal:

1. extend OSGi or take advantage of OSGi facilities,

2. relieve humans of deployment tasks,

3. allocate resources dynamically to computations,

4. manage resource-limited and mobile devices,

5. provide abstractions in order to facilitate the design.

Every work is reviewed according to the analytical framework

introduced in Section 3. For each work, the reader will find a presen-

tation of the problem, a description of the solution, and a summary

in relation to the main points. Additionally, a global synthesis of the

results is given in Section 5.1.

4.1. OSGi-based automation

TheOSGi specification (OSGiAlliance, 2009) definesdifferent func-

tionalities for deployment and remote administration of services. The

OSGi framework hasmoved beyond the original focus of service gate-

ways to provide a full deployment and runtime environment for

services implemented through Java-based components called bun-
dles. Bundles are the physical units of deployment. A bundle is a

Java compressed JAR file that contains a manifest (textual meta-data

describing, for instance, dependencies and runtime requirements)

and a combination of Java class files, native code and associated re-

sources. Deployment within OSGi allows to install, deinstall, activate

(“start” in OSGi), deactivate (“stop” in OSGi), and update components

at runtime without restarting the whole system. OSGi implementa-

tions (commercial and open source) exist on several heterogeneous

devices ranging from smartphone (at least Android 1.5 or Symbian

S60), tablet, ultra-mobile PC, car-PC, and laptop to personal computer.

OSGi provides a standard way to deploy software while hiding from

the users of the framework the heterogeneity of hosts and the low-

level technical aspects of deployment, thus allowing them to consider

and manage deployment at a high level of abstraction. However, the

solution is restricted to a single host.

TheOSGi frameworkhas beenused as abasis for thedeployment of

distributed components. For example, the UseNet project (USENET,

2007), which focuses on innovative scenarios and on experimental

Machine-to-Machine (M2M) while aiming to enable ubiquitous use

of M2M services, uses the OSGi technology for runtime deployment

on several types of devices connected to heterogeneous communica-

tion networks, but without dealing with dynamic topologies of hosts.

Here, we review works which take OSGi as a basis and aim at ex-

tending it for specific purposes such as deployment of Fractal com-

ponents (Desertot et al., 2006) or distributed module management

(Rellermeyer et al., 2007).

4.1.1. FROGi
Problem. The general-purpose hierarchical component model

Fractal has several limitations regarding deployment: in particular,

the concept of the deployment unit is out of the original Fractal

specification, and dynamics of deployment is very restricted. Fractal

could be enriched with efficient deployment abilities.

Solution. Desertot et al. suggest to combine the Fractal component

modelwith OSGi (Desertot et al., 2006): on one hand, FROGi enhances

Fractal by facilitating the deployment of Fractal (primitive or compos-

ite) components using the OSGi service platform. On the other hand,

it provides the Fractal component-based capabilities to OSGi devel-

opers.

In FROGi, a component-based Fractal application is packaged

within one or several bundles, and the OSGi platform makes com-

ponents available as services. Fig. 5 shows a Fractal application pack-

aged and deployed using OSGi. Fig. 5a shows a composite component

made of two primitive ones, Client and Server (LC, BC, CC, and AC

are names of control interfaces defined in the Fractal specification).

Fig. 5b shows the three components (Comp is the composite one),

each one packaged within a bundle (B0, B1, B2). Their provided and

required interfaces are handled as bundle services. For the packaging

of components, FROGi extends the Fractal ADL (Architecture Descrip-

tion Language) in order to allow the specification of bundles, of their

version and their properties. Deployment is left to the OSGi platform.

During bundle installation, OSGi automatically resolves code depen-

dencies. Then, the bundles are activated, and a bootstrap creates the

instances of the components. At runtime, FROGi supports manage-

ment of the lifecycle of components and their bindings, and dynamic

reconfiguration.

Main points. This solution is based onOSGi, Fractal, and the Julia plat-

form,which is a Java-based implementation of the Fractal framework.

It supports local deployment of Fractal components but not distribu-

tion: a system of components, integrated in one or several bundles,

can be deployed but only locally (there is no deployment plan).

The activities covered are installation and deinstallation, activa-

tion and deactivation, update, and reorganization (i.e. reconfiguration



Fig. 5. A Fractal application (a) and its packaging as OSGi bundles (b) Desertot et al.

(2006).

of components), while the level of dynamics is the one of OSGi. The

targeted device must host the OSGi platform and a FROGi dedicated

bootstrap.

The components and the device should be explicitly indicated, and

the designer must have skills in Fractal ADL and be able to build OSGi

bundles.

4.1.2. R-OSGi
Problem. OSGi is limited to remote but centralized module manage-

ment. The difficulty is to allow an OSGi-based application to be dis-

tributed without loosing the properties of the OSGi model.

Solution. R-OSGi (Remoting-OSGi) is a distributed middleware plat-

form that extends the OSGi specification to support distributed mod-

ule management in a seamless and efficient way (Rellermeyer et al.,

2007). It allows a centralized OSGi application to be automatically

and transparently distributed, and run by using proxies.

R-OSGi relies on dynamic proxy generation and type injection to

ensure type consistency. Proxies provide OSGi services locally, and

hide service invocations across the network; the only difference from

standard OSGi services is that they are aware of distribution in or-

der to perform specialized operations, e.g. for system management.

Service discovery is reactive and efficient. Services are registered and

located bymeans of a distributed registry implemented with the Ser-

vice Location Protocol, which complements the centralized OSGi ser-

vice registry. At runtime, OSGi techniques developed for centralized

module management, such as dynamic loading, unloading and bind-

ings of modules are used to handle the dynamics of the domain (e.g.

partial failures).

Main points. R-OSGi facilitates the deployment of systems made of

OSGi components, in such a way that they can interact remotely at

runtime over a network of devices which host the OSGi platform.

R-OSGi inherits properties and abilities from OSGi (software change-

ability, deployment activities).

Here, the designer should make the deployment plan explicit, and

must be expert in OSGi technology.

4.2. Relieving humans of deployment tasks

Several works postulate that deployment results in too complex

and low-level decisions and actions for humans. Consequently, they

target autonomy in deployment, that is precisely deployment with-

out human support. It is the case for Software Dock (Hall et al., 1999)

and QUIET (Manzoor and Nefti, 2010) which aim at deploying auto-

matically over networks and whose both architectures are based on

mobile agents. Disnix proposes another solution for automatic de-

ployment based on models (van der Burg and Dolstra, 2014). Finally,

RAC fully automates the installation and configuration of virtual ma-

chines (VM) for cloud computing, and removes the human from the

loop (Liu, 2011).

Additionally, the Selfware project (SELFWARE, 2005) aims at lim-

iting human involvement in system administration in order to reduce

errors and to enable automatic reaction to special runtime situations.

Selfware proposes a software platform which allows distributed sys-

tems to be built with autonomous administration (self-repair, self-

healing): legacy Java EE applications are encapsulated into Fractal

components (OW2 Consortium, 2009) which can be dynamically re-

configured in order to dealwith failures or scalability issues.However,

the solution is limited to Java EE applications deployed on devices

which are known in advance.

4.2.1. Software Dock
Problem. At the end of the 1990s, with the rapid emergence of large

networks such as Internet, installing software manually using a CD-

ROM was superseded. From that time, network connectivity allowed

software producers to offer remote high-level deployment services

to consumers. Thus, Hall et al. proposed Software Dock, a distributed

agent-based deployment framework which enables cooperation be-

tween software producers and software consumers (Hall et al., 1999).

Solution. The Deployable Software Description (DSD) is a main ele-

ment of the solution. It is a standardized language used for the de-

scription of the software system through a collection of semantic

properties mainly related to consumer-side features and constraints,

and to configuration.

Software Dock architecture is distributed, and based on two sorts

of elements: the release dock on the producer sitewhichholds a repos-

itory of software releases, and the field dock on the consumer site

which provides local information about resources and configuration,

already deployed software systems, etc. Deployment relies onmobile

agents which perform deployment activities. Agents move from a re-

lease dock to a field dock, while carrying the software release and the

DSD description (agentmobility is, however, limited to one jump on a

site decided in advance). On the consumer site, they interact with the

field dock, and perform customized configuration and deployment by

interpreting locally the DSD description (agents may be more or less

specialized for one deployment activity). A distributed event service
supports the connectivity between producers and consumers (see

Fig. 6). Relying on the publish-subscribe pattern, release docks may

generate events, for example in case of an update. Events are caught

by the subscriber agents on consumer sites, which may start updates

or reorganizations.

Note that Agilla (Fok et al., 2005) is another deployment solution

based on mobile agents that has been developed for WSNs, in which

agents support network programming and reprogramming.

Main points. The deployment process itself is distributed over the

network but applications are deployed locally as a unit. Many activi-

ties are concerned: release and retire on theproducer side, installation

and deinstallation, update and reorganization on the consumer side.



Fig. 6. Software Dock architecture (Hall et al., 1999).

Deployment is decentralized and customized on the consumer site

thanks to the local interpretation of descriptors. By means of decen-

tralization and the event-based interactionmode, the global overhead

could be limited and the solution could scale and support domain

openness, but these issues are not clearly addressed. The implemen-

tation relies on the mobile agent platform Voyager which hides the

heterogeneity of the domain. In addition, devices must host the field

dock (bootstrap).

A specific language (DSD) supports the specificationofdeployment

properties. In this situation, the designer must have a strong exper-

tise in deployment; he has to set up a configuration and to express

constraints, dependencies and assertions in the DSD format.

4.2.2. QUIET
Problem. Traditional installation wizards oblige users to participate

and express their preferences using a GUI. Manzoor and Nefti aim at

automating software installation on networks of PCs and requiring

minimal interaction with users.

Solution. QUIET is a framework for automatic installation and dein-

stallation over a network (Manzoor and Nefti, 2010), which supports

“silent and unattended installation” that is to say installation without

user interaction. Silent installation relies on the Silent Unattended In-

stallation PackageManager (SUIPM) (Manzoor andNefti, 2008). At the

network level, a multi-agent system monitors the resources (band-

width, memory, disc, etc.) of the domain and deploys smartly and

efficiently the SUIPM on the consumer sites depending on network

conditions. Agents provide autonomy and decentralization and their

mobility helps in network coverage.

The network is divided into sub-networks, each of them corre-

sponding to a set of consumer sites, managed by sub-servers. Fig. 7

describes how the multi-agent system operates and the behaviors of

the different types of agents: each one is in charge of a specific opera-

tion andmay create agents in order to execute underlying tasks. First,

a Master Controller Agent (MCA) loads the application to be installed

and the description of the deployment domain from XML files, and

creates File Transfer Agents (FTA) to perform the transfer of config-

uration files on sub-servers. MCA also creates Controller Agents (CA)
which migrate on sub-servers and are responsible for installation

on sub-networks. On a sub-network, CA creates FTAs to perform the

transfer of configurationfileson theconsumer site, and Installer Agents
(IA) and Verification Installer Agents (VIA) which migrate to consumer

site. CA are also responsible for sending to MCA observed context

data concerning the network and the process, which helps MCA to

build helpful knowledge to take smart decisions. Eventually, on the

consumer site, IA installs the SUIPM package and VIA checks that the

installation is correct according to the configuration file.

Then, SUIPM can install the application locally. Deinstallation re-

lies on the same principles as installation.

A logging system is used for the deployment system recovery. Any

agent is responsible for the supervision of the agents it has created:

the creator agent assumes the child agent is dead when it does not

receive a log message; then, it creates another (same) agent which

resumes the deployment process, thanks to logs.

Main points. The QUIET framework supports distributed, decentral-

ized and parallel deployment of a single component (SUIPM and then

MS Windows application) over a network of PCs. Its implementation

relies on the distributed agent-based platform Jade which serves as a

bootstrap on the devices. Agents support the dynamics of the deploy-

ment process, but also its scalability as the domain grows, customiza-

tion and autonomy. QUIET users may launch a release (via SUIPM),

an installation or a deinstallation (but software changeability is not

considered).

Fig. 7. QUIET multi-agent system.



For this to happen, the deployment manager needs to set up

the software and the network configuration (paths, addresses, sub-

servers, etc.) in an XML file, and must therefore have a true expertise

in deployment.

4.2.3. Disnix
Problem. On one hand, many deployment tools are specific to a par-

ticular type of component (such as Enterprise JavaBeans) or do-

main. On the other hand, service-oriented systems are composed

of inter-dependent, distributed and possibly heterogeneous compo-

nents which provide the services. Deployment domains may be het-

erogeneous too, and also change mainly due to failures of devices

and communication links. This instability necessitates dynamic re-

deployment. Consequently, deployment of service-oriented systems

is complex and time-consuming, and it is difficult to guarantee non-

functional properties.

Solution. van der Burg and Dolstra propose Disnix, a tool for auto-

matic and reliable deployment of service-oriented systems consisting

of various types of components in heterogeneous domains (van der

Burg and Dolstra, 2010), and an extension called DisnixOSwhich sup-

ports deployment of infrastructure components (van der Burg and

Dolstra, 2014). Disnix relies on Nix, a package manager and tool for

local deployment.

Automatic distributed deployment is based on declarativemodels.

The service model defines the available distributable components and

their properties and inter-dependencies. The infrastructure model de-
fines the domain. Lastly, the distribution model specifies the mapping

between the services and the domain, that is to say the deployment

plan. Using models and transformation tools hides the complexity of

deployment from the deployment managers.

Disnix deployment is launched from a coordinator machine: it

consists in building and installing the services, then activating them.

In practice, source codes are compiled using the adequate compiler,

connectors (such as Java DataBase Connectivity drivers) may be gen-

erated, components are installed in such a way that their depen-

dencies (to the host machine or to other components) are satisfied,

then services are composed. Update is optimized by limiting it to

the deployment of the new components, deactivation of the obsolete

services and activation of the new ones.

van der Burg and Dolstra (2011) propose a self-adaptive deploy-

ment framework built on top of Disnix. In conjunctionwith a runtime

discovery service (for the machines entering the domain) and an in-

frastructure generator, the framework generates a mapping of com-

ponents to machines using a quality of service model which supports

the expression of a distribution policy based on quality attributes.

Fig. 8 illustrates the new architecture.

Main points. Disnix manages the deployment of heterogeneous

component-based systems on networks of heterogeneous devices.

The dynamics of the application are limited to update, while the dy-

namics of the domain (appearing devices and failures of devices or

Fig. 8. Extended Disnix deployment architecture (van der Burg and Dolstra, 2011).

Fig. 9. The RAC container (Liu, 2011).

network links) are taken into account in the extended version of Dis-

nix which supports automatic redeployment.

The deployment activities handled are installation and deinstalla-

tion, activation and deactivation, update, reorganization and redistri-

bution in a self-adaptive manner. Each target machine must run the

DisnixService (the bootstrap) which enables the coordinatormachine

to control remote deployment operations.

Disnix users can be administrators of service-oriented distributed

systems, but more broadly, various stakeholders may be involved in

the expression of deployment (for example, software developersmay

set the service model). The different concerns are clearly separated

in different models. In return, any Disnix user must be an expert

in its domain. Note that the nature of the specification and domain

transparency have evolved with the versions of Disnix: in the initial

version, the composition of the domain and the deployment plan

had to be explicited, while the self-adaptive deployment framework

supports dynamic discovery of devices and plan generation. In that

case, as generation of models is continuous, the applicability of the

solution appears to be restricted to domains which instability is quite

limited.

4.2.4. RAC
Problem. In the context of cloud computing, the use of Virtual Ap-

pliances (VM images with pre-packaged and pre-installed software

components, written VAs) alleviates software installation and config-

uration. However, several problems remain which result from the

embedding of configurations in VAs: many VM images should be

generated in order to cover the multiple combinations of software

components corresponding to the multiple deployment scenarios.

Besides, the interdependencies among VAs, in multi-tier applications

for example, increase the complexity of system configuration and

limit customization possibilities.

Solution. Liu proposes Rapid Application Configurator (RAC), an ap-

proach for software installation and configuration based on separa-

tion of concerns and inversion of control2 (Liu, 2011). The idea is to

separate the configuration data from the application logic, and define

configurableproperties as variables in theVAheaderfile. Variables are

to be set (and the VM configured) at deployment time using config-

uration metadata. In practice, when deploying a configurable VA, the

RAC container (Fig. 9) parses the configuration metadata, performs

initial validation (checks basic errors), then instantiates, configures

and launches the VM. The whole process is illustrated in Fig. 10 (AMI

abbreviates “Amazon Machine Image”, where the configurable VA is

stored).

In order to be able to exchange values, the RAC container and the

VMs expose Web interfaces. The RAC container is implemented as a

Web service running on a dedicated server and can read values from

2 Haller andOderskydefine inversionof control” (IoC) as follows (Haller andOdersky,

2006): “Instead of calling blocking operations (e.g. for obtaining user input), a program
merely registers its interest to be resumedon certain events (e.g. an event signaling a pressed
button, or changed contents of a text field). In the process, event handlers are installed in
the execution environment which are called when certain events occur. The program never
calls these event handlers itself. Instead, the execution environment dispatches events to
the installed handlers. Thus, control over the execution of program logic is ‘inverted’.”



Fig. 10. RAC-based deployment process in Amazon EC2 cloud (Liu, 2011).

the VM. In each VM, a residing agent carries out configuration and

reconfiguration: it queries the configuration values once at startup,

then periodically polls to see if any value has changed.

Main points. RAC proposes a cloud-specific solution for the full au-

tomationof configurationand reconfiguration (installation, activation

and reorganization activities), which removes humans from the loop.

The configuration task is shared between the VA producer, an ex-

pert in configuration and the end-user, each party having the required

knowledge and skills. In order to relieve humans of configuration

tasks, metadata replace installation manuals and the RAC container

replaces end-users and acts as a centralized service that provides con-

figuration data on demand. This proposal results in reduced cost and

time for configuration handling.

Additionally, component distribution (the construction and the

realization of the deployment plan) is supported by the cloud infras-

tructure and so the domain transparency. Here, the only necessary

bootstrap is the virtualization platform.

4.3. Dynamic resource allocation

Grids and clouds provide runtime environments for high perfor-

mance computing over heterogeneous resources andmultiple admin-

istrative domains. Associated management tools provide services to

deal with resources such as provisioning and scheduling. Neverthe-

less, as the availability and the quality of resources are not perma-

nently predictable or can vary at runtime, dynamic adaptation of the

deployment plan is required in order to supply components with the

needed resources. Automatic and dynamic deployment is thus de-

sirable. However, finding a location for programs is a complex task.

CoRDAGe addresses autonomic deployment of long-span applications

on large-scale grids (Cudennec et al., 2008), andWrangler targets au-

tomatic deployment of distributed applications on clouds (Juve and

Deelman, 2011).

4.3.1. CoRDAGe
Problem. Nowadays large-scale grid applications may run for days

or even weeks over hundreds or thousands of nodes. The exact need

for physical resources is difficult to predict before or when initiating

deployment. Thus, the deployment manager (operator) has to mon-

itor the applications and permanently satisfy their resource require-

ments: in practice, elasticity of the deployment domain is required

in order to expand or retract the application. Unfortunately, exist-

ing deployment tools are “one-shot”: they do not provide support

for continuous (re)deployment. Another problem concerns the man-

agement of “co-deployment”, that is to say deployment of several

coupled applications.

Solution. Cudennec et al. propose CoRDAGe, a co-deployment

and redeployment tool (Cudennec et al., 2008). It is based on

ADAGE (ADAGE, 2007), a tool for centralized and automatic deploy-

ment on computational grids. ADAGE operates as follows. The input

information is: a description of the application, a description of the

expected quality of service at runtime, and a description of the re-

sources or of their location. In a scheduling step, a deployment plan is

built from these descriptions: the components of the application are

mapped onto a subset of selected resources, which satisfy constraints

concerning the operating system, processors, memory, etc. Then, the

deployment plan is performed: files (executables and data files) are

transferred according to the plan, processes are created, configured

and launched, and finally a deployment report is generated.

CoRDAGe supports the deployment of applications before, dur-

ing and after their execution. Fig. 11b illustrates the advantages of

CoRDAGe: deployment is transparent, i.e. the user is not in charge

of requesting resources nor of deploying applications (as illustrated

in Fig. 11a); the only information needed from the user is the initial

application description. In Fig. 11, numbers refer to the order of the

operations.

High-level generic models are used to represent both the applica-

tion and the physical resources. An application is described as a set of

types of entities, each of thembeing a program to be executed on a sin-

gle physical resource (a computing node). Configuration consists in

defining entities by instantiating types; entities are the deployment

units managed by CoRDAGe. CoRDAGe generates tree-based repre-

sentations of both the application from the application description

(a) (b)

Fig. 11. Deploying an application by hand (a), and using the CoRDAGe tool (b) (Cudennec et al., 2008).



and the physical resources (the deployment domain) from a selec-

tion of the bookable ones. Then, a mapping of the application tree

onto the physical tree decides on the placement of the entities; this

placement (distribution of the system) is performed by the deploy-

ment tool provided by the grid considering a set of constraints to be

satisfied.

At runtime, relying on CoRDAGe services, applications can man-

agedeployment operations autonomously (that is to say,without user

interaction) by requesting expansion and retraction. Dynamic expan-

sion and retraction are also supported by tree-based operations.

Additionally, CoRDAGe can manage several applications together,

considering cross-application spatial and temporal constraints.

Main points. On top of ADAGE and various reservation and deploy-

mentmiddleware tools, CoRDAGemanages deployment of long-span

distributed applications whose structure and resource requirements

may change at runtime. It focuses on the initial placement of pro-

grams, their reorganization and their redistribution, on large-scale

grids (thousands of nodes) where resource availability and quality

vary dynamically.

The bootstrap on devices is the ADAGE platform (and the gridmid-

dleware) which performs deployment locally. However, deployment

is controlled in a centralized manner.

At design time, the deployment manager must specify the ini-

tial application and constraints using high-level models, but not the

domain. Thus, little expertise in deployment is demanded.

4.3.2. Wrangler
Problem. Compared to clusters and grids, clouds are highly dynamic

especially as several providers are involved. Given these dynamics,

deploying services in the “Infrastructure as a Service” (IaaS) cloud is

a challenge. Even if cloud infrastructures allow resource provision-

ing, they lack services for deployment, configuration and application-

specific customization of runtime environments (i.e. for building vir-

tual clusters which host applications). These tasks can be handled

manually, but they are complex, time-consuming and error-prone.

As for traditional high-performance computing, tools are needed

to automatically install, configure, and run distributed services.

In Juve and Deelman (2011), the authors list a set of require-

ments: deploy automatically distributed applications, support com-

plex dependencies, allow dynamic provisioning in order to adapt

deployment to the application runtime requirements, support mul-

tiple cloud providers, and continuously monitor the state of the

deployment.

Solution. Juve and Deelman propose a system calledWrangler which

allows users to specify their application declaratively (via an XML

description), and automatically provision, configure, and monitor its

deployment on IaaS clouds (Juve and Deelman, 2011). Wrangler in-

terfaces with several different cloud providers in order to provision

virtual machines, coordinates the configuration and initiation of ser-

vices to support distributed applications, and monitors applications

over time. It handles possible failures and dynamic addition and re-

moval of nodes.

Wrangler distributed architecture is illustrated in Fig. 12. It relies

on four kinds of components: client, coordinator, agent, plugin. Clients
run on user’s machines and send requests to the (unique) coordina-

tor for new deployment, incremental deployment, or termination;

requests for deployment include XML descriptions of the nodes to

be launched and of the VM images and plugins to use. Plugins are

user scripts that define in a modular way different aspects of the

application-specific behavior for a node (the configuration). The co-

ordinator is a Web service: it serves as an intermediary between the

clients and the agents. It also interacts with the resource providers in

order to provision the adequate virtual machines. Any node of the de-

ploymentdomainhosts an agent: the codeof the agent is pre-installed

Fig. 12. Wrangler system architecture (Juve and Deelman, 2011).

in the VM image, and when the VM boots up, it launches the agent

which registers with the coordinator. Agents receive commands for

configuration: in response, they retrieve the list of plugins of the node

from the coordinator and download and start them. At the same time,

agentsmonitor their hosting node by invoking the “status”method of

the plugins, and send the collected data to the coordinator. They also

terminate plugins in response to a termination command. Therefore,

agents are in charge of the distributed and decentralized deployment

tasks.

Main points. Wrangler is a partially decentralized solution for de-

ployment on multi-provider dynamic clouds of distributed applica-

tions whose resource requirements may vary at runtime. Application

components are VM images.

Relying on the cloud infrastructure (which is the only bootstrap),

Wrangler supports distribution of virtual machines, redistribution,

configuration and reconfiguration of nodes (reorganization), and ter-

mination of applications. However, the centralized coordinator limits

the scalability (related to the domain).

In practice, the deployment designer has to specify the compo-

nents with their parameters and dependencies, the cloud providers,

and the plugins. He should have a certain level of expertise, particu-

larly as hemay be involved in the building of VM images or correction

of problems at runtime.

4.4. Management of resource-limited and mobile devices

Mobility of devices with limited capacity poses problems related

to resource consumption, disconnections and quality of service, and

as a consequence demands just-in-time deployment. DVM (Balani

et al., 2006) and QARI (Horré et al., 2011) targets WSNs, where re-

source management (especially energy) is critical. Kalimucho ad-

dresses the adaptation of the deployment plan to the quality of service

(Louberry et al., 2011). StarCCM supports context-aware deployment

(Zheng et al., 2006) and Codewan supports opportunistic deployment

of component-based software on disconnected Mobile Ad hoc NET-

works (Guidec et al., 2010). Cloudlet is a VM-based solution which



Fig. 13. Overview of QARI (Horré et al., 2011).

allows the workload to be moved frommobile devices to a proximity

cloud (Satyanarayanan et al., 2009).

4.4.1. DVM
Problem. In WSNs, usage scenarios are frequently known without

enough precision before or at initial deployment time. This point mo-

tivates dynamic adaptation of the network by reconfiguration and

reprogramming of initially deployed software. However, realizing

adaptation is strongly constrained by the limited capacities of sen-

sor nodes (such as energy or memory).

Solution. Balani et al. state that upgrade costs and resource consump-

tion in WSNs increase with flexibility. For a better trade-off between

them, they propose DVM (Balani et al., 2006), a dynamically exten-

sible virtual machine in charge of local deployment in an homoge-

neous network of sensors. DVM runs on top of an operating system

consisting of an adaptable tiny kernel and binarymodules that can be

added to the kernel, updated, reconfigured or removed dynamically.

It executes the deployment operations within the operating system

in reaction to specified events. DVM basic library may itself be ex-

tended dynamically by high-level scripts. However, flexibility of the

deployment (what is possible) and efficiency (howmuch does it cost)

directly depend on the defined set of operations in the basic library:

dynamic loading increases deployment costs, and the price to pay for

optimization is a loss of abstraction in programming.

Main points. DVM focuses on the realization of deployment opera-

tions in WSNs. More precisely, it deals with dynamic upgrade of the

operating system via installation, update, and reorganization of bi-

nary modules. It acts locally on sensor nodes in reaction to the events

defined by the designer. Thus, deployment is fully decentralized but

its scalability (in number of nodes) may be limited by the network

traffic. On the other hand, DVM (the system in charge of deploy-

ment) is dynamically extensible. In a general way, limited capacities

of sensors and efficiency requirements constrain the extensibility and

upgrading abilities.

Here, designers write reconfiguration scripts in a concise and flex-

ible way, and can customize the event-based system. However, low-

level platform-specific programming is necessary to meet efficiency

requirements. Therefore, designers should be experts both in deploy-

ment on WSNs and in the device operating system.

4.4.2. QARI
Problem. When deploying in dynamic and unreliable networked sys-

tems, the single failure of one host can compromise thewhole deploy-

ment. Nevertheless, from the developer perspective, the deployment

can be considered as valid as long as some requirements are fulfilled.

The problem is to give to the developer tools to express high-level

quality goals, then to meet the quality requirements in the different

deployment phases.

Solution. QARI (QualityAwareReconfiguration Infrastructure) (Horré

et al., 2011) addresses the challengeof softwaremanagement inWSNs

by offering to application developers a way to specify quality goals in

XML files, and then enabling quality-aware software deployment. An

example is to set a minimal sampling rate for temperature sensing,

and then deploy temperature sensing components accordingly. The

realization of such a specification is delegated to an ApplicationMan-

ager and a Network Manager, both located on the WSN gateway, as

illustrated in Fig. 13. A Network Monitor, a Deployment Planner, and

a Deployment executor are the buildings blocks of the NetworkMan-

ager. These entities use contextual data about the sensors, that have

been collected nearby (and so valuable), to achieve the deployment

with the required level of quality and to maintain it throughout the

lifetime of the application by redistributing components. The Planner

uses a heuristic algorithm to calculate the initial assignment of the

components to the nodes.

QARI is built on top of LooCI (Hughes et al., 2012), a component

model for networked embedded systems such as WSNs, which sup-

ports runtime introspection and reconfigurationwith a lowoverhead.

The LooCI middleware is designed for Java devices such as Sun SPOT

and Sentilla Perk (supporting JavaME) but can also run onmore pow-

erful Java devices.

Main points. Relying on quality goals, QARI deploys LooCI

component-based applications on dynamic WSNs (with failures or

mobility).

QARI mainly targets installation and redistribution (precisely,

component placement). It relies on the QARI/LooCI platform that

serves as a bootstrap. The scalability of the solutionmay be limited to

a certain extent by the centralized processing of data by themanagers

located on the WSN gateway.

WithQARI, application developers specify quality goals in a simple

way (XML rules), and neither the domain nor the deployment plan,

which is computedandupdatedby theplanner. Apart fromthequality

features, the designer may have skills in QARI and, to a lesser extent,

in LooCI.

4.4.3. Kalimucho
Problem. Resource-limitedmobile devices bring new challenges that

deployment platformsmust cope with. Actually, the permanent need

to manage resources demands specific ways to deploy applications



on the devices: in order to guarantee an adequate quality of service

to end-users, distribution (the deployment plan) has to be adapted

reactively and dynamically.

Solution. Kalimucho is a distributed platform for dynamic deploy-

ment on heterogeneous devices such as desktops, laptops andmobile

devices (Cassagnes et al., 2009). Applications are made of business

components linked by connectors, in accordance with the Osagaia

component model and the Korrontea connector model. According to

the principle of separation of concerns, Osagaia business components

run inside configurable containerswhich support connection to other

containers usingKorrontea connectors. One of theKalimucho services

is devoted to supervision and is distributed over the domain. It has

a global vision of the network and the devices. Other basic services

allow creation, stopping or removal of components or connectors,

migration of components, their connection and disconnection, etc.

Louberry et al. introduce a contextual deployment heuristic, in

order to select a configuration which satisfies the quality of service

requirements, then to place the components on the devices (Louberry

et al., 2011). Parameters of the algorithm are the kind of devices, and

their amount of energy, CPU workload and available memory. There-

fore, when there is a new functional requirement (for example, re-

sulting from an action of a user), if a device appears or disappears

from the network or becomes low in resources, or if the priority of

the requirements changes, the Kalimucho platform revises the de-

ployment plan, then performs it. Reorganization and redistribution

are done while the application is running without having to stop it,

thereby ensuring continuity of service and durability of applications.

Main points. Deployed applications are systems of Java components,

which comply with the Osagaia and Korrontea component models,

andmaydynamically evolve. Thedomain is a set of networkeddevices

thatmust host theKalimuchoplatform (possibly, a limited versionde-

pending on device capacity) as a bootstrap. Devices may dynamically

enter or leave the domain.

Kalimucho supports consumer-side deployment activities: instal-

lation and deinstallation, update, reorganization and redistribution.

It deals with decentralized and context-aware adaptation of the de-

ployment plan.

Users can interact with the Kalimucho platform by issuing a de-

ployment plan or explicitly activating or moving a component. They

mayalso express expectedproperties of quality of service, andparam-

eter the deployment heuristic by describing the components (con-

straints and requirements), configurations, devices, etc. As a result,

they must be experts in the Kalimucho technology.

4.4.4. StarCCM-based deployment
Problem. On one hand, ubiquitous applications should be aware of

the available resources and the constantly changing runtime context

in order to be able to adapt, and automation of their deployment is

demanded. On the other hand, component-based middleware such

as Corba Component Model (CCM) provides deployment facilities

but not context-sensitivity. Here, the problem concerns just-in-time

adaptation of the deployment plan to the runtime context.

Solution. Zheng et al. propose a middleware-based approach for the

deployment of context-aware component-based distributed applica-

tions (Zheng et al., 2007). Applications and middleware implementa-

tions are based on CCM.

The overall middleware architecture (see Fig. 14) is based on

three core services: contextmanagementwhichprovides information

about context, adaptation management which decides on a deploy-

ment plan, and configuration management which realizes the plan,

that is to say the redistribution of the components.

Fig. 15 explains how information about context is collected, fil-

tered and processed, and then presented to the component deployer

Fig. 14. Architecture of the context-aware middleware (Zheng et al., 2007).

(which is an abstraction for both adaptor and configurator compo-

nents). The data processing chain is based on the publish-subscribe

pattern, and on different components: sensor agents, collectors, in-

terpreters and analyzers.

The core of the solution is the Adaptation Manager. It computes

a new deployment plan at runtime, relying on a set of rules about

the component units (selection of version, individual adaptation by

configuration) or the application (assembly-level adaptation, optional

components, placement): an A* algorithm selects the best version and

hosting device for every instance of component.

Main points. Zheng et al. focus on context management as a key

for adaptive deployment. StarCCM supports context-aware just-in-

time (re)deployment of distributed component-based applications

over networks of devices whose resources are limited and chang-

ing. The solution targets dynamic adaptation of the deployment plan,

and thus the deployment middleware supports the redistribution ac-

tivity. It relies on a centralized entity: the Adaptation Manager. The

architecture is reasonably abstract, but its implementation is tied to

CCM.

In this context, the deployment designer should specify adaptation

rules at the component and the system levels. He must be an expert

in deployment, and also have some knowledge about the properties

of the components to deploy.

4.4.5. Codewan
Problem. In infrastructurenetworks, deployment of software compo-

nents (precisely their delivery) is based on server hosts which store

components in repositories and deliver them on demand. However,

in Mobile Ad hoc NETworks (MANETs) with their volatility, discon-

nections and fragmentation, components cannot be retrieved from a

central repository. Additionally, due to continuous and unpredictable

Fig. 15. Dynamics of the context-aware middleware (Zheng et al., 2006).



Fig. 16. Architecture of the Codewan platform (Guidec et al., 2010).

changes of the network structure, there is no guarantee that a demand

can be satisfied because the component may be (temporarily or not)

inaccessible in the neighborhood of the enquirer.

Solution. In the context of the SARAH project (SARAH, 2005), Guidec

et al. have proposed a cooperative decentralized model for provision

and delivery of software components on disconnected MANETs, and

a middleware implementation called Codewan (Guidec et al., 2010).

In their neighborhood, devices interact opportunistically in order to

discover and exchange software components.

The architecture of the Codewan platform is composed of three

layers as illustrated in Fig. 16. The opportunistic communication layer

supports the dissemination of components: their announcements

are broadcast while unicast transmissions support demands in reply

(MPR means multi-point relays). On a device, the deployment layer

contains a component local repository, a deployment manager and a

GUI. Theuser interface allows theuserboth toobserve the statusof the

components and to demand (or cancel) deployment of components

or of component-based applications. The deployment manager takes

orders from the user. Peer-to-peer cooperation between deployment

managers allows devices to obtain copies of the software components

required by the user and available in their neighborhood, while the

neighbors can benefit from the same service symmetrically. A deploy-

ment manager is responsible for updating the local repository. It can

fully manage the (local) deployment of a component-based applica-

tion: it can examine the dependencies between components and run

a complete recovery process. In order to do that efficiently, it learns

from the interactions with its neighbors.

Main points. Codewan targets deployment of component-based ap-

plications (without being tied to a particular component model) on

disconnectedMANETs. Deployment is local and on demand, and fully

supports the dynamics of MANETs.

Codewan focuses on one part of the installation activity, namely

delivery. In addition, the solution relies on a model for component

packaging, and thus concerns the release activity. Even if scalability

is not an objective, the solution could scale as the domain grows due

to the full decentralization and the peer-to-peer approach. Codewan

platform is implemented in Java and must be pre-installed in all in-

volved devices (bootstrap).

MANET technology supports automatic domain discovery. The de-

ployment is directed by the user of the device using a GUI which re-

quires few advanced skills. However, for the packaging, the software

producer must be an expert.

4.4.6. Cloudlet
Problem. Devices taking part in mobile computing are intrinsically

resource-limited. This can be a major technical limitation for many

advanced applicationswhich require resources like processing power

and energy. A solution could be found in clouds, butWAN interactions

raise issues of latency, longer delay and jerking. Satyanarayanan et al.

Fig. 17. Dynamic VM synthesis timeline (Satyanarayanan et al., 2009).

introduce the concept of local cloud (Satyanarayanan et al., 2009):

instead of delegating computation tasks to a distant cloud, authors

propose to delegate them to a nearby (LAN accessible) and resource-

rich device called “cloudlet”, thus avoiding some of the problems.

The challenge is passed on to software management, ideally self-

management.

Solution. Satyanarayanan et al. present a solution based on “transient

customization” of the cloudlet infrastructure using virtual machine

(VM) technology and dynamic VM synthesis (Fig. 17): a customized

VM is dynamically synthesized from both a base VM preloaded on

the cloudlet infrastructure and a small complementary overlay VM

which encapsulates the application, and which is transferred from

the mobile device to the cloudlet. The base VM is extended by means

of scripts for installation and resumption. After having remotely run

the application in the customized VM, the latter is discarded and the

cloudlet returns to its initial state. Accordingly, performance depends

only on local resources (bandwidth between the cloudlet and the

mobile device, and the cloudlet computing power), andWAN failures

do not affect synthesis and execution.

An implementation called Kimberley relies on a virtual machine

manager for Linux. It lets open several issues such as cloudlet sizing

and security.

Remark that the principle of overlay VM is close to the one of

RAC (see Section 4.2.4) and to the idea of overlay component used to

customize a gridmiddleware suchas it is proposed inGridKit (Coulson

et al., 2006).

Main points. The Cloudlet solution deploys (moves and brings

back) full applications at runtime. Applications are technology-

independent. The deployment target is a remote nearby device (the

cloudlet) which appears spontaneously in a context of mobility.

The focus is placed on the transfer of computations. The handled

activities are installation and deinstallation (including transfer), ac-

tivation and deactivation. In order to function, a Kimberley Control

Manager (KCM) should run both on the cloudlet and on the mobile

device (bootstrap), and the cloudlet should also host the base VM.

The transfers are initiated and explicited by the user whose ex-

pertise level may be low.

4.5. High-level formalisms and expressiveness

This section reviews several workswhichmain objective is to pro-

vide abstractions and facilitate the expression of the deployment.

DeployWare is a complete framework for large-scale deployment

based on a modeling language dedicated to deployment (Flissi et al.,

2008). ADME is another framework, which targets autonomic de-

ployment and relies on the resolution of constraint satisfaction prob-

lems (Dearle et al., 2004). TUNe provides high-level formalisms for

autonomous management of decentralized large-scale grids (Broto



et al., 2008; Toure et al., 2010). SmartFrog has been designed with

the express purpose of making the design, deployment and man-

agement of distributed component-based systems simpler and more

robust (Goldsack et al., 2009; Sabharwal, 2006). At last, ORYA focuses

purely on deployment strategies and proposes a framework for their

expression using properties and rules (Cunin et al., 2005).

As deployment design is a particular operation with specific re-

quirements, some Domain-Specific Languages (DSL) have been pro-

posed to meet the needs for expression of deployment properties.

DSLs allow the definition of the deployment properties using well-

adapted and optimized idioms and abstractions, so they can be used

efficiently by experts of the domain (Strembeck and Zdun, 2009).

Among DSLs for deployment, we can cite Deladas (see Section 4.5.2),

J-ASD (Matougui and Leriche, 2012), and Pim4Cloud (Brandtzæg et al.,

2012). In Sledziewski et al. (2010), authors advocate the use of DSL in

order to enhance applicationdevelopment anddeploymenton clouds.

Nevertheless, reviewing DSLs for deployment is outside the scope of

this article.

4.5.1. DeployWare
Problem. Flissi et al. analyze the main challenges of large-scale de-

ployment on grids. Deployment frameworks should address the com-

plexity resulting from the huge number of nodes and software de-

pendencies, the heterogeneity related both to the software and the

deployment domain, reliability, parallelization, scalability, and mon-

itoring and management issues (Flissi et al., 2008).

Solution. Flissi et al. propose DeployWare, a generic framework for

the deployment of distributed and heterogeneous software systems

on grids (Flissi et al., 2008). DeployWare provides a Domain-Specific

Modeling Language (DSML) based on a metamodel which captures

the abstract concepts of deployment, independently of the software

paradigm and technology. DeployWare models describe configura-

tions to deploy. They are written using an architecture description

language (ADL), and validated before execution to ensure reliability.

The DeployWare runtime ismade of Fractal software components,

and distributed on selected server nodes. It executes DeployWare

descriptions: a virtual machine interprets descriptions and auto-

matically orchestrates complex deployment processes, dealing with

software dependencies and hardware heterogeneity (see Fig. 18).

Additionally, a graphical console allows administrators to monitor

and manage the deployed system at runtime.

Fig. 18. DeployWare architecture (Flissi et al., 2008).

Main points. DeployWare is a complete solution with integrated

tools, which supports reliable and scalable deployment of distributed

software systems on large-scale networks. However, it does not ad-

dress unstable or open environments.

The deployment system is distributed and the DeployWare run-

time must be present on the target machines (bootstrap) in order to

locally manage the deployment in a decentralized way.

DeployWare brings deployment to a high level of abstraction, us-

ing a metamodel and an ADL, hiding to the developer the complexity

of the deployment orchestration. Among the models, the “hosts” part

explicits the domain and the “software” part explicits the software to

deploy and on which host. Several stakeholders may contribute sep-

arately to the expression of the deployment: system administrators,

software experts, and end-users (end-users define the deployment

plan). Due to the separation of concerns, each of them expresses de-

ployment properties by relying on their business skills.

4.5.2. ADME
Problem. Deployment of component-based distributed applications

poses twomain problems: design of the initial deployment and evolu-

tion at runtimewhen facedwith host failures and other disturbances.

As these problems are too complex to be handled by humans, Dearle

et al. aim at automatizing deployment and applying the autonomic

loop defined by Kephart and Chess (2003).

Solution. Dearle et al. propose ADME (Autonomic Deployment and

Management Engine), a framework for deployment and autonomic

management of component-based distributed applications (Dearle

et al., 2004). ADME relies on Deladas (Declaratory Language for De-

scribing Autonomic Systems), a DSL that supports the expression of

deployment properties using constraints. Constraints are processed

by a constraint solver that generates a configuration (a deployment

plan) encoded in XML. An autonomic management engine both han-

dles the initial deployment and adapts the application to changing

circumstances at runtime. To feed the autonomic loop, applications

are instrumented with probes that locally monitor the execution and

generate events. Events are collected and processed by a centralized

component. In case of host failure or other disturbance, this compo-

nent tries to find a new configuration and orchestrates the overall

adaptation process. Except for some trivial solutions, it has to launch

once again the constraint solver to find another deployment plan.

However, in order to minimize redistribution, the problem is first

more constrained than the original one: the part of the current map-

ping that is not involved in the situation to be corrected is also given as

a constraint. Afterward, these constraints are progressively removed

until an appropriate plan is found.

Main points. ADME is a solution for the deployment of software sys-

tems composed of any-type components on networks in a context of

evolutivity and volatility of resources.

Fromanoperational point of view, ADME focuses on the autonomy

of the system in charge of deployment: it supports initial deployment

(installation and activation), and reorganization and redistribution at

runtime,without requiring human intervention.Monitoring is decen-

tralized but the computation of new configurations is centralized and

the centralized solver is required in most cases. The ADME runtime

system relies on a particular kind of middleware, called Cingal, which

must be installed on every machine of the domain (bootstrap).

Concerning design, Deladas language provides a high degree of

expressiveness to designers: they are not forced to express the plan,

but only constraints and properties about the components and the

hosts, from which the plan is automatically computed. Therefore,

they should have skills in software management, but benefit from a

DSL.



4.5.3. TUNe
Problem. Grid computing environments are large-scale, dynamic and

heterogeneous, and consequently complex. Centralized deployment

and management of distributed applications is no more feasible: de-

centralization and autonomy of runtime management are required.

Besides, expressiveness is also demanded in the description of de-

ployment properties.

Solution. Toure et al. propose TUNe, an autonomic manage-

ment system dedicated to decentralized deployment of large-scale

component-based systems on large-scale grid environments (Broto

et al., 2008; Toure et al., 2010). Software components are encapsu-

lated within Fractal components, using a wrapping description lan-

guage (called WDL) which allows to specify the interface that com-

ponents provide to the TUNe runtimemanagement platform. A TUNe

instance is deployedoneverymachine and themanagement system is

organized hierarchically to efficiently deploy the Fractal components.

Deployment is handled in a decentralized manner. On the machines,

specific probes generate eventswhich trigger deployment operations.

Events are treated locally, except if they concern entities managed by

another machines.

Moreover, UML profiles support the description of the application,

a tree-based representation of the domain (i.e. the grid environment),

the description of the decentralized administration policy, and state-

charts which define theworkflow to start or redeploy the application.

Deployment relies on mappings between the domain diagram, the

administration diagram, and the application diagram.

Main points. TUNe manages component-based applications dis-

tributed over heterogeneous and dynamic grids. It targets scalability

both at the software and the domain levels.

The deployment activities handled are installation (including de-

livery and configuration), activation, and redistribution. At runtime,

specific probes monitor the domain and the events they generate are

treated locally as much as possible. Then, redistribution is performed

autonomously by the TUNe instances in a decentralized way, with-

out requiring human participation. In order to function, TUNe and the

DIET gridmiddlewaremust be available on everymachine (bootstap).

The deployment plan is not expressed by the designer, but results

from a mapping between models (among them, a model must de-

scribe the grid as a hierarchy of nodes). Thesemodels should be given

by experts.

4.5.4. SmartFrog
Problem. Initial deployment anddynamicmanagement of large-scale

distributed systemsof components on grid infrastructures (composed

of multiple heterogeneous machines) lack simplicity and robustness.

Manually deploying grid applications do not scale when the grid

grows. Additionally, as different frameworks may be involved for

component configuration and lifecycle management or failure han-

dling, the deployment data from different stakeholders (component

programmers, integrators, deployment managers, etc.) may be scat-

tered and repeated, leading to inconsistency and misunderstandings.

Solution. Sabharwal and Goldsack et al. propose the SmartFrog

framework for configuration-driven deployment on grid infrastruc-

tures (Goldsack et al., 2009). SmartFrog allows to describe and

configure distributed software systems as collections of cooperating

components, using a specific component model (Sabharwal, 2006).

Configuring components means setting the links with other compo-

nents and other parameters (organization) and the hosting device

(distribution). SmartFrog supports automatic installation, activation

and management of components in Java virtual machines (JVM). The

SmartFrog deployment infrastructure is also component-based and

distributed, anduses JavaRMI for remote interactions. Its components

provide services for the delivery andmaintenance of the running soft-

ware systems (management of component lifecycle and failures).

Basically, a SmartFrog daemon runs on every machine of the de-

ployment domain. Initially, daemons are deployed in a centralized

way from amastermachine using protocols such as ftp and ssh. Then,

the deployment infrastructure is deployed using the daemons, and

finally the software system.

SmartFrog offers a framework to express configuration data in

a consistent way using a hierarchical data model and templates. It

allows discovery of configuration parameters at runtime and late

binding (therefore, adaptation to context facilities). Additionally,

SmartFrog allows the definition of software configuration lifecy-

cle managers. Lifecycle managers properly configure components or

groups of components according to the configuration data. Each of

them implements a set of methods in order to take care of, for ex-

ample, installation, activation, termination, failure notification and

status checking.

SmartFrog frameworkprovides someother advanced features. De-

ployment designers may express the deployment plan by giving lo-

cation exact values or only properties (such as proximity to another

component or sub-system). Deployment may dynamically adapt to

changing circumstances. Concerning dependability, validation struc-

tures may be included in the configurations in order to check particu-

lar assumptions. Additionally, in order to prevent attacks, SmartFrog

proposes a security model based on security domains and a certifica-

tion authority.

Main points. SmartFrog is an advanced deployment framework, ded-

icated to grid infrastructures. It manages the deployment of dis-

tributed systems of components, based on a specific component

model. As systems change over time, it is possible to add or remove

components at runtime.

SmartFrog supports several lifecycle activities: installation and

deinstallation, activation and deactivation, reorganization and redis-

tribution. Deployment is distributed, decentralized and scalable. No

particular bootstrap needs to be present initially on the machines.

SmartFrog users have a language for describing component collec-

tions and component configuration parameters, withmechanisms for

composition and extension.When expressing configurations, compo-

nent locations may be defined in an abstract way by some property,

avoiding so a complete description of the plan. In practice, designers

should be experts in configuration and lifecycle management.

4.5.5. ORYA
Problem. Application deployment on large sets of machines is com-

plexandcannotbeperformedbyhand.Advancedbut adhoc strategies

are commonly used in companies by system administrators. Difficul-

ties arise in their expression and implementation.

Solution. Cunin et al. propose a framework called ORYA (Open envi-

Ronment to deploY Applications) for designing and driving property-

based specialized deployment strategies (Cunin et al., 2005).

A strategy is attached to a machine or a group of machines and

is applied to a set of deployable units. It may concern the selection

of deployment units and their versions, the ordering of deployment

operations, or the handling of exceptions, and it takes into account

the properties and constraints of the domain and of the application.

It is defined in a declarative way by a 3-tuple <Activity, LogicalEx-
pression, Choice>. Activity specifies a deployment activity as defined

in Section 2 (but it is limited to installation and update). When car-

rying out the specified activity, the LogicalExpression is evaluated for

all the current deployable units, dividing them into two subsets: the

“true set” and the “false set”. Choice defines rules for the execution

of the activity for each subset. In addition to the basic behavior, a

strategy is defined by some features such as scope (related to the



domain), visibility and precedence in order to avoid ambiguity in

case of concurrent strategies, etc.

Main points. ORYA focus on the expression of deployment strategies,

in particular those concerning the choice and the ordering of the

operations over the domain. Basically, the application is monolithic

and thedomain is a local networkof a company,whichmaybedivided

into sub-domains.

The concerned activities are mainly installation and update, and

the process is centralized.

Strategies are explicitly dedicated to machines. The deployment

domain and the deployment units must be explicited, with depen-

dencies, constraints, and deployment rules. Thus, ORYA users must

be experts in deployment.

5. Synthesis and conclusion

The aim of this article is to review different research works on

automatic deployment. The contribution is triple. First, we set an

up-to-date terminology related to software deployment. Then, we

propose a framework in order to analyze works on automatic de-

ployment highlighting the following points: nature of the software,

software changeability, nature of the domain, number and scalabil-

ity, dynamics of the domain, activities, control, bootstrap, nature of

the specification, domain transparency, designer skills. Finally, we re-

view the state of the art of automatic deployment using the analytical

framework. Section 5.1 summarizes the review. It shows that existing

solutions are incomplete, and possibly inefficient or unusable, when

distribution, heterogeneity, scalability, dynamics and openness are

primary concerns. Then, Section 5.2 concludes and presents some

open issues that should be addressed in the next future.

5.1. Synthesis

The synthesis of the survey is organized in four parts correspond-

ing to the four basic questions concerning deployment, according to

the analytical framework (see Section 3). In the four parts, the high-

lighted points are considered separately and, for each of them, a table

summarizes the analysis and shows the coverage of the nineteen re-

viewed solutions.

5.1.1. Synthesis in relation to the software deployed
Many solutions target component-based distributed systems as

Table 1a shows. Half of them are dedicated to a particular type of

software component, while the other half do not make any hypoth-

esis regarding this point (see Table 1b). However, among the latter,

some solutions require that any-type components are wrapped into

ones of a specific type, such as TUNe does by wrapping components

into Fractal ones before deploying them. Note that Disnix and De-

ployWare take into account software heterogeneity by using models

and model transformations. Besides, we can observe that only one

solution (SmartFrog) really address the scalability issue (in number

of components).

Table 2 shows that few solutions consider the changeability of the

software system (that is to say, components that change, enter or

leave the system at runtime), or in a limited way.

5.1.2. Synthesis in relation to the deployment domain
Most works address deployment issues in the context of net-

worked machines whereas some focus on grid or cloud infrastruc-

tures, as Table 3 shows. They generally suppose a particular type

of network and target one kind of device (personal computers in

most cases, smartphones, etc.). The heterogeneity issue is especially

addressed by Disnix, DeployWare, and TUNe, while Kalimucho and

Cloudlet focus on the limitation of the resources of the devices (and

support transfer of computations from devices with limited capacity

Table 1

Nature of the software.

(a) Structure

Monolithic application Component-based application

FROGi
√

R-OSGi
√

Soft. Dock
√

QUIET
√

Disnix
√

RAC
√

CoRDAGe
√

Wrangler
√

DVM
√

QARI
√

Kalimucho
√

StarCCM
√

Codewan
√

Cloudlet
√

DeployWare
√

ADME
√

TUNe
√

SmartFrog
√

ORYA
√

(b )Type of the component(s)

Technology

FROGi Fractal-OSGi

R-OSGi OSGi

Soft. Dock Any
QUIET SUIPM, MS Windows apps

Disnix Any
RAC VM images

CoRDAGe Any
Wrangler VM images, configuration scripts

DVM Binary code

QARI LooCI

Kalimucho Osagaia-Korrontea

StarCCM CCM

Codewan Any
Cloudlet Any
DeployWare Any
ADME Any
TUNe Any
SmartFrog SmartFrog component model

ORYA Any

to more powerful computers) as well as the solutions for WSNs such

as QARI and DVM.

In Table 4, we can observe that few solutions address large-scale

deployment (number of devices and scalability), or in a very limited

way via partial decentralization of deployment operations.

Table 2

Handled changeability (software system).

Limited Advanced

FROGi OSGi features

R-OSGi OSGi features

Soft. Dock Update

QUIET

Disnix Atomic upgrade and rollback

RAC (Re)configuration

CoRDAGe Resource requirements

Wrangler Provisioning of resources

DVM Update, reconfiguration

QARI LooCI features

Kalimucho Creation, removal, update, composition

StarCCM

Codewan

Cloudlet

DeployWare

ADME

TUNe

SmartFrog Creation, removal, failure

ORYA Update



Table 3

Nature of the domain.

Local Network WSN Spontaneous Grid Cloud

(remote) network

FROGi
√

R-OSGi
√

Soft. Dock
√

QUIET
√

Disnix
√

RAC
√

CoRDAGe
√

Wrangler
√

DVM
√

QARI
√

Kalimucho
√

StarCCM
√

Codewan
√

Cloudlet
√

DeployWare
√

ADME
√

TUNe
√

SmartFrog
√

ORYA
√

Table 4

Number of devices and domain-related scalability.

Limited Advanced

FROGi

R-OSGi
√

Soft. Dock
√

QUIET
√

Disnix

RAC

CoRDAGe
√

Wrangler
√

DVM
√

QARI
√

Kalimucho

StarCCM

Codewan

Cloudlet

DeployWare
√

ADME
√

TUNe
√

SmartFrog
√

ORYA

Dynamics of the domainmainly concerns connections and discon-

nections (especially for spontaneous networks), failures of machines

and communication links, and variations of the quality of service.

Table 5 points out if and how far the solutions handle the dynamics

of the deployment domain.

Note that some solutions focus on heterogeneity, while others

focus on scalability or dynamics, but except for TUNe, none of the

propositions considers heterogeneity, scalability and dynamics at

the same time. In a general way, the solutions do not support dy-

namic reaction to unforeseeable events, and dynamic modification

of the plan is limited or centralized (but Software Dock, QUIET or

Codewan for example propose decentralized and local autonomous

adaptation).

5.1.3. Synthesis in relation to the realization of deployment
This section summerizes the impacts of the solutions in terms of

deployment activities, architecture of the system in charge of the de-

ployment and decentralization of the control, and deployment boot-

strap.

Table 6 shows what activities are handled by the different solu-

tions. The abbreviations Rel., Inst., Act., Upd., Adapt., Reorg., Redist.,

Deact., Deinst., and Ret. refer respectively to release, installation, acti-

vation, update, reorganization, redistribution, deactivation, deinstal-

Table 5

Handled dynamics (deployment domain).

Limited Advanced

FROGi

R-OSGi Failures

Soft. Dock Network connectivity

QUIET Resource availability

Disnix Failures, connections, disconnections

RAC

CoRDAGe Resource availability and quality

Wrangler Cloud dynamics

DVM Designer-defined events

QARI QoS, resilience to node failure and mobility

Kalimucho Connections, disconnections, QoS

StarCCM Context

Codewan Disconnections, network fragmentation

Cloudlet Mobility (manually)
DeployWare

ADME Host failures and disturbances

TUNe Grid dynamics

SmartFrog Failures, resource availability

ORYA

Table 6

Covered activities.

Rel. Inst. Act. Upd. Reorg. Redist. Deact. Deinst. Ret.

FROGi
√ √ √ √ √ √

R-OSGi
√ √ √ √ √ √

Soft. Dock
√ √ √ √ √ √ √ √

QUIET
√ √ √

Disnix
√ √ √ √ √ √ √ √

RAC
√ √ √ √

CoRDAGe
√ √ √ √ √ √

Wrangler
√ √ √

DVM
√ √ √

QARI
√ √

Kalimucho
√ √ √ √ √

StarCCM
√

Codewan
√ √

Cloudlet
√ √ √ √

DeployWare
√ √ √ √

ADME
√ √ √ √

TUNe
√ √ √

SmartFrog
√ √ √ √ √ √

ORYA
√ √

lation, and retire. Installation and activation (and, to a certain extent,

deactivation and deinstallation) are the most commonly handled.

The issues related to the dynamics are addressed in different

ways or not at all. Several solutions target the dynamic modifica-

tion of the deployment plan (Disnix, Kalimucho, StarCCM, ADME), in

some cases by means of resource allocation techniques (CoRDAGe,

Wrangler). Other solutions target reorganization or transfer of com-

putations (RAC, Cloudlet, TUNe, SmartFrog), or component delivery

(Codewan).

Several solutions focus on the distributed architecture of the

system that supports the deployment. They target decentralization

(Software Dock, QUIET, Wrangler, Kalimucho, Codewan), context-

awareness (StarCCM), self-adaptation and autonomy (Disnix, ADME).

Table 7 indicates how the deployment process is controlled and

shows that some solutions are fully decentralized (Software Dock,

QUIET, DVM, Kalimucho, Codewan, DeployWare, TUNe, SmartFrog).

Note that ORYA is dedicated to the expression of deployment strate-

gies in order to support the specification of the deployment process.

In practice, the systems in charge of the deployment rely on boot-

straps. Most of the solutions assume the availability of the bootstrap

on the machines without considering this question precisely. Table 8

shows the nature of the bootstrap. Many solutions rely on a specific

one (that is to say, a bootstrap developed on purpose). Some rely



Table 7

Control.

Centralized Decentralized

FROGi n/a n/a
R-OSGi n/a n/a
Soft. Dock

√

QUIET
√

Disnix
√

RAC
√

(partially)

CoRDAGe
√

Wrangler
√

(partially)

DVM
√

QARI
√

Kalimucho
√

StarCCM
√

Codewan
√

Cloudlet n/a n/a
DeployWare

√

ADME
√

(partially)

TUNe
√

SmartFrog
√

ORYA
√

Table 8

Nature of the bootstrap.

Specific Non specific Standard

FROGi FrogiBundleActivator OSGi platform

R-OSGi OSGi platform

Soft. Dock Field dock Voyager platform

QUIET JADE platform

Disnix DisNixService

RAC Virtualization platform

CoRDAGe Grid middleware,

ADAGE

Wrangler Virtualization platform

DVM DVM basic library

QARI QARI/LooCI platform WSN deployment tools

Kalimucho Kalimucho platform

StarCCM StarCCMmiddleware

Codewan Codewan platform

Cloudlet baseVM and KCM

DeployWare DeployWare runtime

ADME Cingal infrastructure

TUNe TUNe runtime, DIET

SmartFrog Java, ftp, ssh

ORYA n/a n/a n/a

on non-specific tools or platforms, but few of them (RAC, Wrangler,

SmartFrog) are really technology-independent.

5.1.4. Synthesis in relation to design and expressiveness
Section 2.1 has presented different roles played by various stake-

holders. Here, the focus is placed on expressiveness and on the level

of abstraction that designers can benefit from,when they are express-

ing the deployment properties. Indeed, providing abstraction and ex-

pressiveness to deployment design is a major challenge, especially

concerning the plan and the domain.

Table 9 indicates if the designer has the possibility to only ex-

press a set of properties (constraints, choices, or configuration prop-

erties fromwhich the plan can be computed or dynamically adapted)

without being forced to make the plan explicit. In practice, the ex-

pression of the deployment properties relies on XML (QARI, Wran-

gler) or on domain-specific languages (ADME), and in some cases

on the rule-based programming style (StarCCM). Several solutions

(Disnix, CoRDAGe, DeployWare, TUNe) propose the use of mod-

els and transformation of models. Models bring a high level of

abstraction to designers, and facilitate role-oriented separation of

concerns.

Table 10 shows that the impact of the solutions is very limited

regarding domain transparency, that is to say that few solutions allow

Table 9

Nature of the specification.

Property-based

FROGi

R-OSGi

Soft. Dock

QUIET

Disnix
√

RAC

CoRDAGe
√

Wrangler
√

DVM

QARI
√

Kalimucho
√

StarCCM
√

Codewan

Cloudlet

DeployWare
√

ADME
√

TUNe
√

SmartFrog
√

ORYA

Table 10

Domain transparency.

Domain transparency

FROGi

R-OSGi

Soft. Dock
√

QUIET

Disnix
√

RAC
√

(cloud)

CoRDAGe

Wrangler
√

(partial)

DVM

QARI
√

Kalimucho
√

StarCCM

Codewan
√

Cloudlet

DeployWare

ADME

TUNe

SmartFrog
√

ORYA

deployment specification without explicit designation of the devices.

If so, the solution supports dynamic domain discovery and/or late

binding between components and devices.

Table 11 points out the required skills of the deployment man-

agers. Few technologies are usable by inexperienced people, andmost

of them are used by specialists, which play the roles of deployment

designer, deployment operator, and system administrator (assuming

that they control the resources). Thus, specifying deployment usually

remains out of reach for ordinary users.

5.2. Conclusion

Modern software systems are increasingly large-scale, distributed,

ubiquitous, mobile, and heterogeneous. Dynamics and instability be-

come usual due to mobility of devices and users, to openness of both

the deployed software system and the network of hosts, and more

generally to dynamic variations of the availability and the quality of

resources and services. Besides, these systems may involve a mass of

devices, users, or software versions, with their heterogeneity. In such

a context, deploying software systems is a complex and challeng-

ing task. While traditional deployment most often requires human

intervention, deployment of modern distributed software systems

demands an increasing level of automation and autonomy.



Table 11

Deployment designer skills.

Required expertise

FROGi Fractal ADL, OSGi

R-OSGi OSGi

Soft. Dock Deployment, DSD language

QUIET Deployment

Disnix System administration, modeling

RAC VA production and configuration

CoRDAGe Low

Wrangler Deployment, virtualization, administration

DVM Deployment, low-level features

QARI QARI, LooCI (low)

Kalimucho Kalimucho system

StarCCM Deployment, adaptation

Codewan Release

Cloudlet Low

DeployWare In accordance with the designer’s skills
ADME Application management and deployment

TUNe Deployment, design of deployment models

SmartFrog Configuration, component lifecycle management

ORYA Deployment activities and strategies

Besides, as complexity grows, deployment demands appropriate

methods, processes and tools which provide both expressiveness and

abstraction in design, and control and automation in the realiza-

tion. Themain requirements are high-level expression of deployment

properties, plan generation from the specification, automatic achieve-

ment of the deployment plan, plan adaptation at runtime, continu-

ous and incremental deployment, decentralized and context-aware

management. In our opinion, answering all of the requirements and

enabling automatic and autonomic deployment is becoming a major

issue in the domain of software engineering and management. The

state of the art provides various solutions but the problem remains

widely open.

It is worth to notice that several relevant questions have little

been addressed fromnow.One of themconcerns security and privacy.

Security and privacy might provide additional deployment require-

ments that actual solution do not take into account. The exception

is SmartFrog, which proposes a security model based on security do-

mains. Besides, the solutions generally disregard the problem of mul-

tiple administration domains and most often assume that the system

in charge of the deployment has the permission to operate on the

machines.

Designation and identification of devices or sub-domains is an-

other challenging issue. For example, in wide-area domains, it could

be useful to consider proximity in order to specify deployment on

the devices of a particular sub-network, of a given geographical

area, or owned by the members of a social network. This ques-

tion is left open even if Kalimucho, Codewan or Cloudlet ulti-

mately take opportunistically advantage of spatial proximity between

devices.

Concerning the achievement of deployment, a main point is reli-

ability, and more generally deployment based on quality attributes

(non-functional properties). These issues are addressed by Disnix,

QARI, DeployWare and SmartFrog, and by ADME (optimization of the

plan). Efficiency is addressed by few works: Software Dock, QUIET,

Wrangler, DVM, QARI, and TUNe. Quality of the deployment also re-

lies on context-awareness; this question is addressed by StarCCM,

ADME and TUNe.

At last, another set of questions concerns the impact of deploy-

ment on the running application (Kalimucho supports the continuity

of services), flexibility of the deployment process and scheduling of

deployment operations. On the last point, the impact of the state

of the art is almost non-existent: only ORYA allows the definition

of deployment strategies and operation ordering.

In our opinion, these questions are among the main ones that

should be addressed in the next future.
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