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Pi-Invariant Unscented Kalman Filter for Sensor Fusion

Jean-Philippe Condomines1, Cédric Seren2 and Gautier Hattenberger3

Abstract— A novel approach based on Unscented Kalman
Filter (UKF) is proposed for nonlinear state estimation. The
Invariant UKF, named π-IUKF, is a recently introduced al-
gorithm dedicated to nonlinear systems possessing symmetries
as illustrated by the quaternion-based mini Remotely Piloted
Aircraft System (RPAS) kinematics modeling considered in
this paper. Within an invariant framework, this algorithm
suggests a systematic approach to determine all the symmetry-
preserving terms which correct accordingly the nonlinear state-
space representation used for prediction, without requiring
any linearization. Thus, based on both invariant filters, for
which Lie groups have been identified and UKF theoretical
principles, the developed π-IUKF has been previously and
successfully applied to the mini-RPAS attitude estimation prob-
lem, highlighting remarkable invariant properties. We propose
in this paper to extend the theoretical background and the
applicability of our proposed π-IUKF observer to the case of a
mini-RPAS equipped with an aided Inertial Navigation System
(INS) which leads to augment the nonlinear state space repre-
sentation with both velocity and position differential equations.
All the measurements are provided on board by a set of low-
cost and low-performance sensors (accelerometers, gyrometers,
magnetometers, barometer and even Global Positioning System
(GPS)). Our designed π-IUKF estimation algorithm is described
in this paper and its performances are evaluated by exploiting
successfully real flight test data. Indeed, the whole approach
has been implemented onboard using a data logger based on
the well-known Paparazzi system. The results show promising
perspectives and demonstrate that nonlinear state estimation
converges on a much bigger set of trajectories than for more
traditional approaches.

I. INTRODUCTION

The necessary resort to multiple miniaturized low-cost
and low-performance sensors integrated into mini-RPAS,
which are obviously subjected to hard space requirements
or electrical power consumption constraints, has led to an
important interest to design nonlinear observers for data
fusion, unmeasured systems state estimation and/or flight
path reconstruction. Exploiting the capabilities of nonlinear
observers allows, by generating consolidated signals, to ex-
tend the way mini-RPAS can be controlled while enhancing
their intrinsic flight handling qualities.That is why numerous
recent research works related to RPAS certification and
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intergration into civil airspace deal with the interest of highly
robust estimation algorithm. Therefore, the development of
reliable and performant aided-INS for many nonlinear dy-
namic systems is an important research topic and a major
concern in the aerospace engineering community, e.g.[1].

Among the fundamental methods the Extended Kalman
Filter (EKF), and its variant the Multiplicative EKF (MEKF)
([2], [3]), is the most widely used signal processing method-
ology for RPAS-type systems. Its principle relies firstly on
the well known Kalman Filtering (KF) operations applied to
a tangent linear kinematic modeling of the UAV and secondly
on multiplicative correction terms which preserve the unit
norm of the estimated quaternion. The MEKF recovers the
poor convergence property of the standard KF in the linear
case only at equilibrium points because the resulting process
and observation linear matrices depend on the trajectory.
Divergence issues may happen in many practical cases. This
has led to the development of other filters. Introduced in [4],
the Unscented KF (UKF), also known as sigma-point filter,
is an efficient linearization free estimation algorithm which
determines approximate solutions to discrete or continuous-
time nonlinear optimal filtering problems. It has received
considerable attention until recent years about its conver-
gence and stability ([5], [6]), its potential applications ([7],
[8]), and has been shown that it outperforms the EKF in
many cases [9]. More recently, several research works on
nonlinear invariant observers have been led and provide a
geometrical-based constructive method for designing filters
able to estimate dynamical systems state vector while pre-
serving their symmetries [10]. Building upon both invariant
frame and output-error, this peculiar kind of observer allows
to formulate a state estimation error whose dynamics has
a remarkable property: it does not depend on the trajectory
followed. Followingly, it can be then employed to determine
a set of correction gains. Nonetheless, such an approach
can be very tedious and non-systematic for complex dy-
namical systems. That is why this theory has been coupled
recently with a standard EKF-based technique to calculate
the multiplicative weighting correction factors ([11], [12]).
Unfortunately, the resulting Invariant EKF (IEKF) is based
on second-order approximations for the invariant estimation
error (cf [14]). To overcome this issue, an approach, primary
proposed in [15] and named π-IUKF, also dedicated to non-
linear systems possessing symmetries, has been developed
and successfully applied to an attitude estimation problem.
The results have highlighted that the π-IUKF had the same
estimation invariance properties than the ones obtained with
the IEKF. Guided by both invariant filter theory and UKF
principles, this algorithm suggests a systematic approach



to determine all the symmetry-preserving correction terms,
associated with a nonlinear state-space representation used
for prediction, without requiring any linearization of the
differential equations.

In the sequel, §II presents the basics of the modeling
adopted to tackle the nonlinear estimation problem of deter-
mining the state vector components of a mini-RPAS fitted out
with an aided INS. §III presents the theoretical background
of our proposed π-IUKF estimation algorithm. Finally, §IV
gathers all the results obtained after solving the aided INS
estimation problem in real conditions.

II. DYNAMICAL SYSTEM MODELING

The navigation quality is limited by inertial sensors perfor-
mance specifies by the size, power and cost constraints of the
RPAS. To recover navigation accuracy using low-cost aided-
INS, it is necessary to use, if possible, additional instruments
(e.g. magnetometers, barometer, which are used to increase
the heading and position accuracies) and/or nonlinear esti-
mation algorithms to improve the flight handling qualities of
the aerial vehicle. The nonlinear state estimation makes use
of 3 triaxial sensors plus both GPS and barometric sensor
units which deliver a total of 16 scalar measurement signals:
• 3 of them are associated with 3 gyroscopes which

provide a measurement of the instantaneous angu-
lar velocity vector denoted by ωm ∈ R3 s.t. ωm =
[ωmx, ωmy, ωmz]

T ;
• 3 accelerometers give a measurement of the specific ac-

celeration denoted by am ∈R3 s.t. am = [amx, amy, amz]
T ;

• 3 magnetometers allow to obtain a local measurement
of Earth’s magnetic field, which is known constant1 and
expressed in the body-fixed frame s.t. yB = q−1 ∗B ∗ q
where B = [Bx, By, Bz]

T ;
• 1 GPS unit measures both position and velocity vectors

denoted by yX = X ∈ R3 and yV = V ∈ R3 s.t. vectors
X = [Xx,Xy,Xz]

T and V = [Vx,Vy,Vz]
T are used in the

observation equations;
• 1 barometric sensor provides a scalar measurement of

the altitude s.t. yh = Xz, which is used as a mean to
improve the vertical position accuracy.

All the sensors embedded are low-cost ones and so have
imperfections. The major error sources in the navigation
system are due to: - all the disturbances (noises) that affect all
the instruments; - the potential incorrect navigation system
initialization (e.g. on magnetometers or barometric sensor);
- and the inadequacy between the real local Earth’s gravity
value and the one used for computation. The largest error
is usually a bias instability (expressed respectively in deg/hr
for gyros and µg for the accelerometers). All these measure-
ments are obviously corrupted by additive noises for which it
appears reasonable to assimilate their stochastic properties to
the ones of gaussian processes. Their covariances have been

1The magnetic field can be determined from a world magnetic model
such as B is equal to [0.5156 0.0570 0.8549] at the local flight coordinates
43.617-43◦-37′ (N) and 1.450-1◦-27′ (E).

identified in [17] from logged sensor data using the Allan
variance method [16]. Assuming a flat non-rotating Earth,
the flying rigid body motion of our considered mini-RPAS
can be mathematically described s.t:

Σ


q̇ =

1
2

q∗ω

V̇ = A+q∗a∗q−1

Ẋ =V

In the first differential equation, symbol ∗ corresponds to
the quaternion product and ω represents the angular velocity
vector. In the second one, A is the constant gravity vector
expressed in the North-East-Down coordinates system, i.e.
A = ge3 and a is the specific acceleration vector2. It is
possible to choose how the previously imperfections can be
modeled since some degrees of freedom exist in the model-
ing. A first-order observability analysis − which can be led
analytically − shows that 10 additional unknown constants
can be estimated without introducing inobservability. Thus,
an additive constant bias vector ωb is basically considered
on the angular velocity vector measurement ωm. Then, a
constant positive scaling factor as and another scalar bias hb
are introduced in the estimation scheme. The latter quantity
hb will be used to correct the potential wrong altitude
in windy conditions so that the attitude delivered will be
hybridized with the GPS. All these sensor imperfections are
modeled as gaussian random walks which can be physically
interpreted as slowly varying parameters. The Σ modeling
now becomes:

Ms



q̇ =
1
2

q∗ (ωm−ωb)

V̇ = A+
1
as

q∗am ∗q−1 (process)

Ẋ =V
ω̇b = 0
ȧs = 0
ḣb = 0

yV

yX

yh

yB

=


V
X

Xz−hb

q−1 ∗B∗q

 (measurement)

where ωm and am can be seen as imperfect and noisy
but known measured inputs and [V,X ,B]T as an available
imperfect and noisy measured output vector. The nonlin-
ear state space representation corresponding to Ms can
be described in a compact form such as: ẋ = f (x,u) and
y= h(x,u) where: x= [qT ,V T ,XT ,ωT

b ,as,hb]
T ,u= [ωT

m ,a
T
m]

T

and y= [yT
V ,y

T
X ,yh,yT

B ]
T are the state, input and output vectors

respectively.

2Remark that instantaneous attitude of the flying mini-UAV can be
generalized and deduced using the aforementioned standard quaternionial
form which provides a global parameterization and avoid the mathematical
singularities inherent to Euler angles.



III. PI-INVARIANT UNSCENTED KALMAN FILTER

A. π-IUKF algorithm

Inspired by the theory of continuous-time symmetry pre-
serving observer [10] a novel and original UKF-based ap-
proach has been developed in [15] to adress the approx-
imation issue of the invariant EKF without requiring any
linearization of the dynamical systems equations. The idea
is to exploit the UKF principles within a continuous-time
invariant framework to the system considered in this paper.
This section presents briefly the main theoretical principles
of some research works dealing with dynamical system sym-
metries, invariant observer and π-IUKF algorithm. Without
considering any system description, the theory of invariant
observer is formulated using both differential geometry and
transformation groups theory presented as following.

Definition 1: A Lie group action (θg)g∈G on a manifold
M, with identity θe (where e denotes the neutral element of
G), s.t. (g,ξ ) ∈G×M 7→ φg(ξ ) ∈M, is a differentiable map
which verifies:
• θe(ξ ) = ξ for all ξ ∈M;
• θg2 ◦θg1(ξ ) = θg2g1(ξ ) for all g1,g2,∈ G.

From definition 1, it results that (θg)g∈G is a diffeomorphism.
In the following, we will consider fully-dimension Lie group
actions only s.t. dim(G)=dim(M). In that case, we can
identify the group G to the manifold M.

Definition 2: In the case of fully-dimension Lie group
actions, we can assimilate the application θg to a left or right
multiplication s.t.:

θg(ξ ) = gξ = Lg(ξ ) or θg(ξ ) = ξ g−1 = Rg−1(ξ )
By analogy, considering the state space representation Ms,
where the state (resp. input)(resp. output) vector belongs to
an open set X ⊂Rn (resp. U ⊂Rm) (resp. Y ⊂Rp, p≤ n),
we defined a set of right Lie group transformations acting
locally on X ×U ×Y s.t.:

G× (X ×U ×Y )→ (X ×U ×Y )

(g,x,u,y) 7→ (ϕg(x),ψg(u),ρg(y)) = (X ,U,Y )

where (ϕg,ψg,ρg) are 3 local diffeomorphisms parametrized
by g∈G where the Lie group G verifies dim(G)=dim(X )=n.
The above coordinates transformations must be defined such
that their respective actions on state, input and output
variables leave the whole system dynamics unchanged i.e.
Ẋ = f (X ,U) and Y = h(X ,U).

Definition 3: Any smooth state/output dynamical sys-
tem ẋ = f (x,u) will be said G-invariant if ∃(ϕg,ψg)g∈G,
∀(g,x,u) ∈ G× (X ×U ):

f (ϕg(x),ψg(u)) = Dϕg(x) · f (x,u)

and G-equivariant if ∃(ρg)g∈G acting on Y , ∀(g,x,u) ∈G×
(X ×U ):

h(ϕg(x),ψg(u)) = ρg(h(x,u)).

These last definitions mean that all state and output equations
remain explicitly identical.

Based on the Cartan moving frame method, a complete set
of n-invariants in G can be constructed by considering the
group action ψg only.

Definition 4: For any two points x,c∈G, there exists g =
γ(x) ∈ G such that Lg(x) = gx = c or Rg−1(x) = xg−1 = c.
The existence of the moving frame γ(x) is guaranteed. In
particular, choosing c = e we deduce γ(x) = x−1.

Definition 5: Consider the change of variable X = ϕg(x),
U = ψg(u) and Y = ρg(y), a symmetry-preserving observer
reads:

˙̂x = f (x̂,u)+
n

∑
i=1

(Ki(E (x̂,u,y), I(x̂,u)) ·E (x̂,u,y))wi(x̂) (1)

where the gain matrix K depends on the system’s trajectory
only through a known complete set of invariant I(x̂,u) =
ψx̂−1(u) and on the invariant output error E := ρx̂−1(h(x̂,u))−
ρx̂−1(y). wi(x̂) :=

[
Dϕγ(x̂)(x̂)

]−1 ·∂/∂xi is an invariant vector
which projects the set of invariant correction terms on each
component of f (x̂,u) (i.e. the tangent state space). (∂/∂xi)
is the i-th canonical vector field of Rn.
The convergence properties of (1) depend on the choice of K
and in the way the state estimation error is defined. Instead of
considering the usual ”linear” state estimation error x̂−x, the
invariant observer theory defines an invariant state estimation
error denoted η(x, x̂) = x−1x̂ which has invariant properties
(as explained in §III-B).

Definition 6: The asymptotic convergence of x̂ to x is
equivalent to the stability of the invariant state error dynamic
which takes the general form:

η̇ = ϒ(η , I(x̂,u)) (2)

where ϒ is a smooth function. It appears that η depends on
the system’s trajectory only through the invariant I(x̂,u).
Applied to Ms, a direct and analytical observer can be built
thanks to (2). Such an approach can be very tedious and
non-systematic for more complex dynamical systems than
the ones represented by a fully kinematic model. That’s why
recently, a more general EKF based method dedicated to
gains calculation has been developed in [11], [14], [13] and
exploits a re-linearization of the invariant state estimation er-
ror dynamics. In that way, the IEKF makes use of a “second-
order” approximation of (2). Once again, this technique can
be very complex to implement due to this re-linearization.

To get free from this tricky re-linearization, it is possible to
derive an UKF-based version for the invariant observer given
in Eq.(1). To come up with such a solution, our proposed π-
IUKF algorithm requires to integrate a compatibility condi-
tion which ensures that the measurement prediction update
step (abusively expressed as Ẑ = h(χ,u) where χ gathers
a fixed number of deterministically chosen sigma-points)
is performed without undermining both invariant geometric
and signal processing theories. Indeed, when using an UKF-
like technique for gains calculation, the measurement update
equation must be modified s.t. the new predicted output
vector reads: ẑπ = π(h(χ,u)). The application π projects
the invariant output vector ργ(x)(h(χ,u)) = h(e, I(χ,u)) as-
sociated with h(χ,u) on the local invariant frame defined



by ωi(χ) for sigma-point χ . In order words, the sigma-
points of the standard UKF must be projected through the
invariant transformation of the observation function on the
local invariant frame at χ .

Proposition 1: If such an application can be designed
analytically then the gain matrix of Eq.(1) can be calculated
on the basis of an UKF technique by sampling the stochastic
distributions of the state and output.
Considering the whole state space representation
of Ms and the Lie-group G = H1 × R11 3(
q0 V0 X0 ω0 a0 h0

)
= g, this compatibility

condition π on the invariant output is the following
transformation:

∑
3
i=1(V̂ ∗ q̂)ei

∑
3
i=1(X̂ ∗ q̂)ei

< X̂ ∗ q̂,e3 >−ĥb

∑
3
i=1(B∗ q̂)ei

= π(ργ(x̂)(h(x̂,u)))

B. Motivating example

In this section, we illustrate and prove that the proposed
algorithm retains the invariance of the problem, and that the
error’s evolution is independent of the system’s trajectory,
inheriting the properties of the deterministic continuous-time
case [10]. Thus, we consider the non-aided AHRS case where
no velocity and position measurements are available in Ms
(no GPS or no Pitot sensors). This example has been also
tackled in more details in [15]. To keep the whole non-
linear state representation observable given these available
informations, the assumption that the linear acceleration V̇
remains small is made, i.e. V̇ = 0. As a result, the specific
acceleration vector, expressed in the body-fixed frame, can be
approximated by a=−yA =−q−1 ∗A∗q where A is the local
Earth’s gravity vector. Moreover, a constant positive scaling
factor bs is introduced and will be used to adjust and preserve
the unit norm on vector yB. Based on these explanations,
the observer considered in the π-IUKF algorithm takes the
following form:

OM−
s



˙̂q =
1
2

q̂∗ (ωm− ω̂b)+
3

∑
i=1

(K̄q
Ai ·EA + K̄q

Bi ·EB)ei ∗ q̂

˙̂ωb =
3

∑
i=1

q̂−1 ∗ (K̄ωb
Ai ·EA + K̄ωb

Bi ·EB)∗ q̂

˙̂as = âs(K̄
as
Ai ·EA + K̄as

Bi ·EB)

˙̂bs = b̂s(K̄
bs
Ai ·EA + K̄bs

Bi ·EB)

where the invariant output error E is given by :

E =

(
A− â−1

s q̂∗ yA ∗ q̂−1

B− b̂−1
s q̂∗ yB ∗ q̂−1

)
=

(
EA
EB

)
and the invariant compatibility condition π reads:(

as ·∑3
i=1(A∗ q̂)ei

bs ·∑3
i=1(B∗ q̂)ei

)
= π(ργ(x̂)(h(x̂,u)))

Thereby, we consider the invariant state estimation error s.t.:
η

β

α

γ

=


q̂∗q−1

q̂∗ (ŵb−wb)∗ q̂−1

as/âs

bs/b̂s


with the invariant state error dynamic ϑ given by:

η̇ = (
3

∑
i=1

(K̄q
Ai ·EA + K̄q

Bi ·EB)ei)∗η− 1
2

η ∗β

β̇ = (η−1 ∗ I ∗η)×β +η−1 ∗
3

∑
i=1

(K̄ωb
Ai ·EA + K̄ωb

Bi ·EB)∗η

α̇ =−α(K̄as
Ai ·EA + K̄as

Bi ·EB)

γ̇ =−γ(K̄bs
Ai ·EA + K̄bs

Bi ·EB)

The main benefit of the invariant property concerns state
estimation error dynamics ϑ . It depends only on the invariant
state error (η ,β ,α,γ) and on the “free” but known complete
set of invariants I(x̂,u) and not on the trajectory followed
by the system which is a major difference with almost
nonlinear filters, such as the standard EKF. As a result, for
a system following a (nearly) permanent trajectory defined
by I(x̂,u) = c, the gain matrix K is proved to converge
to fixed and permanent values. In that way, a remarkable
property can be pointed out for the non-aided AHRS. Under
certain slightly decoupling conditions, we can establish an
autonomous invariant state error dynamics, i.e. ϑ̇ = ϒ(ϑ ,c).
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Fig. 1. Simulation: attitude estimation results on the bank angle φ and
coefficients of the gain matrix K(t): UKF vs. PI-IUKF

We now illustrate the previous explanations by applying
the developed π-IUKF algorithm to simulated data used in



[15]. Among the usual Euler estimated attitude angles (φ ,
θ ,ψ) deduced from the quaternion, only the back angle φ is
plotted in Fig. 1. φ(t) follows a trajectory denoted Tφ . The
π-IUKF correction coefficients become as expected constants
after t < 5sec whereas those of the UKF have an irregular
evolution due to an estimation state error far away from its
corresponding equilibrium point. After t > 75sec, Tφ tends
to become a permanent trajectory as well as the UKF gain
constant coefficients.

IV. THE AIDED INERTIAL NAVIGATION
PROBLEM

We now apply the previous developed theory in §III-A
to Ms in order to exploit the capabilities of the π-IUKF
algorithm. First of all, we look for geometric transformations
that leave the whole system identical. Considering the Lie-
group G =H1×R11 (where H1 is the unit quaternions man-
ifold) acting on the whole state space of Ms, the following
variable transformations confer to our considered dynamical
system the G-invariant and G-equivariant properties s.t. ∀g=
(qT

0 V T
0 XT

0 ωT
0 a0 h0) ∈ G:

ϕx0

x =


q
V
X
ωb
as
hb



=


q∗q0

V +V0
X +X0

q−1
0 ∗ωb ∗q0 +ω0

as ·a0
hb +h0


ψx0

(
u =

(
ωm
am

))
=

(
q−1

0 ∗ωm ∗q0 +ω0
a0 ·q−1

0 ∗am ∗q0

)

ρx0

y =


yV
yX
yh
yB


=


yV +V0
yX +X0

yh−h0+< X0,e3 >

q−1
0 ∗ yB ∗q0


These latter are equivalent to time-constant rotations and
translations in both earth- and body-fixed frames. Then, if
we consider besides the particular case where : g = x−1 =
(q−1 −V −X (−q∗ωb ∗q−1) a−1

s −hb+< X ,e3 >)T , we
obtain:

ϕx−1(x) =


q∗q−1

V −V
X−X

q∗ωb ∗q−1−q∗ωb ∗q−1

as ·a−1
s

hb+< X ,e3 >−(hb+< X ,e3 >)

=


1
0
0
0
1
0

= e

which is equal to the neutral element e for the local trans-
formation ϕg. Followingly, considering the canonical basis
of R3, (ei)i∈[[1;3 ]], the vectors which define the invariant
reference frame (also called invariant natural basis of the
tangent state space) are given by the 14 elements which

define w j(q̂,V̂ , X̂ , ω̂b, âs, ĥb) with j ∈ [[1;14 ]] s.t.:

ei ∗q
0
0
0
0

0


i∈[[1;3 ]]

,



0
ei
0
0
0

0


i∈[[1;3 ]]

,



0
0
ei
0
0

0


i∈[[1;3 ]]

,



0
0
0

q−1 ∗ ei ∗q
0

0


i∈[[1;3 ]]

,



0
0
0
0
as
0


,



0
0
0
0
0
hb


Combining all these results, Eq.(1) can be detailed s.t.:

OMs



˙̂q =
1
2

q̂∗ (ωm− ω̂b) +
3

∑
i=1

(K̄q
ViEV + K̄q

BiEB)ei ∗ q̂

˙̂V =
1
âs

q̂∗am ∗ q̂−1 +A+
3

∑
i=1

(
3

∑
j=1

(K̄V
Vi j

EV j)+ K̄V
hiEh)ei

˙̂X = V̂ +
3

∑
i=1

(
3

∑
i=1

(K̄X
NxEX )+ K̄X

hiEh)ei

˙̂ωb = 0+ q̂−1 ∗ (
3

∑
i=1

(K̄ωb
Vi EV + K̄ωb

Bi EB)ei)∗ q̂

˙̂as = 0+ âs(
3

∑
i=1

(K̄as
Vi EV + K̄as

h Eh))

˙̂hb = 0+ K̄h
h Eh

where the invariant output error E is given by :
EV
EX
EB
Eh

=


V̂ − yv
X̂− yx

< X̂ ,e3 >−ĥb− yh
B− q̂∗ yB ∗ q̂−1


A. Ground experiment

We now illustrate the performances reached by the π-
IUKF algorithm on the basis of data provided by onboard
logged sensor data integrated into the mini-RPAS. All mea-
surements are obviously corrupted by additive measurement
noises whose covariance matrices are given in [17]. In order
to erase the significant vibration phenomena observed on the
recorded data during the flight we chose to process these
ones with low pass filters applied to both accelerometers
and gyros. The observer is numerically implemented using
a fourth Runge-Kutta order integration method sampled at
125hz (sampling frequency of the IMU). Thus, the estimated
dynamics f (x̂,u) is integrated at the 125Hz rate to obtain
rough predictions of x, while the full observer equations
are computed at a lower frequency as soon as a GPS
measurement is available (nominally 5Hz).

B. Flight experiment

Due to a lack of space, we briefly compare the flight
trajectory of both π-IUKF and UKF algorithms only, using
a Differential Global Positioning System (DGPS) unit as
the reference. The DGPS receiver, mounted on the nose of
the mini-RPAS, runs with its own KF, which provides a
centimeter-level precision thanks to a carrier phase difference
between several DGPS units. We can observe on Fig. 2
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Fig. 2. Experiment: estimated positions UKF vs. π-IUKF
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Fig. 3. Experiment: estimated velocities UKF vs. π-IUKF

that the estimation errors on (X ,Y ) positions between both
algorithms and DGPS are small in spite of strong acceleration
phases and strong speeds (Fig. 3) for which the GPS has
difficulty to correct the gravity model on OMs . On Fig. 2,
the mini-RPAS takes off (in direction of X > 0, Y < 0) from
the landing pad, hovers making an hippodrome shape and
lands (in direction of X < 0, Y > 0). Performances between
both algorithms appear to be quite similar except for the
last turn before the landing where the π-IUKF provides
more accurate results. The main reason behind this position
estimation errors is the unmodeled effect of engine speed
changes on sensor noise (i.e. vibration).

V. CONCLUSIONS

This paper has reviewed the theoretical background and
the applicability of our proposed π-IUKF to the case of
a mini-RPAS equipped with low-cost sensors. In order to
address the linearization issue of the invariant IEKF, our
algorithm has proved to retain the invariance of the problem
and inherits the properties of the deterministic continuous-
time case. The hybridation of the standard SR-UKF with

the invariant observer theory represents a significant research
topic to improve the handling qualities of mini-RPAS. Fur-
thermore, the π-IUKF algorithm has been validated on the
basis of real data provided by onboard logged sensor data
integrated into a mini-RPAS. A brief comparison with con-
ventional UKF demonstrated that both invariant observer and
UKF methodologies is able to provide increased robustness,
making them appealing for a variety of practical applications.
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