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Abstract—The aim of this paper is to present an extensive 
neurophysiological study of the Air-Traffic-Controllers (ATCos) 
during en route ATC simulations. In other words, the purpose 
was to extract neurophysiological features suitable for evaluate 
the learning progress and for estimate in real-time the user’s 
workload level. In collaboration with ENAC (Toulouse, France), 
a task specific for the en-route ATCo has been developed and 
tested. The subjects have been asked to learn how to complete the 
task within a training period of a week and, in the second week, 
to execute it under different difficulty levels. During the 
experiments, the Electroencephalogram (EEG), the 
Electrocardiogram (ECG), the Electrooculogram (EOG), the 
behavioral data and the perception of the workload (NASA-TLX) 
have been collected. The results showed that the frontal theta 
power spectral density (PSD), the parietal alpha PSD, the heart 
rate (HR) and the eyeblinks rate (EBR) are reliable features by 
which evaluating the learning progress and the user’s workload. 
It has been demonstrated that it could be possible i) to quantify 
how well the subjects complete a task, and ii) to compare 
subject’s performances, in terms of cognitive resources. In 
addition, it has been presented i) a system able to significantly 
differentiate three workload levels, and ii) how the subjective 
features used for the workload evaluation remain stable over the 
time. 
 

Keywords-EEG; ECG; EOG; Cognitive Learning; Training 
Assessment; Workload; ATM; ATC. 

I.  INTRODUCTION 

Most research has focused on identifying characteristics of the 
air traffic picture that create task demand for ATCos (e.g., [1]-
[4]). Others argue that there is no simple linear relationship 
between task demand and workload (e.g., [5], [6]). Several 
current research groups agree with Sperandio’s [7] view that a 
relationship between task demand and workload can be better 
understood by considering how ATCos use strategies to 
manage their resources and regulate their workload [1], [8], 
[8]-[11]. Factors such as skills, training, experience, fatigue 

and other “stressors” all mediate the relationship between task 
demands, safety and performance of the ATCo. Hence, it is 
easy to understand how quantitative information about skills 
level and mental states could help to evaluate ATCos’ 
workload level and to decide if they might need more training 
before working into real environments. Several studies 
described the correlation of spectral power of the EEG bands 
with the complexity of the task that the subjects are 
performing [12]. In fact, an increase of 
electroencephalographic (EEG) power spectral density (PSD) 
especially over the frontal cortex in the theta band (4 - 7 Hz) 
and a EEG PSD decrease in the alpha band (8-12 Hz) over the 
parietal cortex have been observed when the required mental 
workload, the task’s complexity, the amount of information 
processing increase. Furthermore, it has been suggested that 
an increased Heart Rate (HR) could be related with an 
increased mental workload and engagement, while the 
eyeblinks duration and frequency are inversely correlated with 
the increase of the mental workload and attention [12]. The 
hypotheses of the study are that i) as the EEG theta PSD 
increases and the EEG alpha PSD decreases with these aspects 
of the task, at the end of the training period such variations 
should be lower than in the first session, therefore such trends 
could be taken as indexes of the correct acquisition of 
procedural skills, ii) the combined use of EEG features and 
HR can be used for the real-time evaluation of the operator’s 
workload level, in a real ATM scenario involving trained 
subjects by defining neurophysiological WL indexes, one 
derived by the EEG signal (WEEG), one by the ECG signal 
(WHR) and the other by the combination between them 
(WFusion). Such hypotheses have been tested on a group of 
subjects who succeeded in the 5-days-training-period and who 
were then asked to execute the experimental task under 
different difficulty levels in order to check the workload 
variations by analyzing their neurophysiological signals. 



II. METHODS 

A. Experimental subjects and ATM simulation task 

A group of six healthy volunteers has been selected in 
terms of age (21±4 years) and previous computer game skills. 
The subjects have been asked to learn to execute correctly an 
ATM task (LABY), that never did before, under easy (E), 
medium (M) and hard (H) conditions, randomly selected and 
proposed to them. The LABY microworld is a functional 
simulation of Air Traffic Control (ATC) that captures the 
underlying processes involved in electronic air traffic 
management with a simplified version of the operational 
human-machine interface. Microworlds are computer-based 
human-in-the-loop simulation environments that offer testing, 
behavioural/physiological measurement, and training 
capabilities, with the flexibility to build various scenarios [13], 
[14]. LABY is a dynamic environment whereby a controller 
must issue directional commands to guide aircraft along a 
predetermined route, whilst avoiding potential conflicts and 
dealing concurrently with other incoming information. The 
LABY microworld is based upon the main task of guiding N 
plane(s) around a predetermined route, indicated by a green 
path (Fig. 1). Participants must input numerical values such as 
heading, flight level, speed, etc., in order to direct flight around 
the trajectory and to avoid any conflicts or obstacles which 
may occur during the flight-route. Penalties are applied if the 
aircrafts deviate off the route or if other constraints are not met. 
The difficulty of the task can be altered according to how many 
aircrafts the participant have to control, the number and type of 
clearances required over the time and the number/trajectory of 
other interfering flights. Subjects have been trained daily for 5 
days (SESSIONS T1-T5) and their neurophysiological signals 
have been recorded in the first (T1), in the third (T3) and in the 
fifth (T5) session, while the behavioral and performance data 
have been collected every day. After the training period, the 
subjects were asked to execute the LABY conditions, in a 
random order of difficulties, in two consecutive days and after 
a week since the last experimental session. 

 

Figure 1. The LABY is a dynamic environment whereby an ATC must issue 
directional commands to guide N airplane(s) around a predetermined route, 
indicated by a green path, in order to avoid any conflicts or obstacles which 
may occur during the flight-route. 

In this phase of the study protocol, the neuro-physiological 
signals have been collected in every session, and at the end of 
each experimental condition the subjects filled the NASA-
TLX [ 15] questionnaire for the evaluation of the perceived 
workload of the proposed task. 

B. Acquisition of the brain activity and of the 
physiological signals 

The Electroencephalogram (EEG) and physiological 
signals, including vertical electrooculogram (EOG) and 
electrocardiogram (ECG), have been recorded by the digital 
monitoring BEmicro system (EBNeuro system). The sixteen 
EEG channels (FPz, F3, Fz, F4, AF3, AF4, C3, Cz, C4, P3, Pz, 
P4, POz, O1, Oz and O2), the ECG and the EOG channels 
have been collected simultaneously with a sampling frequency 
of 256 (Hz). All the EEG electrodes have been referenced to 
both earlobes, and the impedances of the electrodes were kept 
below 10 (kΩ). The bipolar electrodes for the heart activity 
have been placed on the Erb’s point, while the bipolar 
electrodes for the EOG have been positioned vertically on the 
left eye. 

C. EEG analysis 

The acquired EEG signals have been digitally band-pass 
filtered by a 4th order Butterworth filter (low-pass filter cut-off 
frequency: 30 (Hz), high-pass filter cut-off frequency: 1 (Hz)) 
and then segmented in epochs of 2 seconds, 0.125 seconds – 
overlapped. The EOG signal has been used to remove eyes-
blink artefacts from the EEG data by using the Gratton and 
Coles method [16]. The EEG Power Spectral Density (PSD) 
has then been estimated by using the Fast Fourier Transform 
(FFT) in the EEG frequency bands defined for each subject by 
the estimation of the Individual Alpha Frequency (IAF) value 
[17]. PSDs in the theta and alpha bands have then been 
analyzed by estimating the Coefficient of Determination (r2), or 
r-square, between the considered experimental condition and 
the reference condition. As 0 < r2 < 1 by definition, a signed r2 
has been derived by multiplying the coefficient of 
determination by the sign of the slope of the corresponding 
linear model of the regression analysis. In this way, it has been 
possible to obtain information not only about if the two 
datasets were different, but also about the direction of such 
difference. A Stepwise Linear Discriminant Analysis [18] has 
been used to select the most relevant spectral features to 
discriminate the mental workload levels. In particular, the 
classifier was trained using data from one triplet (Easy, 
Medium and Hard) and the extracted parameters were tested 
over the other remaining triplets within the same session 
(INTRA cross-validations) or the other sessions (INTER cross 
validations). Several moving average samples (NMA) have 
been applied to the output of the classifiers (WEEG,): NMA(1) = 
0.125 (sec), NMA(8) = 1 (sec), NMA(16) = 2 (sec), NMA(32) = 4 
(sec), NMA(64) = 8 (sec). The moving average was expected to 
increase the stability and the accuracy of the index with the 
drawback of introducing delays in the workload estimation, 
inducing a decrease of the workload refresh rate.  



D. ECG and EOG analysis 

As well for the EEG, the ECG and the EOG signals have 
been band - pass filtered, respectively 1-8 (Hz) and 8-16 (Hz), 
and then segmented in epochs of 8 seconds, 0.125 seconds – 
overlapped. The HR and the EBR have been estimated by 
calculating the distance between consecutive peaks occurring 
in the ECG and in the EOG signals. In particular it have been 
used the R-peaks and the eyeblinks peaks and then they have 
been normalized by the z-score transformation with respect to 
the reference condition, in which the subjects watched the 
stimuli’s tasks without responding to them. As well for the 
EEG, also for the HR a workload index has been calculated by 
using a SWLDA at different output rates (WHR): NMA(1) = 
0.125 (sec), NMA(8) = 1 (sec), NMA(16) = 2 (sec), NMA(32) = 4 
(sec), NMA(64) = 8 (sec)). 

E. Fusion workload index 

A Fusion workload index has been calculated as a combination 
of the WEEG and the WHR based workload indexes. In 
particular, the two classifiers outputs have been synchronized, 
because their different delays (EEG: 2 (sec) overlapped of 125 
(msec); HR: 8 (sec) overlapped of 125 (msec), and then the 
new score (Fusion based workload index, WFusion) has been 
computed as a linear combination of the WEEG and the WHR 
score (Equation 1). 

 

WFusion = aWEEG + bWHR   (1) 

 
The coefficients a and b of the linear combination have been 
estimated for each subject by means of a simple LDA 
performed considering the EEG and the HR score distributions 
(WEEG and WHR) calculated over the cross validations for the 
three different difficulty levels (Figure 2). 
 
 

 
 
Figure 2. Fusion based workload index assessment (WFusion). The Fusion workload 
index (WFusion) has been calculated as a linear combination of the EEG and the HR 
based workload indices. The two classifiers outputs were synchronized before the 
computation of the fusion-based index. 
 

F. Classifier performance analysis 

The dataset deriving from the three sessions has been re - 
organized in 15 triplets (5 triplets per session) of runs (Easy, 
Medium and Hard). All the possible cross-validations have 

been considered, training the classifier with one triplet and 
testing the extracted features over the remaining triplets. The 
values of the Area Under Curve (AUC) of the Receiver 
Operating Characteristic [19] describing the accuracy of the 
system has been calculated from the output of the classifier 
(for each different refresh rate). 

G. Workload score distributions analyses 

The workload score distributions of the single subtasks has 
been calculated using the same approach of the AUC 
evaluation, thus by training the classifier with each triplet of 
runs within the sessions and testing the extracted features over 
all the other triplets. In addition, they have been differentiated 
two type of cross-validations, in order to investigate how well 
the classifier performs considering the training and the testing 
set within the same day (INTRA) and considering the training 
set from one day and the testing set from another of the other 
two days (INTER). For summarize, the INTRA type refers to 
the cross-validations performed considering as training and 
testing sessions the same day. Contrariwise, the INTER type 
refers to the cross-validations performed considering as 
training session one of the three days and as testing sessions 
those performed in the other two days. 

H. NASA-TLX analysis 

Subjective perceived workload evaluation was obtained by 
filling the standard NASA-TLX questionnaire for each subtask 
(Easy, Medium and Hard). The given subjective scores were 
used to estimate the perceived workload by considering six 
different factors: Mental Demand, Physical Demand, 
Temporal Demand, Frustration, Effort and Performance. The 
workload scores, ranged from 0 to 100, were obtained for each 
factor at the end of the questionnaire. The subjective scores of 
the perceived workload were compared with the workload 
indices estimated by the online system. 

I. Statistical analysis 

The results derived from the different methods have been then 
validated by the statistical analysis performed by using the 
STATISTICA software (Statsoft). For the Training Protocol, 
the one-way repeated measures ANOVA (Confidence Interval, 
CI = .95) was used for all the neurophysiological data with the 
factor SESSIONS. Such factor has three levels, one for each 
day of the week in which the EEG recording was made (T1, 
T3 and T5). For the Workload Protocol, statistical analyses 
over the i) classifier performances, ii) workload scores 
distribution and iii) NASA-TLX scores have been performed.  
 

i) A three-way repeated measures ANOVA (CI = .95) 
has been performed using the classifier (EEG, HR and 
Fusion based), the couple of subtasks (Easy vs Hard, Easy 
vs Medium and Medium vs Hard), and the moving 
average lengths (NMA(x), x={1, 8, 16, 32, 64}) as factors 
and the related AUC values as dependent variable, for all 
the subjects and cross-validations. In addition, a Duncan 
post-hoc test has been performed in order to test the 
effects between all the factors. 



ii)   Three two-way repeated measures ANOVA (CI = 
.95) have been performed, one for each classifier (EEG, 
HR and Fusion based), using subtask (Easy, Medium and 
Hard) and Cross-validation type (INTRA and INTER) for 
each subject as factors and the related workload index 
distributions (WEEG, WHR and WFusion) as dependent 
variables, for all the subjects.  

A one-way ANOVA (CI=.95) was performed on the NASA-
TLX scores with the subtask (Easy, Medium and Hard) as an 
independent variable. In addition, Duncan post-hoc tests have 
been performed in order to test the effects between all the 
factors 

III.  RESULTS 

A. Training improvement assessment 

Throughout the training sessions, the performance of the 
subjects increased continuously in terms of mean performance 
level and accuracy. Figure 3 shows the performance’s index 
adopted across the different training days. By the inspection of 
Fig. 3 it is easy to note the simultaneous increase of the 
performances level and the decrease of the amplitude of the 
standard deviations in the learning curve. On the second day of 
training, all the subjects reached at a good level of performance 
(almost the 90%) and since the third day, they could reach 
performance level higher than 95%. The one-way ANOVA 
performed on the global LABY score showed significant 
differences across the sessions (F(4, 180) = 34.74 with a p < 
10-5). The post-hoc Duncan test showed that the first two 
sessions (T1 and T2) were statistically different from all the 
others (p < 10-4) while the last three ones (T3, T4 and T5) were 
not statistically different to each other. 

 
Figure 3. The trend of the global LABY score across the five different training 
sessions (T1÷T5). The figure reports the mean performance value and the 
standard deviations for the sessions. A statistical significant increase of the 
performance was obtained at the end of the period when compared to the first 
day of training. 

The ANOVA results reported in Figure 4 show a statistical 
significant modulation of the of EEG PSD in theta band over 
the frontal areas (EEG channels: AF3, AF4, F3, Fz, and F4) 
across the different training sessions (F(2, 400) = 43.45), p < 
10-5 and also the Duncan’s post-hoc test confirmed these 
differences p < 10-4. It is evident that in the central session 
(T3), when the subjects have been supposed to have learnt how 

to execute correctly the task and focused the cognitive 
resources for improve their performances, the frontal PSD theta 
reached the highest increment respect all the other sessions. 

 

 

Figure 4. Mean EEG PSD (r-square) in theta band over the frontal EEG 
channels AF3, AF4, F3, Fz and F4 across the training sessions T1, T3 and T5. 
At T3, the frontal PSD theta reached the highest increment (p < 10-5). 

Figure. 5 shows the trend of the parietal EEG PSD in alpha 
band over the EEG channels P3, Pz and P4, represented as 
variation of signed r-square. Repeated measures ANOVA 
showed significant differences of the parietal PSD alpha (F(2, 
240)=43.27 with an associated p value < 10-5) and a decreasing 
trend of the spectral PSD from T1 to T5 has been found out 
across the training sessions. 

 

 
Figure 5. Parietal EEG PSD in alpha frequency band during the training period. 
The graph reports the signed r-square values estimated in the training sessions 
(T1, T3 and T5). The continuous decrement of the parietal PSD alpha is 
significant across all the training sessions (p<10-5). 

Figure 6 and 7 show the results of the statistical analysis of the 
autonomic parameters of HR and of EBR. The HR shows that 
the subjects were emotively engaged in correspondence of the 
central training session (T3), as the HR in T3 was the highest 
one, and that at the end of the training period they were more 
confident with the experimental task, as both the HR and the 
EBR decreased and increased, respectively. In fact, the 
Duncan’s post-hoc tests reported significant (p<.01) 
differences between the HR and EBR values of the first (T1) 



and last (T5) training session. In addition, the EBR z-score 
shows how the subjects kept to pay attention to the task, as it 
was negative even at the end of the training. 

 
Figure 6. Heart Rate (z-score) values across the trianing sessions. The trend 
shows how in the central part of the training period (T3) the subjects showed an 
high emotive engagment, as the HR got the highest value. 

The one-way ANOVA for the NASA-TLX data (Figure 8) 
shows significant differences among the training sessions (F(4, 
180)=19.39 and p< 10-5). A post-hoc test allowed to check out 
that the average scores of the NASA-TLX were statistically 
different until the fourth session (T4), whereas the T4 and T5 
sessions were perceived as similar in terms of workload. 

 

 
Figure 7. Eyesblink rate (z-score) values across the training sessions. The values 
are all negative because the subjects paid attention to the task for the whole 
training period and it shows how the subjects got more confident with task 
session after session. 

B. Workload evaluation and classification 

The ANOVA analyses (Figure 9) revealed no main effect of 
the classifiers (F(2, 135)=.63, p=.53), a main effect of 
conditions (F(2, 135)=56.05, p=10-5) and a main effect of 
refresh time (F(4, 135)=4.61, p=0.0016). The post-hoc test 
showed that AUC values calculated using all the three 
classifiers in the “Medium vs Hard” couple were significantly 
lower (all p<10-3) than the other two ones. In addition, 

increasing the refresh rate, the AUCs of the system 
significantly increase (all p<.05) only for the EEG based 
classifier, but not for the other ones. 

 
Figure 8. Average NASA – TLX scores of the training sessions. After each 
training session the subjects perceived the difficulty of the experimental task 
easier than the previous one. 

The fusion based classifier shows higher AUC values of the 
EEG based classifier at short refresh times (0.125s), and 
higher AUC values of the HR classifier at long refresh times 
(8s). Anyhow, these trends are not significant, and this 
behavior could be associated at the low number of subjects 
involved in the study (Figure 10). 
 

 
Figure 9. Mean values and related standard errors (CI = .95) of the AUC values 
achieved using the different classifiers (EEG, HR and Fusion-based) for each 
refresh time value. 
 



 
Figure 10. Mean values and related standard errors (CI = .95) of the 
distributions of the workload indices (WEEG, WHR and WFusion) evaluated by the 
three classifier (EEG, HR and Fusion based). 

 

The repeated-measures ANOVA revealed a main effect of the 
difficulty levels (F(1,118)=34.60, p=10-4). Subjective perceived 
workload shows an increasing in the perceived workload as the 
difficulty of the task increase. This result is consistent with the 
score distribution analyses, showing a high reliability of the 
estimated index. 

IV.  DISCUSSION 

The neurophysiological signals, the task performance 
scores and the experienced workload describe a story in which 
the subjects could find their own strategies and then got 
confident with the execution of the proposed LABY task. At 
the central part of the training period (T3) the cognitive and 
emotive engagement were the highest, as the frontal PSD theta 
and the HR got the highest values. The trends of the parietal 
PSD alpha and of the EBR showed how the subjects kept to 
pay attention to the execution of the task. In fact, the parietal 
PSD alpha and the EBR carried on decreasing and increasing, 
respectively, until the last training session (T5). From a 
perception point of view, the NASA-TLX scores demonstrated 
that the subjects experienced less workload, session after 
session, especially at the end of the training period respect to 
the beginning of it. Once subjects became confident with the 
Laby task, it has been tested an algorithm able to estimate in 
real-time the mental workload of the user, by using the 
combination of EEG and ECG signals. It has been 
demonstrated that the combination of these signal allows to 
differentiate significantly the workload level over three 
different difficulty level tasks, showing a high discrimination 
accuracy (AUC > .7). Finally, the calculated workload index 
showed the same trend of the NASA-TLX workload 
assessment. The evaluation of the mental workload by using 
the information derived by biosignals, allows to have a factual 
measure to triangulate with subjective methods, such as the 
NASA-TLX. A distinctive advantage with respect to the 
subjective measurements is the assessment of the variations of 
the workload within the same task, e.g. each 125 msec. The 
system allows to evaluate the workload in real-time. 

 

V. CONCLUSIONS 

Two protocols have been presented in this document, the 
training and the workload evaluation of ATCOs by means of 
neurophysiological signals. The integration of information 
derived by the brain activity, through the EEG, and the 
physiological signals of ECG and of EOG with the supervision 
of Experts could be used as possible innovative “cognitive 
metric” for evaluating the degree of the learning process and 
the training progress of learners, throughout their periods of 
professional formation. Also, this method could be applied 
when the comparison between subjects is required. In fact, after 
a fixed period of training it could be possible i) to quantify how 
well the subjects can complete a task, in terms of cognitive 
resources necessary to the correct execution, and ii) to compare 
subject’s cognitive performances by estimating the neuro-
physiological EEG, HR and EBR parameters presented in this 
study. In addition, an algorithm able to estimate the mental 
workload of an operator by using the combination of EEG 
rhythms and HR signals has been proposed. It has been 
demonstrated that i) the system is able to significantly 
differentiate three workload levels related to the three difficulty 
level tasks employed with a high reliability; ii) the subjective 
features used for the evaluation of the mental workload remain 
stable over one week only by using the EEG-based classifier. 
The combination between the information derived from the 
EEG and the HR signals allow increasing the performance of 
the system. Anyhow, this trend is not significant, because of 
the low sample size. Finally, the subjective evaluation of the 
workload shows the same trend of the physiological workload 
indexes (WEEG, WHR, WFusion). 
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