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UNE NOUVELLE FORMULATION INTEGRALE POUR LA CARACTERIATION DES CORPS IMPEDANTS

INTRODUCTION

Depuis son introduction par Leontovich, la condition impédante (IBC) a été largement utilisée pour modéliser le comportement électromagnétique des matériaux et ainsi simplifier le traitement des problèmes de diffraction par des objets imparfaitement conducteurs. Cette condition simule les propriétés de surface des matériaux en imposant la relation suivante sur les composantes tangentielles des champs:
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où n  est la normale à la surface pointant vers l'extérieur du milieu impédant [1]. De nombreuses formulations ont été proposées pour ce problème. Celle introduite ici est inspirée du théorème d'équivalence [START_REF]Time Harmonic Electromagnetic Fields[END_REF] et des propriétés qui en découlent. Elle est basée sur le remplacement du milieu extérieur par un autre milieu impédant et par l'utilisation d'un raccordement direct des sous problèmes de type PMCHW (Poggio, Miller, Chang, Harrington and Wu) [START_REF]Computer techniques for electromagnetics[END_REF]. A la différence d'autres formulations [START_REF] Bendali | [END_REF] [5], elle n'impose pas que le milieu impédant complémentaire soit identique à celui de l'objet et surtout, elle s'étend aux objets parfaitement conducteurs aussi bien électriques que magnétiques (PEC / PMC). Associée à une mesure de champ et un algorithme d'optimisation de type moindres carrés ou réseau de neurones, elle pourra permettre, après inversion, de caractériser l'impédance de surface de tous les types de matériau, et en particulier, des matériaux très bons conducteurs, voire PEC pour lesquels les méthodes IBC classiques ne sont pas applicables.

DECOMPOSITION EN SOUS PROBLEMES

On considère un objet impédant en espace libre éclairé par une onde plane. Sa surface est notée . Le théorème d'équivalence incite à décomposer le problème initial en deux sous domaines séparés par  et à associer chacun à un sous problèmes (cf. fig. 1). Dans ceux-ci, on appelle sous domaine actif, la partie directement extraite du problème initial et complément, l'espace venant compléter le domaine actif autour de  . Dans ce dernier, on s'attend à trouver un champ nul conformément au principe d'équivalence. La solution nulle n'étant pas sensible à la nature du milieu, on peut choisir d'introduire n'importe quel matériau dans le domaine qu'elle couvre sous réserve qu'il conduise à un problème bien posé (existence et unicité) et que les opérateurs de rayonnement qui en découlent soient connus. Dans le cas qui nous préoccupe on retrouve: -un problème extérieur dans lequel le domaine occupé par l'objet diffractant est remplacé par l'espace libre. On tombe alors sur un problème classique de rayonnement de sources fictives en espace libre.

-un problème intérieur qui comprend, d'une part le corps impédant et d'autre part le complément extérieur. Parmi tous les choix possibles pour remplir ce dernier domaine, un milieu également impédant donnera, sur corps actif impédant, un opérateur localisé particulièrement simple. Dans ces conditions, les champs doivent satisfaire une IBC de chaque coté de . Coté objet (points notés xs):
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(2) Afin d'autoriser les discontinuités de champ d'un sous domaine à l'autre, on introduit dans chaque sous problème une nappe de courants électriques et magnétiques fictifs portés par  et notés respectivement JE/I et ME/I. Opérateur de rayonnement du problème extérieur: En espace libre, le champ rayonné par les courants de surface est donné par les formules de trace.

Opérateur de rayonnement du problème intérieur: Une simple combinaison des conditions de passage reliant les champs E et H de chaque coté d'une nappe de courant (3)
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et des IBC (1) et (2) donne les expressions des composantes tangentielles de E et H:
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Lorsque l'objet se rapproche d'un PEC, (Rs0), (4) se simplifie en:
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Au-delà de leur simplicité, ces opérateurs s'avèrent locaux. Leur implémentation numérique conduit à une matrice creuse dont l'évaluation est très peu coûteuse.

Pour obtenir le système intégral final, les inconnues des 2 sous problèmes sont raccordées conformément à la méthode PMCHW qui impose l'opposition des nappes de courants fictifs et l'égalité des champs évalués coté domaines actifs.

CONDITION DE NON-SINGULARITE

Il est important de noter que cette formulation, bien qu'inspirée du théorème d'équivalence, n'en est pas une stricte application. En particulier, à aucun moment elle n'impose des champs nuls dans les compléments comme c'est le cas pour le théorème. Pourtant, cette annulation est fondamentale pour lier champs et courants fictifs qui sont les véritables inconnues du problème. En outre, elle permet d'envelopper l'objet dans un milieu impédant. Aussi, doit elle être démontrée indépendamment.

Pour cela, on définit un nouveau sous problème dit "problème des compléments" (PdC). Il correspond à la réunion de l'interface  et des compléments des deux précédents sous problèmes (cf. fig. 1). A partir du système intégral obtenu précédemment, on peut montrer que PdC est un problème sans source, donc un problème à solution nulle dès lors qu'il n'est pas affecté par des solutions parasites. On en déduit alors que les champs sont nuls dans les compléments respectifs de tous les sous problèmes, ce qui ramène aux solutions proposées par le théorème d'équivalence dont l'unicité à été prouvée par ailleurs [START_REF]Time Harmonic Electromagnetic Fields[END_REF].

Finalement, on conclut que la formulation est nécessairement bien posée dès lors que la réunion des compléments des deux sous problèmes conduit à un sous problème sans source non singulier. Typiquement, pour le présent problème, il ne faudrait pas choisir un complément métallique PEC dans le sous problème intérieur. En effet, le problème des compléments serait alors une cavité sphérique bien connue pour ses modes propres. Cette condition est généralisable à toutes les formulations inspirées du raccordement PMCHW.

RESULTATS NUMERIQUES

Les résultats numériques obtenus sur une sphère unité maillées à l'aide de triangles plans (750 arêtes) confirment la validité et les avantages de la nouvelle formulation. Pour ces simulations basées sur la méthode des moments, courants fictifs et fonctions de test ont été représentés par des éléments de Rao Wilton Glisson (RWG) [6].

Précision: Pour une sphère IBC (Rs=100), nous avons comparé les résultats obtenus à l'aide des 3 formulations suivantes: la nouvelle formulation, l'implémentation CERFACS du problème de Leontovitch et les séries de Mie avec condition impédante. La sphère est éclairée par-dessous (z croissants) par une onde plane polarisée suivant l'axe 0x. Le nombre d'onde est fixé à k=2. Le milieu impédant placé dans le complément présente une impédance de surface Rc=2. La figure 2 représente, pour chaque méthode, la Surface Equivalente Radar observée sous différentes directions. Les trois courbes sont quasiment superposables ce que confirment les 1,7% d'erreur relative obtenus sur les courants.

Stabilisation numérique: On observe l'évolution du flux de courant au travers d'une arête choisie sur le maillage d'une sphère PEC (R s =0) quand le nombre d'onde k évolue à proximité de la première fréquence de résonance de la cavité sphérique. La figure 3 reporte l'évolution des parties réelles et imaginaires du flux en fonction de k pour l'EFIE (Electric Field Integral Equation) et pour la formulation proposée. On remarque que les pics de résonance qui apparaissent clairement pour l'EFIE sont lissés par la nouvelle méthode. Celleci n'est donc pas sujette aux solutions parasites quand R s tend vers 0.

CONCLUSION

La présente formulation s'avère donc être une méthode générale bien posée, apte à traiter, sans risque de solution parasite, tous les types de corps impédants depuis les IBC classiques jusqu'au très bons conducteurs. Les opérateurs associés au problème intérieur sont très faciles à implémenter à partir des éléments RWG. Le volume de calcul qu'ils génèrent est négligeable comparé à celui requis pour les opérateurs du problème extérieur. Le principal handicap de la méthode réside dans la nécessité de toujours tenir compte des courants magnétiques, même pour les corps PEC ce qui double le nombre de degrés de liberté comparé aux méthodes [START_REF] Bendali | [END_REF] ou [5]. 
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