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Abstract — A spectral representation for the elec-
tromagntic fields is developed in 3D in cylindrical
coordinates for propagation over a Terrain. The re-
sult is obtained for a planar terrain and for an ho-
mogeneous atmosphere and ground. The spectral
representation is related with both the vertical and
azimuthal variables. For the vertical variable, this
spectral representation contains a discrete compo-
nent associated with a possible surface wave, and a
continuous component. For the azimuthal variable,
the spectral representation amounts to a Fourier se-
ries.

1 INTRODUCTION

Split-step methods based on the parabolic approxi-
mation are commonly used for the modeling of elec-
tromagnetic wave propagation over the ground at
large distances [1]. In order to evaluate the field
iteratively at larger and larger distances, the com-
putation is realized going back and forth from a spa-
tial to a spectral representation of the wave upon
assuming a rotational symmetry about the vertical
axis (2D case). The relief, a possible ground wave,
and the electrical characteristics of the atmosphere
can be taken into account with this method [1].

If the reflection over the ground is modeled by
means of a constant surface impedance, the spec-
tral transform corresponds to a continuous mixed
Fourier transform [2]. A discretized counterpart of
this transform, the discrete mixed Fourier trans-
form (DMFT), has been developed to render the
scheme self-consistent and avoid numerical insta-
bilities. In [3, 4], more general ground conditions
are considered with non-constant impedance condi-
tions. The method in [4] is based on an exact spec-
tral representation of the vertical operator above
a dielectric ground. This spectral representation
has been rendered consistent with numerical com-
putation by considering a domain of finite high. An
application of this method has been proposed in [5].

However, 2D models are limited in terms of ac-
curacy, notably because they neglect lateral ef-
fects, such as reflections over hills that are not
aligned with the transmitter-receiver. An extension
of split-step methods based on the parabolic equa-
tion to three-dimensional configurations has been
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developed in [6]. The method has been proposed
in cartesian coordinates for a ground modeled by a
constant surface impedance.

In this article, we consider the propagation above
a dielectric ground in 3D, i.e. without assuming a
rotational symmetry about the vertical axis. We
theoretically develop an exact spectral representa-
tion starting from Maxwell equations in cylindrical
coordinates. This involves the diagonalization of
both the azimuthal and vertical operators.

In Section 2, the problem is expressed in cylin-
drical coordinates by means of Hertz potentials. In
the propagation equation, the operator acting on
the vertical coordinate is isolated. In Section 3, this
operator is studied as a Sturm-Liouville problem of
the third kind [7]. In Section 4, the azimuthal spec-
tral repesentation is introduced using the periodic-
ity of the solution with respect to the azimuth. This
yields the spectral representation, which is suitable
for the development of a 3D split-step method.

2 FORMULATION

2.1 Configuration

We consider the propagation of a time-harmonic
electromagnetic field in the atmosphere taking into
account the presence of the ground. We use the
cylindrical coordinate system (r,¢,z), with unit
vectors (7, o, 2), and where z is the vertical axis.
The ground/atmosphere are characterized by a con-
stant permeability 1o and by space-varying permit-
tivity e,(r, ¢, z) and conductivity o(r, ¢, z). For the
spectral representation, the fields are decomposed
in two components, viz. one transverse electric
(TE) and one transverse magnetic (TM) compo-
nents with respect to z.

2.2 TM case

The TM case can be formulated via a vector poten-
tial IT, oriented along z such that

E:Her%VTIe,
(1)

H = V x 1L.
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where k = —jwpo(o + jwe) is the wavenumber. For
an homogeneous atmosphere and ground, and for



a ground located at z = 0, upon replacing Il, by
V2, the tranverse components of the electromag-
netic fields are given by
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(From Maxwell equations, the problem can then
be reduced to the scalar propagation equation in
cylindrical coordinates
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with 7 € [0, 00[, ¢ € [0,27], and z € R. Besides,
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with k, and kg the wavenumbers in the atmosphere
and ground, respectively. At infinity, radiating
boundary conditions are imposed on W. At the
ground level z = 0, boundary conditions imposed
by the ground/atmosphere interface are the conti-
nuity of the tangential components of the electric
and magnetic fields at z = 0. This can be written
as

z >0,
z <0,

(4)
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For the spectral representation the propagation
equation (3) is split into two terms

LU+ LW =0, (6)
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The operator L. is only related to the vertical co-
ordinate z, while L, acts on both r and ¢. The
spectral representation is obtained by diagonalizing
separately these operators.

2.3 TE case

In a similar way, the TE case can be formulated
by means of a vector potential I1,, oriented along
z. For the sake of concision, we will not present
the TE case in this article but the derivations are
similar to the TM case.

3 VERTICAL
TATION

SPECTRAL REPRESEN-

The vertical spectral representation is obtained by
means of the diagonalization of the operator L. To
do so, we use the method presented in [7]. Besides,
the demonstration exactly follows the one achieved
for the 2D case in [4]. Only the main results are
presented here.

Firstly, the Green’s function G(z, z’, \) of the oper-
ator L, — \I is determined, for A € C, I the identity
operator, and (z’, z) the position of the source and
observation, respectively. Using a classical method
for the determination of Green’s functions [7], we
obtain

e_jkza‘z_zll + Fe_jkza(z"l‘zl)
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for z > 0 and 2’ > 0, with k.. = VkZ2+ A\
The suitable determination of the square root is
the one that respects the radiation condition, i.e.
Im(k.,) < 0. Note that we have restricted the com-
putation to the atmosphere, i.e. to 2,2’ > 0. To do
so, the ground boundary condition is taken into ac-

count by means of the reflection coefficient I' given
by
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Secondly, we write the following identity, demon-
strated in [7],
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where Cg is the circle centered at 0 of radius R in
the complex A-plane. Then, we evaluate explicitly
the integral in (11). Taking care of the contribution
of the pole in I' and of the branch cut due to k..,
we obtain
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In this expression, the first term accounts for the
pole contribution with

kP = /K2 .
za a1+6

(13)



The second term accounts for the branch cut
contribution.

Finally, we write

U(r,¢,z) = /000 8z —2)U(r,¢,2")dz’.  (14)

Using (12), we can substitute §(z — z’) by the ex-
plicit contributions of the branch cut and pole. The
expression that we obtain is the sprectral represen-
tation of the operator, which is given by the trans-
form pairs

U(r,¢,z) =
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where WP (r, ¢) and U(r, ¢) are the vertical sprectral
components that can be obtained from
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The first term of (15) correponds to the contribu-
tion of the pole, and can be associated with a pos-
sible ground/surface wave. The second term is the
continuous spectrum that represents plane waves
and their reflection over the ground.

4 AZIMUTHAL SPECTRAL REPRE-
SENTATION

The previous vertical spectral representation (15)
can be introduced in (3). This yields
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Our aim is to obtain a spectral representation suit-
able for split-step algorithm, where ¥ is computed
iteratively at increasing distances r. Thus we need
to add a spectral representation associated with the
variable ¢. This obviously corresponds to a Fourier
series because W is necessarily 2m-periodic with re-
spect to ¢. The spectral representation associated
with both vertical and azimuthal variables is finally
given by
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where the vertical and azimuthal spectral compo-
nents are given by
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5 APPLICATION TO PROPAGATION
SIMULATIONS

In this section, we explain how the spectral rep-
resentation defined in the previous section can be
used to express the propagation of a wave in an
homogeneous atmosphere above a planar homoge-
neous ground in 3D. No details are presented about
the numerical aspects of the implementation. We
assume that ¥ is known at a distance ry and that
the wave is propagating towards r — +oc. From
(19), the vertical and azimuthal spectral compo-
nents \ifﬁ¢ (ro) and \i/% (ro, kza) can be computed.
To predict the wave at r» > 7y, we explicit the prop-
agation equation in the spectral domain

1 2 .
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Because the field is assumed to propagate towards
r > ro, this equation can be solved to obtain the
spectrum at r > rog. We end up with

HE) (k1)

\i/(r, kz) (2)(k 7"0)

= U(ro, 2) ; (21)

with Hgi) the Hankel function of the second kind

and of order ng, and k., = +/k2—k2, where
Im(k,) < 0. Finally, we can go back from the spec-

tral to the spatial representation of ¥ at r by means
of the expressiosn (18).

6 CONCLUSION

For an homogeneous atmosphere and ground, and
for a planar ground, we have developed a spec-
tral representation in 3D in cylindrical coordinates.
The spectral representation is related to both the
vertical and azimuthal variables. For the verti-
cal variable, this spectral representation contains
a discrete component associated with a possible
surface wave, and a continuous component. For
the azimuthal variable, the spectral representation
amounts to a Fourier series. We have explained
how this method could be employed to predict the



propagation of a wave in an homogeneous atmo-
sphere above a planar homogeneous ground in 3D.
A more general split-step algorithm could be de-
rived, which would take into account the terrain
profile, and variations in the electrical character-
istics as it has been done in 2D [5], or in [1] for
methods based on the parabolic-wave equation.
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