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An Exact Vectorial Spectral Representation of the

Wave Equation for Propagation Over a Terrain in 3D

A. Chabory, C. Morlaas, and R. Douvenot ∗

Abstract — A spectral representation for the elec-

tromagntic fields is developed in 3D in cylindrical

coordinates for propagation over a Terrain. The re-

sult is obtained for a planar terrain and for an ho-

mogeneous atmosphere and ground. The spectral

representation is related with both the vertical and

azimuthal variables. For the vertical variable, this

spectral representation contains a discrete compo-

nent associated with a possible surface wave, and a

continuous component. For the azimuthal variable,

the spectral representation amounts to a Fourier se-

ries.

1 INTRODUCTION

Split-step methods based on the parabolic approxi-
mation are commonly used for the modeling of elec-
tromagnetic wave propagation over the ground at
large distances [1]. In order to evaluate the field
iteratively at larger and larger distances, the com-
putation is realized going back and forth from a spa-
tial to a spectral representation of the wave upon
assuming a rotational symmetry about the vertical
axis (2D case). The relief, a possible ground wave,
and the electrical characteristics of the atmosphere
can be taken into account with this method [1].

If the reflection over the ground is modeled by
means of a constant surface impedance, the spec-
tral transform corresponds to a continuous mixed
Fourier transform [2]. A discretized counterpart of
this transform, the discrete mixed Fourier trans-
form (DMFT), has been developed to render the
scheme self-consistent and avoid numerical insta-
bilities. In [3, 4], more general ground conditions
are considered with non-constant impedance condi-
tions. The method in [4] is based on an exact spec-
tral representation of the vertical operator above
a dielectric ground. This spectral representation
has been rendered consistent with numerical com-
putation by considering a domain of finite high. An
application of this method has been proposed in [5].

However, 2D models are limited in terms of ac-
curacy, notably because they neglect lateral ef-
fects, such as reflections over hills that are not
aligned with the transmitter-receiver. An extension
of split-step methods based on the parabolic equa-
tion to three-dimensional configurations has been
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developed in [6]. The method has been proposed
in cartesian coordinates for a ground modeled by a
constant surface impedance.
In this article, we consider the propagation above

a dielectric ground in 3D, i.e. without assuming a
rotational symmetry about the vertical axis. We
theoretically develop an exact spectral representa-
tion starting from Maxwell equations in cylindrical
coordinates. This involves the diagonalization of
both the azimuthal and vertical operators.
In Section 2, the problem is expressed in cylin-

drical coordinates by means of Hertz potentials. In
the propagation equation, the operator acting on
the vertical coordinate is isolated. In Section 3, this
operator is studied as a Sturm-Liouville problem of
the third kind [7]. In Section 4, the azimuthal spec-
tral repesentation is introduced using the periodic-
ity of the solution with respect to the azimuth. This
yields the spectral representation, which is suitable
for the development of a 3D split-step method.

2 FORMULATION

2.1 Configuration

We consider the propagation of a time-harmonic
electromagnetic field in the atmosphere taking into
account the presence of the ground. We use the
cylindrical coordinate system (r, φ, z), with unit
vectors (r̂, φ̂, ẑ), and where z is the vertical axis.
The ground/atmosphere are characterized by a con-
stant permeability µ0 and by space-varying permit-
tivity εr(r, φ, z) and conductivity σ(r, φ, z). For the
spectral representation, the fields are decomposed
in two components, viz. one transverse electric
(TE) and one transverse magnetic (TM) compo-
nents with respect to z.

2.2 TM case

The TM case can be formulated via a vector poten-
tial Πe oriented along z such that

E = Πe −∇
1

k2
∇ ·Πe,

H =
1

−jωµ0
∇×Πe.

(1)

where k = −jωµ0(σ+jωε) is the wavenumber. For
an homogeneous atmosphere and ground, and for



a ground located at z = 0, upon replacing Πe by
Ψẑ, the tranverse components of the electromag-
netic fields are given by

Et =
1

k2

(

∂2Ψ

∂z∂r
r̂ +

1

r

∂2Ψ

∂z∂φ
φ̂

)

,

Ht = −jωµ0

(

1

r

∂Ψ

∂φ
r̂ −

∂Ψ

∂r
φ̂

)

.

(2)

¿From Maxwell equations, the problem can then
be reduced to the scalar propagation equation in
cylindrical coordinates

−
1

r

∂

∂r
r
∂Ψ

∂r
−

1

r2
∂2Ψ

∂φ2
−

∂2Ψ

∂z2
− k2(z)Ψ = 0, (3)

with r ∈ [0,∞[, φ ∈ [0, 2π[, and z ∈ R. Besides,

k(z) =

{

ka z > 0,

kg z < 0,
(4)

with ka and kg the wavenumbers in the atmosphere
and ground, respectively. At infinity, radiating
boundary conditions are imposed on Ψ. At the
ground level z = 0, boundary conditions imposed
by the ground/atmosphere interface are the conti-
nuity of the tangential components of the electric
and magnetic fields at z = 0. This can be written
as

1

k2a

∂Ψ

∂z

∣

∣

∣

∣

z=0+
−

1

k2g

∂Ψ

∂z

∣

∣

∣

∣

z=0−

= 0,

Ψ|z=0+ − Ψ|z=0− = 0.

(5)

For the spectral representation the propagation
equation (3) is split into two terms

LrφΨ+ LzΨ = 0, (6)

with

Lrφ = −
1

r

∂

∂r
r
∂

∂r
−

1

r2
∂2

∂φ2
,

Lz = −
∂2

∂z2
− k2.

(7)

The operator Lz is only related to the vertical co-
ordinate z, while Lrφ acts on both r and φ. The
spectral representation is obtained by diagonalizing
separately these operators.

2.3 TE case

In a similar way, the TE case can be formulated
by means of a vector potential Πm oriented along
z. For the sake of concision, we will not present
the TE case in this article but the derivations are
similar to the TM case.

3 VERTICAL SPECTRAL REPRESEN-

TATION

The vertical spectral representation is obtained by
means of the diagonalization of the operator Lz. To
do so, we use the method presented in [7]. Besides,
the demonstration exactly follows the one achieved
for the 2D case in [4]. Only the main results are
presented here.
Firstly, the Green’s function G(z, z′, λ) of the oper-
ator Lz−λI is determined, for λ ∈ C, I the identity
operator, and (z′, z) the position of the source and
observation, respectively. Using a classical method
for the determination of Green’s functions [7], we
obtain

G(z, z′, λ) =
e−jkza|z−z′| + Γe−jkza(z+z′)

2jkza
, (8)

for z ≥ 0 and z′ ≥ 0, with kza =
√

k2a + λ.
The suitable determination of the square root is
the one that respects the radiation condition, i.e.
Im(kza) ≤ 0. Note that we have restricted the com-
putation to the atmosphere, i.e. to z, z′ ≥ 0. To do
so, the ground boundary condition is taken into ac-
count by means of the reflection coefficient Γ given
by

Γ =
Za − Zg

Za + Zg
, (9)

with

Za =
jkza

σa + jωεa
, Zg =

jkzg

σg + jωεg
. (10)

Secondly, we write the following identity, demon-
strated in [7],

1

2jπ
lim

R→∞

˛

CR

G(z, z′, λ)dλ = −δ(z − z′), (11)

where CR is the circle centered at 0 of radius R in
the complex λ-plane. Then, we evaluate explicitly
the integral in (11). Taking care of the contribution
of the pole in Γ and of the branch cut due to kza,
we obtain

δ(z−z′) =
2jkpza
1− ǫ2

e−jkp
za(z+z′)

+
1

2π

ˆ +∞

0

1

Γ

(

ejkzaz
′

+ Γe−jkzaz
′

)

.
(

ejkzaz + Γe−jkzaz
)

dkza.

(12)

In this expression, the first term accounts for the
pole contribution with

kpza =

√

k2a
ǫ

1 + ǫ
. (13)



The second term accounts for the branch cut
contribution.

Finally, we write

Ψ(r, φ, z) =

ˆ ∞

0

δ(z − z′)Ψ(r, φ, z′)dz′. (14)

Using (12), we can substitute δ(z − z′) by the ex-
plicit contributions of the branch cut and pole. The
expression that we obtain is the sprectral represen-
tation of the operator, which is given by the trans-
form pairs

Ψ(r, φ, z) = Ψ̃p(r, φ)e−jkp
zaz+

ˆ +∞

0

Ψ̃(r, φ, kz)
(

ejkzz + Γ(kz)e
−jkzz

)

dkz ,

(15)
where Ψ̃p(r, φ) and Ψ̃(r, φ) are the vertical sprectral
components that can be obtained from

Ψ̃p(r) =
2jkpza
1− ǫ2

ˆ +∞

0

Ψ(r, z)e−jkp
zazdz,

Ψ̃(r, kza) =
1

2π

ˆ +∞

0

Ψ(r, z)

Γ(kza)

.
(

ejkzaz + Γ(kza)e
−jkzaz

)

dz.

(16)

The first term of (15) correponds to the contribu-
tion of the pole, and can be associated with a pos-
sible ground/surface wave. The second term is the
continuous spectrum that represents plane waves
and their reflection over the ground.

4 AZIMUTHAL SPECTRAL REPRE-

SENTATION

The previous vertical spectral representation (15)
can be introduced in (3). This yields

−
1

r

∂

∂r
r
∂Ψ̃

∂r
−

1

r2
∂2Ψ̃

∂φ2
− (k2a − k2za)Ψ̃ = 0. (17)

Our aim is to obtain a spectral representation suit-
able for split-step algorithm, where Ψ is computed
iteratively at increasing distances r. Thus we need
to add a spectral representation associated with the
variable φ. This obviously corresponds to a Fourier
series because Ψ is necessarily 2π-periodic with re-
spect to φ. The spectral representation associated
with both vertical and azimuthal variables is finally
given by

Ψ(r, φ, z) =
∑

nφ∈Z

ejnφφ
[

Ψ̂p
nφ
(r)e−jkp

zaz+

ˆ +∞

0

Ψ̂nφ
(r, kz)

(

ejkzz + Γ(kz)e
−jkzz

)

dkz

]

,

(18)

where the vertical and azimuthal spectral compo-
nents are given by

Ψ̂p
nφ

(r) =
2jkpza
1− ǫ2

1

2π

ˆ 2π

0

ˆ +∞

0

Ψ(r, φ, z)

.e−jkp
zaz−jnφφdzdφ,
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(r, kza) =

1

4π2

ˆ 2π

0

ˆ +∞

0

Ψ(r, z)

Γ(kza)
e−jnφφ

(

ejkzaz + Γ(kza)e
−jkzaz

)

dzdφ.

(19)

5 APPLICATION TO PROPAGATION

SIMULATIONS

In this section, we explain how the spectral rep-
resentation defined in the previous section can be
used to express the propagation of a wave in an
homogeneous atmosphere above a planar homoge-
neous ground in 3D. No details are presented about
the numerical aspects of the implementation. We
assume that Ψ is known at a distance r0 and that
the wave is propagating towards r → +∞. From
(19), the vertical and azimuthal spectral compo-
nents Ψ̂p

nφ
(r0) and Ψ̂nφ

(r0, kza) can be computed.
To predict the wave at r > r0, we explicit the prop-
agation equation in the spectral domain

−
1

r

∂

∂r

(

r
∂

∂r
Ψ̂

)

+
n2
φ

r2
Ψ̂− (k2a − k2za)Ψ̂ = 0 (20)

Because the field is assumed to propagate towards
r > r0, this equation can be solved to obtain the
spectrum at r > r0. We end up with

Ψ̂(r, kz) = Ψ̂(r0, z)
H(2)

nφ
(krr)

H(2)
nφ

(krr0)
, (21)

with H(2)
nφ

the Hankel function of the second kind

and of order nφ, and kr =
√

k2a − k2za where
Im(kr) ≤ 0. Finally, we can go back from the spec-
tral to the spatial representation of Ψ at r by means
of the expressiosn (18).

6 CONCLUSION

For an homogeneous atmosphere and ground, and
for a planar ground, we have developed a spec-
tral representation in 3D in cylindrical coordinates.
The spectral representation is related to both the
vertical and azimuthal variables. For the verti-
cal variable, this spectral representation contains
a discrete component associated with a possible
surface wave, and a continuous component. For
the azimuthal variable, the spectral representation
amounts to a Fourier series. We have explained
how this method could be employed to predict the



propagation of a wave in an homogeneous atmo-
sphere above a planar homogeneous ground in 3D.
A more general split-step algorithm could be de-
rived, which would take into account the terrain
profile, and variations in the electrical character-
istics as it has been done in 2D [5], or in [1] for
methods based on the parabolic-wave equation.
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