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A Theoretical Study of the Boundary Conditions for

Parabolic Equation

R. Douvenot, C. Morlaas, and A. Chabory,∗

Abstract — For many years, parabolic equation sim-

ulations have been performed for 2D propagation of

electromagnetic waves with a great accuracy. How-

ever, considering precisely the ground reflection is

still an open problem. A classical solution is to

consider at each step a constant impedance that

depends on the grazing angle calculated by MU-

SIC or a ray-launching algorithm. For non-constant

impedance conditions, this question is not solved.

Numerical instabilities may occur when the reflec-

tion coefficient is exactly taken into account. This

paper theoretically studies this instability. First,

the Green function of the vertical operator used for

the split-step computation of the propagation is ex-

pressed, taking into account the sampling induced

by numerical simulations. From this, the observed

numerical instability is related to a radiation condi-

tion in the upper medium.

1 Introduction

The parabolic equation algorithm for the simula-
tion of electromagnetic waves propagation in large-
scale 2D scenes is an efficient tool [1]. As soon as
the backscattered field is neglected, and the prop-
agating power is confined in a cone of revolution
[2], the accuracy of the method is well admitted.
With the development of the mixed-term Fourier
transform [2] and its discrete form [3], the method
has also become CPU-efficient. Consequently, it is
widely used for propagation in the troposphere [4],
[5].

The boundary condition at the ground level is a
critical point of the method. Even if it is consid-
ered as constant with respect to the vertical spec-
trum, a numerical divergence problem can occur,
sometimes called the “bad alpha” problem, and for
which solutions have been proposed [6], [7]. How-
ever, considering the impedance at the ground level
as constant with the incidence angle is generally an
approximation, specially when roughness is intro-
duced in the reflection coefficient (for instance with
the Miller-Brown-Vegh (MBV) model [8]).

Efforts have been made to enlarge the theoretical
framework of parabolic equation. It has been ex-
tended to non-constant impedance conditions [9],
and finally to non-constant impedance conditions
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in a sampled and bounded domain of computa-
tion [10]. It can be implemented with a classical
fast-Fourier transform (FFT) method [9]. Lately, a
split-step matrix (SSM) transformation algorithm
has been proposed [11]. Unfortunately, these algo-
rithms (FFT and SSM) appear to be numerically
unstable for some configurations.
In this paper, the expression of the Green func-

tion is detailed in section 2 for the sampled and
bounded domain of computation. The conse-
quences on what happens beyond the computation
domain are studied in section 3.1. Then, a modi-
fied permittivity that takes into account the rough-
ness introduced in the reflection coefficient by the
MBV model is expressed (section 3.2). Last, in sec-
tion 3.3, a reflection coefficient inducing numerical
instabilities is related to a radiation at infinity in
the medium beyond the domain using the modified
permittivity. In section 4, simulation results are
presented to illustrate this fact.

2 The Green function

Transverse magnetic fields with respect to the z-
axis are considered, in the time-harmonic domain.
A rotational symmetry around the z-axis is as-
sumed, and cylindrical coordinates (r, φ, z) are
used, with unit vectors (r̂, φ̂, ẑ). The fields are
computed in a medium characterised by the phys-
ical constants (εra, µ0, σa) above a ground layer
characterised by (εrg, µ0, σg). The computation is
performed for altitudes z ∈ [0, h].
For the computation of the vertical operator,

the three-step resolution of the associated Stourm-
Liouville problem [12] is applied. This paper fo-
cuses in the first step that consists in calculating the
Green function Gλ(z, z

′) of the operator Lz − λI,
where

LzΨ =

(

−
∂2

∂z2
− k2(z)

)

Ψ, (1)

the potential vector being Ψ along ẑ. The other
steps are detailed by Chabory et al. [10]. The Green
function Gλ(z, z

′) is defined by

−
∂

∂z2
Gλ(z, z

′)− (k2+λ)Gλ(z, z
′) = δ(z−z′), (2)

for (z, z′) ∈ R
2, z′ being the altitude of the localised

source. From equation (2), the Green function is of



the form

Gλ(z, z
′) =

a11e
−jkzaz + a12e

jkzaz , for 0 < z < z′,
a21e

−jkza(z−h) + a22e
jkza(z−h), for z′ < z < h,

(3)
with aij constants. kza =

√

k2a + λ is the wavenum-
ber along z into the propagating medium (usually
the atmosphere).
At z = 0, a reflection coefficient Γ is intro-

duced to take into account the wave reflected by
the ground. At z = z′, continuity/jump conditions
are satisfied. The boundary condition at z = 0
renders

lim
z→0+

∂

∂z
Gλ(z, z

′)− lim
z→0−

∂

∂z
Gλ(z, z

′) = 0,

⇒ a11 = Γa12 with Γ =
kza − ǫkzg
kza + ǫkzg

,
(4)

where kzg =
√

kg + λ is the the wavenumber along
z into the ground medium and ǫ = εa/εg is the
dielectric contrast.
At z = h, the domain is bounded by imposing

the condition

∂Gλ(h, z
′)

∂z
− jkza

1− Γ

1 + Γ
Gλ(h, z

′) = 0. (5)

Under this condition, the coefficients aij are calcu-
lated using the jump/continuity conditions. Their
expression is

a11 =
−1

4kza sin(kzah)

(

Γe−jkza(z
′
−h) + ejkza(z

′
−h)

)

,

a12 =
−1

4kzaΓ sin(kzah)

(

Γe−jkza(z
′
−h) + ejkza(z

′
−h)

)

,

a21 =
−1

4kza sin(kzah)

(

Γe−jkzaz
′

+ ejkzaz
′

)

,

a22 =
−1

4kzaΓ sin(kzah)

(

Γe−jkzaz
′

+ ejkzaz
′

)

.

(6)
Coefficients above z′ satisfy a22 = Γ−1a21. Since

the coefficient a22 corresponds to the wave moving
away from the source, and a21 to the wave moving
towards the source, their interdependence is equiv-
alent to the introduction of a reflection coefficient
1/Γ at the top of the domain.

3 Study of the instability

3.1 Beyond the computation domain

The paper focuses on what happens beyond the
computation domain, or how the reflection coeffi-
cient imposed at the top of the domain can be in-
terpreted if some energy were passing through it.

One must remember that no energy should reach
this limit, thanks to apodisation or absorbing lay-
ers. However, numerical uncertainties can be suffi-
cient to imply a numerical divergence.
The question to be answered is what this up-

per medium should be made of to imply a reflec-
tion coefficient equal to 1/Γ. From (4), the vertical
wavenumber in this medium should be

kzt = −ǫkzg. (7)

Equivalently, the impedance into the upper domain
is Zt = −Zg.

3.2 Modified permittivity

Roughness is commonly introduced by the MBV
model. The reflection coefficient Γmod including the
roughness satisfies then

Γmod = Γ0e
−ξI0(ξ), (8)

where I0 is the modified Bessel function of order 0,
and

ξ ≡
1

2

(

4πδr sin(θ)

λ

)2

, (9)

θ being the grazing angle, and λ the wavelength.
The reflection coefficient Γ is now reformulated
when the propagation medium is vacuum (εra = 1),
with notations kzg = βg−jαg and εrg = εr

′

g−jεr
′′

g =
εr

′

g(1− j tan δg). Then,

Γ =
(εr

′

gkza − βg)− j(εr
′′

gkza − αg)

(εr′gkza + βg)− j(εr′′gkza + αg)
. (10)

For taking into account the roughness into the def-
inition of the reflection coefficient, a modified re-
fractivity εrmod is introduced using (4) such that

Γmod =
(εr

′

modkza − βg)− j(εr
′′

modkza − αg)

(εr′modkza + βg)− j(εr′′modkza + αg)
,

(11)
with notations

εrmod = εr
′

mod − jεr
′′

mod

= εr
′

mod(1 − j tan δmod).
(12)

3.3 Limits of stability

When Γ → 0, the computation of the propagated
field becomes unstable. For frequencies above 1
GHz, 1/λ2 is much greater than 1, and, from (8),
Γmod rapidly tends towards 0 in the spectral do-
main even for low δr.
The limit Γ → 0 is now reformulated as

Γmod → 0 ⇔ tan δmod →
αg

βg
. (13)



This late condition is also reformulated as

tan δmod →
αg

βg
⇔ Im

(

−
kzg

εrmod

)

→ 0,

⇔ Im (kzt) → 0.

(14)

This looks like the limit of a condition for finite
energy at infinity:

Im (kzt) ≤ 0. (15)

Indeed, as exposed in section 3.1 the boundary con-
dition at the top corresponds to the introduction of
a new medium above the propagating medium with
impedance −Zg. And having a reflection coefficient
that tends to zero on the ground is equivalent to
having a non-null energy at infinity above the do-
main as soon as the energy reaching this interface
is not null.
The following simulations highlight the relation-

ship between unstable cases and the condition (15).

4 Simulations

Simulations are performed with the SSM algorithm
presented in [11]. The settings are the following:
computation at 3 GHz with vertical polarisation at
altitudes z from 0 to 100 m, and distances r from
0 to 5 km. The propagating medium is vacuum
(εra = 1, σa = 0 S.m−1), the ground is charac-
terised by εrg = 80, σg = 0.1 S.m−1. The apodi-
sation is performed on the upper half domain, fol-
lowing an exponential window. Horizontal step is
100 m. The source is Gaussian, located at 30 me-
ters high, with a 45◦ aperture. The results shown
in the following figures include the apodisation do-
main from 100 m to 200 m. Roughness is intro-
duced through the MBV model [8], with a height
variation of the surface δr = 0.5 m. The vertical
sampling step is the varying parameter from a sim-
ulation to the other.
Three different vertical steps δz are tested: δz =

0.67 m, 0.40 m, and 0.25 m corresponding to figures
1, 2, and 3, respectively.
In figure 1, the computation is stable. In figure 2,

an instability appears in the apodisation area, with
a limited impact on the area of interest (z < 100
m). In figure 3, computation is clearly unstable.
Note that the apodisation is the same in the three
cases. As mentioned in section 3.3, this instability
appears when the reflection coefficient Γ tends to
zero (when δz decreases) because of the 1/Γ term
in the Green function.
In figures 4a, 4b, and 4c, |Γ| (left ordinate) and

tan δg −αg/βg (right ordinate) are plotted with re-
spect to kza/k0. The higher spectral components
are more subject to instability. For high values of

Figure 1: Propagation factor for δz = 0.67 m.

Figure 2: Propagation factor for δz = 0.40 m.

Figure 3: Propagation factor for δz = 0.25 m.

kza, |Γ| tends to zero (and passes to zero due to the
Brewster angle), tan δg tends to αg/βg as well. As
the vertical sampling step decreases, some energy
is carried by spectral components hardly fulfilling
the boundary condition (15), which logically leads
to numerical instabilities.

5 Conclusion

This study shows that when the Green function is
detailed for a discretised domain, the numerical di-
vergence due to the reflection coefficient can also be
seen as a radiation condition outside the computa-
tion domain that is barely fulfilled for numerous
spectral components. This divergence problem is



(a) δz = 0.67 m

(b) δz = 0.40 m

(c) δz = 0.25 m

Figure 4: |Γ| (left ordinate, cross marker, black)

and tan δ −
αg

βg
(right ordinate, continuous line,

green) with respect to kza/k0, for three different
values of δz.

still an open problem when the reflection coefficient
varies with the vertical spectrum. This work should
help dealing with apodisation / absorbing methods
that definitely avoid numerical instabilities.
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