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Abstract. The present work deals with the dynamic placement of a set of pursuers 
and a set of relay devices so that the mean distance to a set of moving targets is 

minimized along a given period of time. The relay devices are here in charge of 
maintaining the communication between the pursuers. Moving targets, relay 

devices and pursuers are limited in their movements from one period to the next. 

The periodic problem is formulated as a linear quadratic programming model and a 
primal-dual neural network is proposed to solve from one stage to the next the 

current optimization problem. Moreover, the feasibility of the proposed approach 
is displayed through a numerical example.

1 Introduction

A Robotic Sensor Network (RSN) is a network composed of a set of entities with 

mobility and sensing capabilities. Here a set of pursuers and a set of relay devices 

must be located from one period to the next so that the mean distance to a set of 

moving targets is minimized along a given period of time. 
As RSNs allow the possibility of harder missions, they also inherit the problems 

of related areas (sensor networks and mobile robots). In [1], the authors have 

proposed a distributed control framework, based on potential fields, that 

simultaneously addresses the velocity setting and connectivity requirement in the 

alignment problem of mobile agents. Other authors [2] have developed an adaptive 

algorithm based on local gradients of the signal-to-noise ratio in the communication

links to control the motion of 2D relays vehicles. The control of a chain of robots 

between a reference robot and an explorer one, where at each step the relay robots 

move in such a way as to improve the Fielder value of weighted Laplacian, has been 

considered in [3]. The Fielder value describes in that case the communication 

interactions of all robots. Moreover, the authors of [4] considered the problem of 

dimensioning a set of robotic routers to provide connection between a user robot and

a base station within an environment with obstacles.

In this paper we consider the problem of positioning pursuers and relays in a 

way that minimizes the mean distance between targets and pursuers, subject to 

movement and connectivity constraints. Our approach consists in formulating at each 

stage a linear quadratic problem. This problem is solved by a recurrent neural network 

associated to its primal-dual optimality conditions. After introducing the consid-

ered problem, the remainder of the paper is divided into four sections. The Section 2

presents the quadratic formulation of the problem. Afterwards, the primal-dual neural 

network solver is discussed in Section 3. Further, numerical results are displayed and 



analyzed in Section 4. Finally, Section 5 concludes this report with some final 

remarks and future directions for research in this field.

2 Tracking targets with connectivity constraints

In this study we consider the case in which a set of N agents are pursuing a set of N

targets on a limited Cartesian plane such as:                      ܺ௠௜௡ ൑ ݔ ൑ ܺ௠௔௫ (1.1)                      ௠ܻ௜௡ ൑ ݕ ൑  ௠ܻ௔௫ (1.2)

while a set of M mobile connecting devices (relays) are used to maintain 

communication between the pursuers. It is supposed that to each pursuer p i is 
assigned a target t i, i=1 to M, while the communication structure is given by a tree 

whose nodes are relays c j, j=1 to M and leaves are pursuers as shown in Figure 1.

Fig. 1 A scenario with 4 targets, 4 pursuers and 2 relay nodes.

Here, time is discretized and at time k-1 the positions of the targets are given by their 

Cartesian coordinates ܺ௜௞ିଵ , ௜ܻ௞ିଵ , ݅ = 1, … , ܰ while the positions of the pursuers are 

given by their Cartesian coordinates ݔ௜௞ିଵ , ,௜௞ିଵݕ ݅ = 1, … , ܰ as well as the position of 

the connecting nodes ݔ௜௞ିଵ, ,௜௞ିଵݕ ݅ = ܰ + 1, … , ܰ + .ܯ

Consider that the connecting tree T composed of N+M vertices is given by an 

arborescence starting at vertex p1, so that the tree can be described by the successors

of each vertex through the descendant function Ȟ். Here it is considered that 

connectivity is achieved at time ݇ െ 1 when:݂݅ ݆ א Ȟ௜் , ݅ = 1, … , ܰ + െ݀:ܯ ൑ ݔ௜௞ିଵ െ ௝௞ିଵݔ ൑ ݀ (2.1)െ݀ ൑ ݕ௜௞ିଵ െ ௝௞ିଵݕ ൑ ݀ (2.2)

while ݔ௜௞ିଵ א [ܺ௠௜௡,ܺ௠௔௫], ݕ௜௞ିଵ א [ ௠ܻ௜௡, ௠ܻ௔௫] , ݅ ݎ݋݂ = 1, … , ܰ + ܯ (3) ܺ௜௞ିଵ א [ܺ௠௜௡, ܺ௠௔௫], ௜ܻ௞ିଵ א [ ௠ܻ௜௡, ௠ܻ௔௫] , ݅ ݎ݋݂ = 1, … , ܰ (4)

It is also supposed that from a time period to the next, the position change of the 

targets is limited in a way such as for i=1 to N:



െߜ ൑ ܺ௜௞ିଵ െ ܺ௜௞ ൑ ߜ (5.1)െߜ ൑ ௜ܻ௞ିଵ െ ௜ܻ௞ ൑ ߜ (5.2)

where d while ܺ௜௞ א [ܺ௠௜௡, ܺ௠௔௫], ௜ܻ௞ א [ ௠ܻ௜௡, ௠ܻ௔௫] , ݅ ݎ݋݂ = 1, … , ܰ (6)

Now we consider that the pursuers take positions at stage k such as they 

minimize the performance index given by:
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which is the mean distance between pursuers and targets, while satisfying the above 

constraints (2) to (6) and a set of step size limitations constraints expressed as:
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Then the solution of this problem at stage k is identical to the solution of the linear 

quadratic mathematical programming problem given by:min ௫೔ೖ,௬೔ೖ,௜ୀଵ,…,ே σ ቀ൫ݔ௜௞ െ  ܺ௜௞൯ଶ + ൫ݕ௜௞ െ ௜ܻ௞൯ଶቁ௜ୀே௜ୀଵ                       (9)

under constraints (2), (3), (4),(5), (6) and (8).

3 Neural network as a fast solver for linear quadratic programs

The basic idea for solving an optimization problem using a tailored neural network is 

to make sure that the neural network will converge asymptotically at a fast rate and 

that the equilibrium point of the neural network will correspond effectively to the 

solution of the original optimization problem. In 1986, Tank and Hopfield introduced 

a linear programming neural network solver realized with an analogic circuit which 

appeared to be well suited for applications requiring on-line solutions [5]. After this 

first successful attempt, many neural network models for solving linear and quadratic 

programming problems have been proposed in the literature. For a review see [6,7]

and an application see [10].

According to the relationship between the states of the neural network and the 

values of primal and dual decision variables, it is possible to divide the existing 

recurrent neural network for solving linear and quadratic programming problems into 

three classes: primal neural network, primal-dual neural network, and dual neural 

network.           

In the present case, the mathematical programming problem presents inequality 
constraints as well as bounding limits. The adoption of a primal-dual neural network 



leads to add various slack variables, turning the size of network larger. This primal-

dual neural network is built such as global convergence is guaranteed while the

convergence speed can be adjusted by choosing an adequate value for its learning 

parameter [8]. To display the structure of the linear quadratic neural network solver, a 

a general linear-quadratic programming problem is parametrized as follows:

1
min     

2

T Tf Q c                                           (10)

s.t.     0h J d                                           (11.1)

 0g A b                                           (11.2)

                                                 (11.3)

is the decision vector, representing in our case the positions of the swarm entities.
Matrix Q is assumed symmetric positive semi-definite which allows to handle in a 

similar way linear quadratic and linear programming problems.

Once constraints (11.1), (11.2) and (11.3) are feasible, at least one optimal 

solution * will meet the Karush-Kuhn-Tucker optimality conditions (KKT) [9]. 

Then (1, 2) can be turned equivalent to the following set of linear variational 

inequalities: 
T

y y Hy p 0 y                 (12)

with the primal-dual variables 
T

T T Ty u v . Then the problem is to find a 

solution vector y*. Its feasible region and its lower/ upper limits are given by:

: y y 0
T

and  
T

(14)

Here has an appropriate dimension and each of its entries is chosen to be 

sufficiently large to replace numerically. The coefficients are defined as:

T
T T Tc d b and 

0 0

0 0
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H J

A

                   (15)

Then the neural network model which solves (10) with (11) is given by:

T
dy

E H P y Hy y
dt

         (16)

where is a positive learning parameter which can be used to adjust the 

convergence speed of the network, E is an identity matrix, P is a piecewise-

linear function defined as:
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4 Numerical example

Here we present a simulation of a small pursuer-relay-target system composed of two

pursuers, two targets and two relays. The communication radius has been set to 15m

and the agents move over an area of 200m². The respective speeds of pursuers and 

targets have been set to 10 m/s and 5 m/s. The neural network parameters have been 

chosen such as 1010 replaces in (3), = 105, d = 20 m, = 5 m, and r = 10 m.
The targets have been deployed initially at positions (-50m,-50m) and (50m, 50m).

The arborescence including the pursuers (P1 and P2) and the relays (R1 and R2,) is 

represented as P1 – R1 – R2 – P2.

Fig. 2 Convergent behavior of the neural network.

Fig. 3 Positions of entities over 20 periods.

Figure 2 shows that in general the neural network converges after an operation

of less than 0. 2s. Figure 3 displays the trajectories of targets and pursuers over time. 
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The dotted lines indicate the positions of targets while solid and dashed lines 

represent respectively the positions of pursuers and relays. The trajectories of target 1 

and 2 have been chosen as vertical lines with respectively steady increasing and 

decreasing positions at rate m/stage.

5 Final remarks

In this paper, we have presented a solution to the problem of positioning pursuers and 

relays over a limited free area where targets are moving. This has led to the 

formulation of a linear quadratic programming model, under connectivity constraints. 

In order to solve this problem at an efficient rate compatible with the pursuit of the 

targets, a primal-dual neural network has been built and used as a solver. Moreover, a

numerical example has been presented which displays the feasibility of the proposed

solution strategy.

Future improvements should consider first the optimization of the arborescence 
by including new relay nodes as the pursuers are involved in the exploration of larger 

areas. Then decentralised schemes will be proposed to pursue targets as well as 

maintaining dynamically connectivity between pursuers. This paper displays the 

result of a preliminary study towards this objective. 
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