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INTRODUCTION 1.1 PRECISE POSITIONING TECHNIQUES

GNSS precise positioning usually refers to 2 main techniques: Real-Time Kinematic (RTK) and Precise Point Positioning (PPP). Short-baseline RTK has the advantage that it doesn't require precise ephemerides and it usually provides a centimeter-level position in a few epochs [START_REF] Kubo | Instantaneous RTK Positioning with Altitude-aiding for ITS Application[END_REF]. However, it requires a spatially close and usually expensive reference station as well as a low-latency wireless communication media. On the contrary, PPP allows a user to estimate its position autonomously, requiring only the use of precise ephemerides and satellite clock model which makes it cost-effective. However, the convergence time to a precise position is usually very long (typically 30 minutes for decimeter-level position [START_REF] Bisnath | Current State of Precise Point Positioning and Future Prospects and Limitations[END_REF]). Although PPP and RTK are sometimes opposed, they are based on the same principle. The ambiguities can be estimated either as a float or an integer. They are estimated as float values if biases have not been totally removed in the measurements. It is the case for long-baseline RTK, in which residual tropospheric and ionospheric delays and carrier-phase noise have potentially an amplitude that is larger than half the carrier wavelength. It is also the case for PPP if the satellite clock correction used doesn't correct for satellite hardware delays. Ambiguities can also be estimated as integer, as it is the case for short-baseline RTK and PPP with ambiguity resolution (PPP-AR). Estimating ambiguities as integers considerably reduce the solution search space, implying a quicker convergence to a precise position provided no other bias are included in the observations. PPP-AR is relatively new and requires the use of specific satellite biases. The reader might refer to [Laurichesse, et al., 2009], [START_REF] Collins | Isolating and estimating undifferenced GPS integer ambiguities[END_REF] and [START_REF] Ge | Resolution of GPS Carrier-phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[END_REF] for more details on this technique allowing undifferenced integer carrier-phase ambiguity resolution. The aim of the present paper is to determine how PPP-AR and RTK techniques can be merged and how both technique advantages can be used by a road user.

ROAD USER ENVIRONMENT ANALYSIS AND

SCENARIO UNDER STUDY GPS receivers have become a mass-market device used by millions of drivers every day. Current positioning accuracy is usually sufficient to lead the way of a car driver into an unknown area. However, stand-alone positioning technique is not precise enough for Advanced Driver Assistance Systems (ADAS). Examples of such systems include lane keeping assistant, anti-collision and automatic control, typically requiring decimeter or even centimeter accuracy, regardless of the environment. It is all the more difficult to use GPS for road users that it experiences a wide range of propagation channels. It goes from a near-clear sky environment on a highway to the low satellite visibility and high multipath environment found in downtown urban canyon. Environments tackled in this paper are such that carrierphase observables coming from a minimum of 4 satellites are expected to be available:

 Semi-urban environment that can typically be found on a beltway.  Rural environment PPP alone cannot be used by road users due to long initialization or re-initialization time before obtaining a precise position. It is the reason why RTK was chosen as the primary precise positioning technique. The improvement of RTK in the examined environments will be studied in this paper, for both dual-frequency and single-frequency rover receivers. A short distance baseline will be assumed in the paper, in order to disregard issues related to atmospheric effects. The next section will describe the challenges associated to RTK positioning in the selected environments.

CHALLENGES OF RTK POSITIONING FOR

ROAD USERS IN STUDIED ENVIRONMENTS Urban environment are harmful to RTK positioning because of [START_REF] Kubo | Instantaneous RTK Positioning with Altitude-aiding for ITS Application[END_REF]:

 High multipath on the pseudorange and the carrier phase.  Frequent cycle slips.  Frequent loss of lock due to signal blockage and more generally weak satellite geometry. In order to have an idea of how GPS observations are affected in a semi-urban environment, data was collected on Bordeaux (France)'s beltway with a Septentrio PolarX2 (dual-frequency receiver), during 4 sessions of approximately 1 hour each. Statistics of availability on all sessions were computed and presented on Table 1. It can be seen that carrier-phase availability is generally lower than code pseudorange availability, resulting in weaker satellite geometry. Additionally, it can be denoted that L1 Doppler measurements have a significantly higher availability than L1 carrier phase. Moreover, a study of the time span duration of a loss of lock and the duration between 2 losses of lock was also performed. Results can be found on Figure 1 and Figure 2. It can be deduced that even if cycle slips are corrected, a road user on Bordeaux's beltway has less than 25 seconds to fix the ambiguity of a satellite 70% of the time and less than 50 seconds 90% of the time. In rural area, the GPS propagation channel is less restrictive as it usually offers better satellite visibility and less signal blockage. However, cellphone network coverage is worse than in urban area. [START_REF] Yang | Implementation of Wide Area Broadcast NRTK on a Communication Satellite Platform[END_REF] points out that local tests on UK roads have shown that even on the highway roads, the cell phone network cannot be guaranteed.

Table 1 Availability statistics of Septentrio

POSSIBLE IMPROVEMENTS BROUGHT BY UNDIFFERENCED AMBIGUITY RESOLUTION ON THE REFERENCE STATION TO RTK FOR ROAD USERS

In this paper, it will be shown that estimating undifferenced carrier-phase integer ambiguity using a PPP filter on the reference station and broadcasting them to the rover can help RTK positioning in the different studied environment. First, a new technique allowing a seamless switch from RTK positioning to PPP positioning on the rover will be presented. The capacity of this technique to keep submeter accuracy when the communication link required by RTK technique is no longer available will be underlined for both single-frequency and dual-frequency users. Secondly, it will be shown that estimating ambiguities on the reference receiver can be used to reduce the noise and multipath contribution of the reference receiver in the RTK float ambiguity solution, resulting in a higher ambiguity resolution success rate.

PRECISE POSITIONING BACKGROUND

NOTATIONS, MEASUREMENT MODEL AND CLASSIC OBSERVATION COMBINATIONS

Measurement model

In this paper, the following measurement model will be used for code and carrier-phase measurements (in meters):

{ where  designates the carrier frequency of the signal,  is the true geometric range between satellite and receiver antenna,  c is the speed of light,  and are the biases associated to receiver and satellite oscillator offset and are irrespective of the signal observed,  is the delay due to ionosphere on frequency ,  is the tropospheric delay,  and are the receiver and satellite hardware biases of the code and carrier-phase observations,  is observation multipath,  represents remaining errors of the observation,  is the wavelength of the signal's carrier i,  is the carrier-phase integer ambiguity and  is the wind-up effect.

Classic observation combinations

A number of classic combinations exist and are used in differential positioning or in point positioning.

Combinations are formed for 3 purposes: ionospheric delay mitigation, wavelength amplification or noise reduction. Although a combination that is widelane, ionosphere-free and low-noise would be highly desirable, it is mathematically impossible [START_REF] Urquhart | An Analysis of Multi-Frequency Carrier Phase Linear Combinations for GNSS[END_REF]. Then, classic combinations are a trade-off related to the need of the user. A detailed study of GPS dual-frequency and Galileo triple frequency combinations can be found in [START_REF] Collins | An overview of GPS inter-frequency carrier phase combinations[END_REF] and [START_REF] Henkel | Three frequency linear combinations for Galileo[END_REF] It creates an observable that has the same geometrical properties than L1 and L2 double differenced observables but with a longer wavelength . is then called the widelane ambiguity.  Narrowlane code combination.

( )

Assuming and have similar level of noise, is √ less noisy than . The ionospheric delay of the widelane carrier-phase equals the ionspheric delay of the narrowlane code [START_REF] Banville | Satellite and Receiver Phase Bias Calibration for Undifferenced Ambiguity Resolution[END_REF].  Melbourne-Wübbena combination. This combination uses the widelane phase combination in meters and the narrowlane code combination:

This combination is very useful to isolate and solve the widelane ambiguity. The narrow lane combination reduces the code noise.  Ionosphere-free combination. It consists in removing the first order of the ionospheric delay, while keeping the other effects unchanged. For dual frequency L1/L2 code measurements:

where and

The same combination can be formed with carrierphase observables:

 GRAPHIC (GRoup And Phase Ionospheric

Correction):

This combination is ionosphere-free but ambiguous. The noise level is half the code noise, which is around 6 times less than ionosphere-free code combination.

Satellite clock and orbit correction model

In order to remove the satellite clock bias and satellite hardware bias, corrections are applied to the measurements by the user. These available corrections are related to one specific combination of observations and corrects for both the satellite clock and the satellite hardware bias for this combination. For example, the satellite clock correction transmitted within the navigation message includes the satellite clock and the satellite hardware bias corresponding to the ionosphere-free code combination. This correction can be expressed as ̂. As a consequence, when applying directly the satellite clock correction included in the navigation message:

̂ If a single-frequency user applies the broadcasted satellite clock directly, a satellite bias will remain:

̂

In order to obtain an unbiased position, a correction called "Time Group Delay (TGD)" broadcasted in the navigation message has to be applied (

̂): ̂ ̂
It can be deduced that ̂ PPP-AR satellite clock correction corrects for both the satellite clock delay and the satellite hardware bias for the ionosphere-free phase combination. It is thus equivalent to ̂. This means that: ̂ Finally, satellite orbit corrections are estimated together with satellite clock corrections. Therefore, it is expected that satellite clock corrections are heavily correlated with orbit radial error. Then, it is important to use orbits and satellite clock from a same source of corrections (broadcasted message, IGS product or PPP-AR products) and not to mix corrections coming from different sources.

UNDIFFERENCED INTEGER AMBIGUITY RESOLUTION

ON THE REFERENCE RECEIVER Double differenced carrier-phase ambiguities can be easily isolated to integer values. Nonetheless, undifferenced ambiguities in traditional PPP absorb the satellite hardware bias and lose their integer properties. To estimate the undifferenced L1 ambiguities as an integer, a method is proposed in [Laurichesse, et al., 2009]. It is based on the use of clock products that keep the integer property of the narrowlane ambiguity in the ionosphere-free carrier phase combination. To summarize, it is performed in 4 steps:

 Estimation of the widelane ambiguities. This step is performed by subtracting Melbourne-Wübbena satellite biases from the Melbourne-Wübbena combination and averaging over a time window (usually 10 minutes [Laurichesse, et al., 2009]). 

INSTANTANEOUS FIXING OF PPP AMBIGUITIES USING RTK

In RTK processing, observations from the reference station have to be broadcasted very frequently to the user receiver. Indeed, the time correlation of atmospheric errors is relatively short [START_REF] Olynik | Temporal Characteristics of GPS Error Sources and Their Impact on Relative Positioning[END_REF]. If the age of the correction is too old, the error will not be removed or only partially which will reduce the accuracy of the solution.

Even if the tracking of the rover receiver is continuous, i.e. the carrier phase ambiguities of the rover receiver remain the same, the accuracy will drop and a standard procedure is to switch to classic single point positioning.

In RTKLib [START_REF] Takasu | RTKLib: Open Source Program Package for RTK-GPS[END_REF], an open-source RTK software, default configuration switches from RTK to single point positioning if the age of the last reference receiver observable is older than 30 seconds.

A first idea would be to run a PPP filter in parallel of the RTK processing, to obtain a high level of precision as soon as RTK is unavailable. However, it has different drawbacks:  The precision of the PPP software would rely on previous epochs which can be a problem if the rover was in a difficult environment a few minutes prior to the communication link outage.  It is computationally heavy.  Although using the RTK solution to constrain the position would be sufficient to initialize the PPP software, fixing each ambiguity provides a more redundant information. The aim of the technique presented herein is an instantaneous PPP ambiguities initialization using only the last single-epoch RTK ambiguities available. The PPP software can then be used to keep a high level of precision as long as the rover carrier-phase tracking remains continuous, without requiring a data link.

APPLICATIONS OF THE ALGORITHM

The idea of the algorithm is to use the last available data from the reference station to initialize a PPP filter and to keep a high level of accuracy autonomously, i.e. without receiving data from any reference station. A first application to this algorithm would be to cope with a loss of the communication link. Currently, most Network-RTK services are implemented on the commercial cellphone network services. Tests in the UK have shown that even on the highway, the data cell phone network cannot be guaranteed [START_REF] Yang | Implementation of Wide Area Broadcast NRTK on a Communication Satellite Platform[END_REF]. Secondly, this method could be applied to reduce the bandwidth resource (data rate) of the RTK corrections in the case of a satellite based NRTK service for example, transmitting data of each station every 5 minutes through a one-way data communication link for example. The accuracy would be maintained between 2 broadcasts reference receiver data using the technique described below and an efficient cycle slip correction method ( [START_REF] Banville | Improving Real-Time Kinematic PPP with Instantaneous Cycle-Slip Correction[END_REF]

…).

Finally the correspondence between the rover ambiguities obtained via a PPP filter and a RTK software introduced in this paper could be used for validation purpose. Dualfrequency PPP ambiguity resolution is mainly affected by satellite clock and orbit error while RTK is mainly affected by residual tropospheric and ionospheric delays. Checking that ambiguities correspond between the 2 techniques could be an interesting way to validate the ambiguities.

DESCRIPTION OF THE ALGORITHM

The algorithm is as such:

First step: Determination of L1 undifferenced carrierphase ambiguities on the reference receiver.

To do so, reference receiver carrier phase observations are processed in a PPP software receiver together with realtime products as described in 2.

2. An open-source software receiver is freely available on the website of the PPP-Wizard project [START_REF] Cnes | The PPP-Wizard Project[END_REF]. This software includes a PPP processor capable of interpreting the realtime stream broadcasted by CNES. This stream includes all the correction needed for integer PPP. A small modification of the sources can be made so that the software outputs the ambiguities in real-time. Once the ambiguities are fixed, they can be subtracted from the L1 carrier phase observables to form unambiguous observables similar to code pseudoranges. Following notations from 4., unambiguous carrier phase measurements will be referenced as ̅ in the following algorithm description.

Second step: Resolution of double-differenced ambiguities using RTK technique

The next step is to estimate the double-differenced carrier phase ambiguities. Different techniques can be used as the LAMBDA technique or the LMS technique [Enge,et al.,2nd Edition]. They can be roughly summarized as:

 A reference satellite is chosen. It is usually a high elevation satellite, tracked by both stations  The double-differenced carrier phase ambiguities are estimated using any integer ambiguity resolution technique (it is assumed that the residual atmospheric delays are negligible). The double differenced ambiguity can be decomposed as such:

In our algorithm, the unambiguous carrier-phase measurements of the reference receiver are used instead of the raw carrier phase measurements: ̅̅̅̅̅̅ Since can be considered as null as the carrier phase measurements of the reference receiver are no longer ambiguous, the double differenced ambiguities only include the rover ambiguities:

Third step: Instantaneous initialization of rover ambiguities in the point positioning model

Now, let's assume that the communication link has been lost and that the last data from the reference receiver is older than 30 seconds. The carrier-phase ambiguities, should remain the same as long as the tracking is continuous. Instead of switching to single-point positioning, the RTK rover ambiguities can be used to improve the accuracy of the solution. First, the carrier phase observations on L1 on the rover are:

{ ( )

With the subscript on the right indicating the carrier frequency, the superscript on the left indicating the satellite number, the reference satellite and the number of satellites. Subtracting the following vector (composed of the reference receiver single-differenced ambiguities), which is null for the reference satellite and equal to the previous RTK ambiguities for the other satellite, to the carrier phase observations:

{ ̅̅̅̅ ( ) ( ) ̅̅̅̅ ( ) ̅̅̅̅ ( )
The ambiguities associated to each satellite have been eliminated from the L1 carrier-phase measurements, and the reference satellite ambiguity is now common to all satellites and can be lumped into the receiver clock/hardware bias term. The observables are not ambiguous anymore and can be used for positioning.

Fourth step: Using the unambiguous carrier-phase on the rover for point positioning: dual-frequency and single-frequency case

Now that the carrier-phase observations have been turned into precise pseudoranges, they can be used for positioning. In order to obtain a precise position from these low noise and multipath measurements, all the errors affecting these pseudoranges have to be removed. Orbit error, satellite clock error and tropospheric delay should be almost completely eliminated as long as precise ephemerides are used and tropospheric delay is estimated in the positioning model. However, the ionospheric delay has to be removed. A dual-frequency user can directly use the L1 rover ambiguities in the ionosphere-free carrierphase measurements to obtain instantly a decimeter-level position. However, it is more difficult for a singlefrequency user. There are 2 ways to remove the ionospheric delay:

 Using a code and carrier-phase combination. The GRAPHIC combination can be used:

̅̅̅̅ ̅̅̅̅ ̅̅̅̅ ̅̅̅̅ ̅̅̅̅
Note that ̅̅̅̅ includes the reference satellite carrier-phase ambiguity . It has the advantage to be ionosphere-free and to divide the code noise and multipath error influence on the position by 2. However, the bias ̅̅̅̅ has to be determined.

 Using broadcasted ionospheric corrections or SBAS corrections, applied to the unambiguous carrier phase:

̅̅̅̅

This solution has the advantage that it doesn't use code measurement. Then the accuracy of the estimated position would not be deteriorated by code multipath and noise. However, the final accuracy of the position is highly dependent on the precision of the ionospheric corrections. Moreover, ̅̅̅̅ has to be estimated. Both techniques need specific bias estimation to obtain a precise position. The bias estimation will be described in the next section.

SATELLITE BIAS ESTIMATION

The observables that are proposed to be used in the previous section contain satellite biases that will not be mitigated when applying broadcasted or IGS satellite clock. These biases will be specific to each satellite. From our own experience, they can have a meter-level amplitude. Then, these biases have to be isolated and eliminated in order to obtain an unbiased position. To do so, it has been seen in 2.1 that different satellite clock corrections including different satellite biases can be used. In order to simplify notations, a reference satellite clock is chosen in the next section.

REFERENCE SATELLITE CLOCK DEFINITION

The aim of the studied algorithm is to keep a precise position when the data of the reference station is no longer available. Considering that the reference station is equipped with redundant hardware and software, a probable cause of an unavailability of the reference station data is a loss of the communication link on the rover due to GSM network unavailability or modem malfunctioning. Then, the use of PPP-AR precise ephemerides that requires a connection to a distant server would certainly not be possible. That is why the reference satellite clock will be referred to the ionosphere-free combination in the following work. It is the observable combination directly corrected by IGS or navigation message satellite clocks.

DUAL-FREQUENCY CASE: POSITIONING WITH UNAMBIGUOUS IONOSPHERE-FREE COMBINATION

Once the widelane and the narrowlane ambiguities are determined on the dual-frequency rover, the unambiguous ionosphere-free combination can be formed and used for positioning. If the rover has access to the PPP-AR products used by the reference station, no bias estimation is required. If the user has to switch to IGS/broadcasted ephemeris, a bias has to be corrected. It can simply be obtained at every epoch by differencing the PPP-AR satellite clock correction used on the reference receiver with the IGS/broadcasted ephemeris. To take into account any difference in the satellite clock that would have been lumped into radial orbit error, the geometric ranges obtained using the 2 sets of products are also differenced:

̂ ̂ ̂ ̂
where ̂ and ̂are the geometric range computed with IGS/broadcasted message orbits and PPP-AR orbits respectively.

A plot of the time evolution of for the different satellite can be found on Figure 3. It is important to denote that only the difference between satellite values is important, since any bias common to all satellite will be absorbed in the receiver clock estimation. Even if the value of the bias has a clear time evolution, the difference between satellite is relatively stable over a day.

Figure 3 Time evolution of the difference between IGS final satellite clock correction and GRGS satellite clock correction (including orbit satellite radial error)

. The geometric range is computed using the position of TLSE1 (Toulouse, France). PRN01 (SVN49) is not included.

SINGLE-FREQUENCY CASE: POSITIONING

WITH UNAMBIGUOUS GRAPHIC OBSERVABLES As described earlier, the unambiguous GRAPHIC combination corrected using the broadcasted satellite clock correction is as such:

̅̅̅̅ ̂

Where ̅̅̅̅ is the unambiguous L1 carrier-phase measurement.

̅̅̅ has to be mitigated as it is specific to each satellite. Three methods are proposed.

GRAPHIC SATELLITE BIAS ESTIMATION USING P1P2 CODE MEASUREMENTS Substracting the

ionosphere-free combination to the unambiguous GRAPHIC combination on the reference station gives:

̅̅̅̅

The satellite phase windup effect can easily be mitigated using a model. To estimate , a Kalman filter can be used. can be considered constant over a day.

No assumption can be made on temporal variation as it contains the reference satellite L1 ambiguity of the rover and it will be estimated as a term common to all satellites. Considering the relatively high level of noise and multipath of the ionosphere-free combination, the estimation of the satellite bias has to use data from a whole satellite pass and from more than one station. For real-time processing, the satellite bias value of The advantage of this method is that the average window to estimate the bias can be much shorter than in 3.5.1 and the impact of code multipath on the bias accuracy will be reduced.

A last method is presented in the next section. It was used in the rest of this work because it can be used on a singlefrequency reference receiver, contrary to the 2 previous methods.

GRAPHIC SATELLITE BIAS ESTIMATION DECOMPOSING THE PSEUDORANGE Another way to estimate ̅̅̅̅

is to use a station with surveyed coordinates and estimated tropospheric delay, i.e. the reference station or any station with a realtime data stream. Then, the computed geometric range and the slant tropospheric delay can be removed from GRAPHIC pseudorange:

̅̅̅̅ ̂ can then be estimated using a Kalman filter that estimates both satellite biases and a term common to all satellites. It is the recommended method to estimate the different biases.

SINGLE-FREQUENCY CASE: POSITIONING WITH UNAMBIGUOUS CARRIER-PHASE AND IONOSPHERIC CORRECTIONS

It has been seen that the GRAPHIC observable could be used for single-frequency PPP. The second observable that was proposed to be used for positioning was the unambiguous carrier-phase on L1, using broadcasted or IGS clock corrections:

̅̅̅̅ ̂

It can be seen that has to be determined. Let's decompose it:

̅̅̅̅ ̅̅̅̅ ⏟

Having

allows any user to use the carrier-phase observable directly for positioning, using broadcasted or IGS ephemerides.

ACCURACY TEST ON REAL DATA

HARDWARE, SOFTWARE AND SCENARIO DEFINITION

The different PPP initializations have been tested on real data. The reference station was TLSE based in Toulouse, France. The data was collected via a real-time stream and a modification of the software BNC available on the website [START_REF] Cnes | The PPP-Wizard Project[END_REF], but it was post-processed. The rover receiver was a uBlox LEA-6T single-frequency receiver, connected to a static antenna on the rough of an ENAC building. The position of the antenna was surveyed on the day of the data collection, using data from a Novatel Propak-G2 dual frequency receiver connected to the same antenna via a splitter and the online PPP software GAPS from the University of New-Brunswick [START_REF] Leandro | Precise Point Positioning with GPS: A New Approach for Positioning, Atmospheric Studies, and Signal Analysis[END_REF]. The baseline length was approximately 400 meters. L1 carrier-phase ambiguities on the reference receiver were determined using a modified version of BNC. Then, the double-differenced range was determined from the known baseline, and removed from double-differenced carrier-phase to obtain double differenced ambiguities. Finally, the reference receiver ambiguities were removed from the doubledifferenced ambiguities, to obtain the rover ambiguities as explained in 3. The position of the antenna was estimated on a singleepoch basis, using L1 C/A code measurements from the uBlox receiver. The result can be found on Figure 4. It can be seen that raw code measurements have a very high level of noise/multipath and provide a meter level position. The aim of this part is to determine the type of accuracy that can be expected and if the technique can give better accuracy than stand-alone positioning when the age of the last reference data is too old to use RTK technique. The L1 ambiguities were used to initialize a PPP filter, in 1 epoch. A careful cycle slip detection was performed using Doppler measurements.

3.7.2

POSITIONING WITH GRAPHIC PSEUDORANGES First, the unambiguous GRAPHIC pseudorange was used directly, instead of code measurements as explained in 3.5. The result can be found on Figure 5. It can be seen that the amplitude of the error is divided by 2, as expected from noise propagation law. Although the error is divided by 2, the positioning accuracy is still relatively low on the uBlox receiver (meter-level), due to the high level of noise and multipath on code measurement and since no assumption was made on the receiver dynamic. One way to improve it would be to smooth the unambiguous GRAPHIC pseudorange. The smoothing can be performed using observations obtained before the communication link loss and must be continued after. A first idea would be to use a Hatch filter with the ambiguous L1 carrier-phase smoothing the code pseudorange. However, the Hatch filter has to be reinitialized every time a cycle clip occurs. Moreover, it can bias measurements because of the ionospheric divergence issue. A more robust method is proposed in the following section. 

̅̅̅̅

This filter was nicknamed Phase/CMC PPP filter, as it uses phase and "code minus carrier" (CMC) observations. The method is inspired from [Muellerschoen, et al., 2004], which uses a linear fit instead of a Kalman filter and was suggested by Denis Laurichesse from CNES. A Kalman filter is used to estimate ̅̅̅̅ from ̅̅̅̅ observable (independently on each satellite) together with the position, tropospheric delay, and remaining unknown ambiguities. More details are given on that Kalman filter in the Annex.

̅̅̅̅ is estimated as a receiver clock term, biasing all measurements. A sigma of 5 meters per hour is assumed in the process noise of the Kalman filter for ̅̅̅̅ , while ̅̅̅̅ is not constrained. This smoothing method is a lot more robust to short period loss of locks and data outages that can be encountered by a road user.

It is interesting to denote that the pseudorange ̅̅̅̅ ̅̅̅ is affected by the same satellite bias as the unambiguous GRAPHIC pseudorange as long as the satellite bias is constant in the smoothing window, which turned out to be the case in practice. A plot of the positioning accuracy obtained can be found on Figure 6. A convergence time can clearly be seen on the figure. It is the time required to obtain a smoothed ionospheric delay estimation. Note that the PHASE/CMC PPP filter can be run on the rover in parallel of RTK positioning when data from the reference station is available, so that a sub-meter level position could be obtained directly when the communication link is lost. The filter was tried with and without residual tropospheric delay estimation. It turns out that the estimation of tropospheric delay was not necessary provided UNB3m [Leandro, et al., 2006] prediction model was used, as it extended convergence time 3.7.4 POSITIONING WITH UNAMBIGUOUS CARRIER-PHASE AND EGNOS IONOSPHERIC CORRECTIONS It has been shown in 3.6 that unambiguous carrier-phase could be used for positioning together with broadcasted ephemeris, provided its specific bias is correctly taken into account. The same Kalman filter as in 3.7.3 was used to estimate the position. The observation vector contains L1 carrier phase only measurements together with EGNOS ionospheric corrections instead of code-minusphase observations. EGNOS ionospheric corrections were weighted with the standard deviation of the ionospheric slant delay computed as recommended in [RTCA, 2006]. One issue is that the EGNOS ionospheric correction is not affected by a random noise error on a short-term window. Then, the Kalman filter may give too much confidence in the estimated ionospheric delay. The process noise of the estimated ionospheric delay was set to a very high value, so that its covariance matrix doesn't become overly optimistic. Tropospheric delay was not estimated, as it turned out to weaken the model. UNB3m predicted tropospheric delay was used instead. The positioning error is plot on Figure 7. The positioning accuracy obviously highly depends on EGNOS corrections accuracy, which are at the meter level. The accuracy of satellite biases is also very important, as it is multiplied by 2 (see 3.6).

3.7.5

POSITIONING WITH UNAMBIGUOUS DUAL-FREQUENCY CARRIER-PHASE Finally, the algorithm is tested using dual-frequency data of a Novatel receiver connected to the same antenna than the uBlox. Centimeter-level position was expected [Laurichesse, et al., 2009]. However, the resulting accuracy was a little lower than expected. It can be due to the fact that position was not constrained and that biases required for the processing (see 3.4) may introduce decimeter-level error. However, 10-cm accuracy was obtained in horizontal. 

REDUCING REFERENCE RECEIVER CODE NOISE AND MULTIPATH CONTRIBUTION IN THE AMBIGUITY FLOAT SOLUTION

Carrier-phase tracking is less robust than code tracking. In difficult environment, receivers will experience frequent cycle slips, i.e. changes of ambiguities value and complete loss of tracking. In these conditions, urban users have to fix ambiguities almost as soon as carrier-phase observables are available. [START_REF] Kubo | Instantaneous RTK Positioning with Altitude-aiding for ITS Application[END_REF] and [START_REF] Bahrami | Instantaneous Doppler-Aided RTK Positioning with Single Frequency Receivers[END_REF] recommend to use instantaneous ambiguity resolution to avoid using cycle slip detection algorithm which are not always reliable and are a burden on real-time processing. To fix ambiguities instantaneously, the float solution obtained using code and carrier-phase measurement has to be as precise as possible. The influence of code accuracy on single-epoch ambiguity fixing success rate was studied in [START_REF] Milbert | Influence of Pseudorange Accuracy on Phase Ambiguity Resolution in Various GPS Modernization Scenarios[END_REF]. It is shown that the success rate highly depends on the accuracy of the estimated float ambiguities. To improve the accuracy of these float ambiguities, different techniques can be found in the literature: Doppler smoothing in the observation or the position domain [START_REF] Bahrami | Instantaneous Doppler-Aided RTK Positioning with Single Frequency Receivers[END_REF] and [START_REF] Kubo | Instantaneous RTK Positioning Based on User Velocity Measurements[END_REF], INS integration [START_REF] Petovello | Real-Time Integration of a Tactical-Grade IMU and GPS for High-Accuracy Positioning and Navigation[END_REF]… The approach presented in this paper is to reduce the level of noise and multipath of the code double difference. Considering that it is composed of both noise and multipath from the reference receiver and from the rover receiver, a first step is to reduce the contribution of the reference receiver.

Although it is usually smaller than rover receiver contribution, reference receiver noise and multipath can be at decimeter level if the code measurements are smoothed and at meter level if not.

A method was proposed by the authors to reduce the noise and multipath contribution of the reference receiver to centimeter-level (widelane carrier-phase noise level) [START_REF] Carcanague | A New Algorithm for GNSS Precise Positioning in Constrained Area[END_REF]. The algorithm presented was based on 3 steps:  First, the widelane ambiguities were estimated on the reference receiver, using widelane satellite biases available from PPP-Wizard project website [START_REF] Cnes | The PPP-Wizard Project[END_REF] or IGS GRGS analysis center [Perosanz, et al., 2009]. The estimated widelane ambiguities are then added to widelane carrier phase to obtain unambiguous widelane carrier-phase measurements.  Unambiguous widelane carrier phase measurements is then differenced with rover narrowlane code measurements. Satellite biases present in the resulting measurements are removed using PPP-AR products.  RTK positioning can then be performed classically, using single-differenced or doubledifferenced observables indifferently.

This method has the advantage to improve the accuracy of the ambiguities float solution (and of code differential positioning) up to a factor of √ if the reference receiver and the rover have similar level of noise. It was also shown that position could be obtained, using singledifferenced instead of double-differenced observables used in classic RTK technique. In single-differenced observables, ambiguities are not as correlated as in double-differenced observables [Enge,et al.,2nd Edition]. Furthermore, RTK with single difference measurements avoids the issues related to reference satellite choice (and switch) in the ambiguity values and the positioning filter covariance matrix. However, the use of single-difference showed little improvements in the ambiguity resolution success rate, mainly due to the difficulty associated to the estimation of the additional hardware bias required [START_REF] Carcanague | A New Algorithm for GNSS Precise Positioning in Constrained Area[END_REF].

In this section, the concept of using only unambiguous carrier-phase observables from the reference station instead of code pseudorange will be extended to singlefrequency receivers.

SINGLE-FREQUENCY CASE

Just as in the case of the algorithm presented in [START_REF] Carcanague | A New Algorithm for GNSS Precise Positioning in Constrained Area[END_REF], the aim is to use only unambiguous carrier-phase measurements from the reference receiver instead of code measurements, in a short-baseline scenario.

Contrary to the dual-frequency case, no combination can be performed so that ionospheric delay on the carrier phase combination of the reference receiver equals ionospheric delay on the code combination of the rover. One way to remove the ionospheric delay is to use the GRAPHIC combination [Laurichesse, et al., 2009], with the carrier phase of the reference receiver and the code of the rover. Let's write the code and carrier phase measurements on the reference and the rover receiver, in the case of a short baseline (atmospheric delay are the same on the rover and the reference station):

{ {
The proposed single-frequency algorithm is as such:  (1) Resolution of the L1 ambiguity on the reference receiver. The method described in 2.2 can be used. To fasten the resolution, the coordinates of the reference station can be surveyed and assumed known. i.e.:

{ ̅̅̅̅̅

The operator represents the between-satellite difference.

If the reference receiver is single-frequency, a precise positioning system can be obtained by removing the single-differenced geometric range from reference receiver to satellite, the single-differenced satellite clock and the single-differenced tropospheric delay. However, if the reference receiver is dual-frequency, the last step can be applied:  (4) Removing single-differenced unambiguous ionosphere-free carrier-phase measurements from the reference receiver.

{ ̅̅̅̅̅ ̅̅̅̅̅̅̅

Where ̅̅̅̅̅ Different techniques can be used to estimate for each satellite. Three techniques are described in 3.5. We see that the position of the rover can be estimated once again accurately, using a precise ambiguous measurement and a coarse unambiguous measurement that doesn't introduce reference receiver code noise.

TEST ON REAL DATA

This algorithm was tested on 2 IGS stations (USNO and USN3). The ambiguities were estimated on USN0 using a dual-frequency PPP filter. The results can be found in Table 2. Indeed, the algorithm could be used on a low-cost receiver that would be used as a reference receiver. Instead of using code measurements that have a noise superior to 2 meters (1 [START_REF] Realini | goGPS free and constrained relative kinematic positioning with low cost receivers[END_REF]), the unambiguous carrier-phase would be used, together with estimated tropospheric delay and precise satellite clock and orbits. The main application of this technique would be first to extend the spatial range of a reference dualfrequency receiver (limited to 10km to avoid atmospheric errors) with a low cost receiver situated closer to the rover, or secondly to use a low-cost receiver as a reference receiver. In the first case, the ambiguities of the low cost receiver could be instantly determined using the technique explained in 3. In the second case, the ambiguities would have to be estimated as in [Laurichesse, et al., 2009] or using a PPP filter. This technique acts as a long term smoothing using PPP ambiguities, but contrary to classic smoothing techniques affected by ionospheric divergence, the longer the window, the better the accuracy. Indeed in a PPP filter, the longer the time window, the better the ambiguity accuracy. An example of improvement in term of code solution accuracy can be found in Table 1. In that case, uBlox ambiguities were instantaneously initialized using undifferenced ambiguities from TLSE and RTK between the 2 stations. In Table 4, the ambiguities were estimated on the uBlox, using a real-time-like processing. A single-frequency PPP filter was used, using EGNOS corrections. The uBlox code measurements were not used at all in the processing. TGD, UNB3m tropospheric delay and IGS final clock were removed from measurements, to obtain doubledifferenced geometric range (see step (3) of 4.1). It can be seen that the contribution of the reference uBlox in the RTK initial float solution residuals is reduced to decimeter level. To estimate ambiguities on the reference station, the best method with a low-cost receiver turned out to be the EGNOS-based PPP filter in our test, as the wavelength associated to the estimated ambiguities is 2 times the wavelength of the GRAPHIC combination. To form the GRAPHIC combination with the code of the rover and the unambiguous carrier phase of the reference receiver, the reference receiver ambiguity estimated with EGNOS-based PPP filter is divided by 2 and so is the error associated to it. This technique can allow lower-cost single-frequency receivers to be used as reference stations.

CONCLUSION AND FUTURE WORK

In this paper, it is shown that estimating the carrier-phase ambiguities on the reference receiver can allow 2 important improvements for a RTK road user:  PPP ambiguities of the rover can be instantly initialized using the technique described in 3. . The PPP filter can be used if the reference station data is no longer available. Decimeter level accuracy for dual-frequency users and a few decimeter precision (with a low-cost receiver) for single-frequency users were demonstrated in a static case. A single-frequency PPP filter that can use either EGNOS ionospheric corrections or code-based ionospheric observations was presented in this paper. Three methods were presented to estimate the necessary satellite biases.  Secondly, it has been shown that once ambiguities are determined on the reference receiver, a new unambiguous positioning method can be used for single-frequency users using only unambiguous carrier-phase measurements of the reference receiver, together with predicted tropospheric delay, satellite clocks and orbits which accuracy are usually at decimeter-level in real-time. This method is especially recommended for low-cost single-frequency receivers used as reference stations as it can completely avoid the use of reference receiver code measurements. However, a number of improvements remain to be done. First, the estimation of satellite biases would be more accurate using a network of receivers. Secondly, the accuracy of the single-frequency PPP filter highly depends on the accurate cycle slips detection. Doppler measurements were used in this paper, but low-cost INS can be used as well [START_REF] Takasu | Cycle Slip Detection and Fixing by MEMS-IMU/GPS Integration for Mobile Environment RTK-GPS[END_REF]. Finally, phase measurements were used with either code measurements or EGNOS corrections in our single-frequency PPP filter. Using the 3 observations altogether in a unique singlefrequency PPP filter could be an idea to reduce convergence time while keeping a high level of precision of the final solution. is the total number of satellites  is the 'ionospheric clock", which is the term common to all estimated ionospheric delays  are the ambiguities that have not been initialized (from satellites with unknown reference receiver ambiguities or that have first been tracked after initialization)  is the number of ambiguities that have not been initialized. The estimation of is necessary so that the value of the ionospheric delay remains the same after a loss of lock or after a change of the reference satellite, as all ionospheric delay observables are offset with a common ambiguity.

b. Observation vector

The observation vector is as such:

[ [ ̅̅̅ ̅̅̅̅ ̅̅̅ ̅̅̅̅ ] ⏟ [ ] ⏟ ]
Where 

is the number of satellites with known ambiguities

c. Transformation matrix

The transformation matrix H is as such:  and are the geometrical matrix of the satellites with unknown ambiguities and known ambiguities respectively.  is the tropospheric mapping function for the elevation of the satellites with unknown ambiguities and known ambiguities respectively.  is the identity matrix of size .

Figure 2

 2 Figure 1 Number of epochs between 2 tracking losses cumulative density function for GPS L1 C/A code, carrier phase and Doppler and L2(P) code and carrier-phase. Data was collected on Bordeaux(France) beltway with a Septentrio PolarX2.

  respectively. The most famous include:  Widelane combination. It consists in differencing the carrier phase observables directly in cycles unit:

Figure 4

 4 Figure 4 Single point position accuracy, with code measurements from a uBlox LEA-6T, using rapid IGS ephemeris and EGNOS ionospheric corrections. Raw code measurements were used as provided by the uBlox and were weigthed by the cosecant function of the elevation angle. Data rate is 1/5 Hz. No assumption was made on the dynamic of the receiver.

Figure 5

 5 Figure 5 Positioning error using only GRAPHIC unambiguous pseudorange and IGS rapid ephemerides on a uBlox LEA-6T. Pseudoranges were weigthed by the cosecant function of the elevation

Figure 6

 6 Figure 6 Positioning error on a uBlox LEA-6T obtained while using a Kalman filter estimating ionospheric delays on each satellite, position, tropospheric delays and remaining ambiguities. The PHASE/CMC PPP filter was initialized with 8 ambiguities (out of 9 visible satellites) at the first epoch. Data comes from the same collection, but rate was kept at 1Hz, to ease Doppler cycle slip detection. Pseudoranges were weighted by the cosecant function of the elevation angle. No assumption was made on the dynamic of the receiver.

Figure 7

 7 Figure 7 Positioning error obtained using L1 carrier phase corrected with EGNOS ionospheric delay and precise ephemeris. Pseudoranges were weighted using broadcasted variance of ionospheric slant delay error. Data rate was 1Hz. No assumption was made on the receiver dynamic.

Figure 8

 8 Figure 8 Positioning error obtained after initializing a dulfrequency PPP filter with 8 satellite narrowlane ambiguities out of 9 visible. Receiver was a Novatel ProPak-G2 dualfrequency receiver. Data was collected at 1/5Hz. No

  Two observables are created in this step: o The first is a single difference (between receivers) of the L1 carrier phase observables. o The second is the GRAPHIC combination, with the unambiguous phase measurements of the reference receiver and the code measurements of the rover, i.e.:

ANNEXE 1 .

 1 KALMAN FILTER DESCRIPTION FOR 3.7.3 a. State vector The state vector X is as such: [ ] Where  X, Y, Z are the receiver antenna ECEF coordinates  is the estimated receiver clock (including hardware bias)  is the estimated residual tropospheric delay  is the estimated ionospheric delay for satellite i 

 Formation of the ionosphere-free carrier phase combination and application of PPP- AR satellite clock corrections, i.e: ̂  Removal of widelane ambiguities, i

  .e.

	̂	
	with	and
	 PPP-	

processing to determine the integer narrow-lane ambiguities. Effects

  

	affecting the
	above pseudorange have to be accurately
	modeled and removed. The integer narrow-lane
	ambiguity resolution involves estimating:	
	o the receiver clock term (	),
	o the zenith tropospheric delay, and	
	o the integer ambiguities are estimated in
	a Kalman filter.	

The required PPP-AR products can be obtained from different sources. The CNES/CLS IGS center is providing both the satellite clock bias and the Melbourne-Wübbena satellite biases for post-processing purposes (GRG products freely available on the IGS website)

[Perosanz, et al., 2009]

. Recently, PPP-AR products have been available in real-time via Ntrip streams within the PPP-Wizard project

[START_REF] Cnes | The PPP-Wizard Project[END_REF]

.

Table 2 Estimated baseline accuracy comparison, using classic P1 code double difference and the technique described in 4.1.

 2 

		Classic	code	GRAPHIC with USN0
		double		unambiguous carrier
		difference		phase and USN3 code
				measurements
	Standard	0.47/0.90/0.70	0.36/0.66/0.52
	deviation		
	(X,Y,Z		
	meters)		

Table 3 Noise+multipath statistics of the 2 techniques in a test between a uBlox LEA-6T and TLSE IGS station, instantaneously initializing uBlox ambiguities with TLSE ambiguities and known double differenced ambiguities.

 3 

		Classic	GRAPHIC with uBlox
		smoothed	unambiguous carrier phase
		code double	and	TLSE	code
		difference	measurements
			(instantaneous initialization
			of ambiguities, see 3.2)
	Standard	1.22m	0.34m	
	deviation			
	Mean	-0.05m	-0.01m	

Table 4 Noise+multipath statistics of the technique in a test between a uBlox LEA-6T and TLSE IGS station, estimating ambiguities with a single-frequency EGNOS-based PPP filter.

 4 

		Classic	GRAPHIC with uBlox
		smoothed	unambiguous carrier phase
		code double	and	TLSE	code
		difference	measurements (Ambiguities
			are estimated using a PPP
			filter, see 3.2)
	Standard	1.22m	0.45m	
	deviation			
	Mean	-0.07m	-0.03m	
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