N
N

N

HAL

open science

xFFBD : towards a formal yet simple and complete
functional modeling technique for system designers

Bruno Aizier, Stéphanie Lizy-Destrez, Charlotte Seidner, Vincent Chapurlat,

Daniel Prun, Jean-Luc Wippler

» To cite this version:

Bruno Aizier, Stéphanie Lizy-Destrez, Charlotte Seidner, Vincent Chapurlat, Daniel Prun, et al..
xFFBD : towards a formal yet simple and complete functional modeling technique for system designers.
INCOSE 2012, 22nd Annual International Council on Systems Engineering Symposium, Jul 2012,
Rome, Italy. pp xxx. hal-01022483

HAL Id: hal-01022483
https://enac.hal.science/hal-01022483

Submitted on 21 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://enac.hal.science/hal-01022483
https://hal.archives-ouvertes.fr

XFFBD: towards a formal yet functional modeling
language for system designers

Bruno AIZIER Vincent CHAPURLAT
ENSTA Bretagne LGI2P
2 rue Francois Verny Parc scientifigue Georges Besse
29806 Brest CEDEX 9 — France 30035 Nimes CEDEX 1 — France
Bruno.Aizier@ensta-bretagne.fr Vincent.Chapurlat@mines-ales.fr
Stéphanie LIZY-DESTREZ Daniel PRUN
ISAE — SUPAERO ENAC - LII
10 avenue Edouard Belin 7 avenue Edouard Belin - BP 54005
31055 Toulouse CEDEX 4 — France 31055 Toulouse — France
Stephanie.Lizy-Destrez@isae.fr Daniel.Prun@enac.fr
Charlotte SEIDNER Jean-Luc WIPPLER
L'UNAM - University of Nantes - IRCCyN LUCA Ingénierie
1 rue de la Noé, 44300 Nantes — France 1 Chemin de Pechmirol, 31320 Mervilla — France
Charlotte.Seidner@univ-nantes.fr jlwippler@gmail.com

Copyright © 2012 by Bruno AIZIER, Vincent CHAPURLABtéphanie LIZY-DESTREZ,
Daniel PRUN, Charlotte SEIDNER & Jean-Luc WIPPLERrmission granted to INCOSE to publish and use.

Abstract. Although the eFFBD formalism dates back to theQk9(or even, in a simplified
form, the 1950s), it seems that it is still notnagch used by the Systems Engineering com-
munity as it could. Indeed, eFFBD is a modeling laage focusing on functional paradigm
i.e. allowing functional and behavioral modeling andsening about a system. Currently, it
is often confronted or compared to other languageb as SysML for activity modeling (ac-
tivity diagrams) based on object paradigm. Thisgpagms to demonstrate the interest and
the potential advantages for systems designerspls of thediscipline-orienteddesigners

to dispose of an enriched (conceptually and sewaht) eFFBD modeling language called
here xFFBD. This has to be a credible frameworkmiodeling, communicating and reason-
ing about complex systems. After shortly recallihg history, the key concepts and capabili-
ties of eFFBD, this paper compares eFFBD with otbenalisms considered here as relevant
for the study, Petri nets and SysML. Several ledsthen identified and discussed in order
to improve the eFFBD language and to provide & diraft version of xFFBD specification.

Functional and object paradigm

For many years now, systems designers involvetdrdevelopment of complex systems
have been essentially guided or interested byuhetional paradigmThis paradigm may be
summarized as “designing a system means to destgifienctions, their organization in or-
der to fulfill a given mission, and to gather &ese functions in a coherent functional archi-
tecture, later allocated to a physical architectufais allows then to describe and to reason
not only onwhat the system must thot also orwhen and how it must doiie. the resulting
dynamic of the entire system of interest”. Indettds dynamic or behavior is specified
through the functions' dynamic (their executionatian, temporal hypothesis, synchroniza-

! “System architecture is the embodiment of concemts the allocation of physical/informational ftina to
elements of form, and definition of interfaces améime elements and with the surrounding contexd. &aw-
ley — MIT)

tion rules...) and the control environment that s tisual control structures (loops, choices,
etc.). In this way, (e)FFBD provide means and cpteeelevant for functional and dynamic
aspects modeling.

Since the last decade, OMG and INCOSE have pronastether way of modeling based
on object paradigmThis paradigm particularly highlights the poskipito model a system
by using encapsulation mechanisms (a set of commbaviors and knowledge is gathered
into a class allowing then to describe a sub sentities of the world), the communication
between classes by using messages, the inheritdrimehaviors between generic and more
specific classes. So, the object paradigm cannastrily opposed to the functional one but
has to be considered as different way of thinkirgystem. In real life, both are relevant for
systems such as embedded systems and more lagjelare intensive systems. As an ex-
ample, SysML (System Modeling Language) has game@dde acceptance in the SE com-
munity as a general-purpose modeling language basexbject paradigm. Based on UML,
often deemed too software-centric, it is also glical language, organized around dia-
grams.

In the context of designing complex systems withimultidisciplinary team encompass-
ing many engineering disciplines, at once fundaalerimechanics, electronic, thermal ...)
and transversal (integrated logistics support, bapipain, human factors ...), the functional
paradigm seems to be the most appropriate to bagjether, in a collaborative way, an opti-
mal solution against expected various stakeholdeeds to be achieve. Even if the object
paradigm has truly demonstrated its potentialitygré is still a strong cultural gap for the
disciplines mentioned above, that are largely faghdn the functional paradigm, to adopt
such a new paradigm for them. So, this paper istentlemonstrate the interest and the po-
tential advantages for system design multidiscipyirtaams to dispose of an enriched (con-
ceptually and semantically) version of eFFBD mauglianguage called here xFFBD (x, as
variablex, means “unknown” at this stage). The goal is hengropose and formalize a cred-
ible extended functional-oriented framework for ralmoly, communicating and reasoning
about complex systems.

(e)FFBD position

A brief history of (e)FFBD in Systems Engineering

The FFBD (Functional Flow Block Diagram) languagaswirst introduced in the late
1950s at TRW. It was not the very first process fuactional- modeling language (see Fig-
ure 1), yet it can be considered as the first moddechnique favored by the Systems Engi-
neering community (Chesnut 1967). The FFBD languémmised on the control sequencing
of the functions was for instance used by NASA tmdel the time sequence of space systems
and flight missions. Indeed, this language provslestem designers with an easy framework
to describe the behavior of complex, distributadrdrchical, concurrent and communicating
systems.

In the 1990s, some enhancements were added talprthe designer with a way to mod-
el flows whether they are input, output or triggering flo(FAA 2006, NASA 1995, NASA
2007). Theseenhanced FFBDor eFFBD) can be described as discrete evenérmgsand
therefore be executed in simulation tools, thuviding some validation capability (Seidner
et al. 2008, Seidner 2009). In the next section, the roharacteristics of eFFBD are high-
lighted and discussed in contrast to some otherfimaggdlanguages.

1921

Process Flow Chart

Frank Gilbreth, “Process Charts—First Steps in
Finding the One Best Way"

2009
eFFBD semantics formalisation
1947 for eFFBD model checking

Multi-Flow Process Chart Charlotte SEIDNER, PhD Thesis
ASME Standard for Operation and Flow Process Charts

0 40's 0 cos |IECEN| sos “ 2000's ,

FFBD
(by widely used by
NASA for space
TRW) mission ” eFFBD

i3 3 13

Status Monitoring | | Launch [Fiight Mission

From (Chesnut 1967, 254-255)

Figure 1: A short history of (e)FFBD

eFFBD as a readable, understandable, executable and non-
ambiguous representation

As Albert Einstein once stated:Verything should be made as simple as possibtejdiu
simpler. We might add that the description of basic bét@vshould also be as simple as
possible but neither simpler, nor use “tricks”.ths way, let us consider for instance the
classical pattern of the access in mutual exclugan single resource, where two concurrent
agents (of whatever nature they may be) are penfigrsome activities or transformations
and need at a certain time to use a single availa@source before releasing it. If one agent
wants to take the resource, while it is being usgthe other agent, it has to wait and its re-
lated activity or function will be pending. Thishzevior is essential in concurrent processing
modeling, from parallel computing systems to maaiufiang or organizational systems. This
behavior is rendered in eFFBD as illustrated iruFeg?.

o agent 1

I3 fe f @

MEIR] Do s [MERIPickwp | L eierpg

Something Before 1 Res;:;:t:?:g[)o Something After1

.4

[MELR] Resource

L

" A3 d

% :
- § : @)
MEIR] Do s [MERIPickwp | L eierpg

R
Semething Before 2 esource and Do Semething After 2
Somehting else

Figure 2: The mutual exclusion pattern in EFFBD
This model remains easily readable, understandatidenon-ambiguous by a large varie-
ty of stakeholders. Such models are not restritcbed “pure” engineering community, but
could be read, and thus validated, even by opetipeople. Moreover, a formal semantics

has been established in (Seide¢ral. 2008). As a result, a simulation tool described in
(Seidner 2009, Seidnet al. 2010) has been developed. So, eFFBD formalisnelie bon-
sidered expressive enough to permit a direct ei@cutf the model.e. it does not require
any neither further model transformation nor addisil information.

Such an execution is shown in Figure 3; one can #sasily assess some performances
such as a percentage of resource usage, the awiotimie during which agents are waiting
for the resource to be available and so on.

Resource not
used
[ME1R] Resource LA S
’ N ! v
- ‘ “\ - ,l " . /,
- - \\
[ME1R] Pick-up Resource and Do Something] (i
/
ME1R] Pick-up R d Do Somehti | !
L] Fick-up Resource and Do Somehting else _\ _
0 10 20 0 40 50 60 70
Waiting for
the resource

Figure 3: Execution trace of the mutual exclusion pattern

This basic functional (or process) model can alsaéscribed by more or less formal
ones, such as Petri Nets and FCCS (Functional €f@rControl Systems), or by using ac-
tivity diagrams from SysML, which are very closeStatecharts specifications.

Petri net (PN). This formalism and some extensions such as thrediPetri Nets (TPN) or
the Colored Petri Nets (CPN) have been developedigaly to describe and analyze such
parallel, concurrent and communicating systems IjMé&®©74). Many theoretical results and
tools can be used to assess such important prepersi the presence of a deadlock or the
liveness of a model. However, as developed in Bviahg subsection, their abstract and
mathematical nature often discourages their adofitjoa large community. As an illustra-
tion, Figure 4 shows the PN (left) and CPN (rightydels of mutual exclusion.

Pick-up Resource and
Do Something

Waiting

[

Working

Idle

Pick-up Resource and
Do Something else

k.

Resource <>

Waiting

X1

]

Working

] el

Waiting

Working

Idle

X1

X1

<X1,X2>

<X1,X2>

n, processes belonging to
C1 ={1, ..., n;} process
class, in mutual exclusion
over n, resources belonging
toC2={1, .., ny}

A process X is whether in
state Waiting, Working or
Idle

To jump from Waiting state
up to Working state, a
process X, needs a resource
X,

Figure 4: The mutual exclusion pattern in PN and CPN

SysML. It is possible to build the above-mentioned patiesimg a SysML activity diagram
(see Figure 5). However, we can note the followfmgfs: activity diagrams (and their pro-
posed artifacts) cannot capture all the desiregwebs. Informal extensions are needed to
augment or enrich the knowledge described in thdehdn this example, both a new stereo-
type, locally created, and informal textual notes then required. As a consequence, no di-
rect execution of the diagram is possible and ewxtrek has to be performed (for instance
adding non-standard pieces or artifacts to the Mdadore an execution can be carried out.
Moreover, the large number of available modelirtgaats (about 30) increases the complex-
ity of both writing and reading models, while notieasing the expressivity.

activity Mutual Exclusion on One Resource [53| Mutual Exclusion on One Resource U

(

Pick- -up

l(_[Do Something | [Do i L
< > }—-' Resource and > = =
/ Before 1 . Du Something | w After 1 | \(\

~ (N
/ Watt for the
r «excludings Fbee?:;rce
| ™ R ce available
Wait for the | |
resource
being
available
h ~

\ Pick- -up

Do Something Resource and

Do Something "
- | Before 2 Do Somthing | ’; After 2)]/
_ else | - |
J

Figure 5: The mutual exclusion pattern in SysML

Finally, the fragmentation of modeling construct®ismall pieces lead to potentially in-
correct models, while eFFBD models are more eagiblified as “well-formed” as illustrat-
ed by Figure 6.

o) an " 3 artifacts :

@ oxe (=) () (=) (&) One parallel construct

) — «Two functions

‘ F2 7

. Well-formed

= Not well-formed

Q

\\ F2) F2 Ny F2 ’

| Not well-formed Well-formed

Figure 6: well-formed models comparison

At the opposite, SysML requires several steps tdehoomplex behaviors: until the final
step, the model cannot be considered as well-forrmetted SysML is more oriented to-
wards building diagrams than helping to rapidlylébhumodels of complex behaviors easy to
verify and express properties to be verified. Asslt, the language is more suitable for cap-
turing and sharing knowledge rather than allowibgective reasoning about the system be-
ing developed: the models are rather descriptivanbutonstructive enough.

We consider thus that eFFBD represents a relevanpromise for system designers in
term of functional modeling. It is simple enoughbi® explained and shared by a wide variety
of stakeholders. It remains sufficiently expresstegemodel process-oriented or transfor-
mation-oriented behaviors of the system. Lastlisiguite formal to allow assessment of
some system properties leading to early verificaamd validation, objective comparison
among alternatives, etc. Such a verification tegphaiis described in the next subsection.

eFFBD models can be verified and simulated

As stated before, eFFBD models can be simulated, iblping for example the designer
to assess the system safety. Indeed, given tottayid to develop ever larger and more com-
plex systems, verification actions have become ya édement in the system design, all
through its life-cycle, and performing either teets the actual system or simulations on a
behavioral model can help deciding whether theesydbtehaves safely with regards to itself
or its environment.

However, such an analysis cannot be exhaustive, @véreasonably sized” systems, and
carries the risk of missing potentially safety4cat situations. To overcome this limitation,
the designer may use a formal method sucmadel checkingwhere the identified proper-
ties are first formally expressed, then confrortted formal model of the system, using effi-
cient algorithms and data structures. Previous svheve shown that the inherent complexity
of model checking can be overcome and efficientlgdugn a SE context (Seidnet al.
2010). Indeed, it is possible to:

» define a set of standard behavioral propertiesh(sag “the execution always com-
pletes, and within a certain time bound” or “ex@woyitfunctionf always triggers the
execution of functiory within a certain delay”), expressed in naturablaage;

* use the eFFBD formal semantics mentioned earliglefme the translation, without
any information loss:

- of any eFFBD model into an equivalent (timed) Pe@t;
- of the above mentioned properties into equivalegichl formulas (written for in-
stance using the Timed Computation Tree Logic of I)C

» use a model checker such as Romeo (Letna. 2009) to check the TCTL formula on
the Petri net;

» translate the results back into high-level terrhat ts in terms of functions and flows.

It should be noted that all these steps can beehidicbm the user: the model checking
technique can therefore contribute to the globadeddability of the system as we have
demonstrated that the eFFBD formalism can supperchecking of complex safety and vi-
vacity properties.

eFFBD limitations and required improvements

The current eFFBD modeling language has to overceameus challenges and is want-
ing a few improvements. These challenges arisentalg when performing the functional
design of complex systems in a multidisciplinaryiesvment:

» even if all engineering disciplines deal with fupaos, they represent the functional

architecture with different tools, techniques anthdagms. Some are flow-oriented or

flow-driven (see for instance the use of block daags in signal processing or control
theory) while other are event-oriented or statestied (such as sequential function
charts or FCCS, Statecharts, Petri Nets, etc.);

» while the modeling of the system dynamics can,tdgh level, be described efficient-
ly by a discrete model, at one point a continuowsi@ing might be mandatory. De-
pending on the level of focus or interest aboutsystem, it could be seen either con-
tinuous, discrete, or hybrid;

» the system itself could be recursively broken damio subsystems, thus leading to a
multilevel functional architecture.

As stated before, eFFBD language can be used tareaparious functional models into a

single hierarchical model. The following figuresosls the equivalent representation of a
block diagram used in signal processing or cortrebry (Fig. 7) into an eFFBD (Fig. 8).

T Disturbance
v
Reference input_ - Controller error - Actuating signal d -~ Manipulated variable
(Set point) ' ’ ’ / - Controlled variable
v v v v
r(s e(s u(s y(s)
<) <) K(s) ()= A(s) P(s) >
Controller Actuator Process
Filtered feedback signal Measured control variable
g H(s) [M(s) ¢
Filtering Sensor
(Measurement)
Figure 7: Classical control loop
: Set Poin{ |
— p >
~) ectustingomd |
Control))
oa Control L] .
& (& 'l
ﬂ . -'- - \
| disturbance |
A~ ~ -
S Acting k-
[feedback | —~ P —
. Y | | - manipulated
T vanable
(“\ P
& Filter Measure (&
%
e Feedback loop) {/
= —— ﬂ
I: measurement |y
- - Measure [))
7| controlled variable
i
oo Cperstion
Process
> e
) L J Ouput
Input) | Processing Flow,
\Processing Flow T
[. I
Matter, Energy or
Irformation

Figure 8: Translation of the classical control loop

It is indeed true that we lose the readabilityraf model here (the control loop itself does
not appear anymore). However, the eFFBD can be ated)jl and property checking tech-
niques mentioned before can be applied.

Expectations, propositions and benefits for xFFBD

Considering the current capabilities of eFFBD showiprevious sections and interests
for the context of a “functional paradigm driversigm design process”, the goal is now to
overcome the limitations illustrated above and rioppse and argue in what sense and how
the eFFBD modeling language can evolve into xFFB@mM our point of view, such model-
ing language has to bring the following foreseepeexations to reach perceptible benefits.

Paradigm

An xFFBD model does not “throw away” other func@bmodels; it just provides the
“cement”. Unlike the use of SysML, it should notuée all engineers to perform deep
changes in their functional modeling knowledge Endw-how. The benefit is methodologi-
cal considering the respect of established waythioking, various best practices (pattern
driven approaches) and current level of experiéraagonomy of systems designers and dis-
cipline oriented designers.

Towards “self contained” models

Even if the xFFBD modeling language misses some fmadaspects (considering for
example the control theory domain, it is not pdssiio model the transfer functions de-
scribed by using a Laplace or Z-transform notati@fR}-BD has to constitute a suitable “con-
tainer” for the various pieces required. In the samay, model transformation techniques are
mature enough to envisage a quite complete andnatimtransformation of these pieces into
XFFBD or reverse from xFFBD to tierce modeling laages in order to be able to improve
the checking, assessment and documentation of smiddekre generally, several “pieces” of
functional models, obtained using various techrsgean thus be re-assembled into a whole
containing model based, which is not possible tlyem the present eFFBD language.

However, it should be kept in mind that, dependhgyenvisaged usage scope of xFFBD
(functional architecture, refined functional arelsiure ready for mapping to organic archi-
tecture, etc.), all the required model transfororai (to or from xFFBD) must improve in-
teroperability of models in an MBSE context. Indeiedyill be preferred to use specialized
languages for assuming modeling activities of spwiats of view.

The benefits consist here to gain in model interaipéty and then to facilitate the future
developments and integration in existing systenggneering frameworks of modeling tools
supporting xFFBD.

Semantic: formal and operational semantics
As illustrated by Figure 9, it is necessary to hpable to:

Build hybrid simulations of the system behavior hence not requiring modeisformation
or rewriting, inducing then a possible loss of setita In this sense and even if an eFFBD
model allows describing the sequencing of functionsctivities, there are some shortcom-
ings for a full expressivity of eFFBD in terms eimiporal sequencing modeg. it is neces-
sary to enrich its operational semantics.

xFFBD ::= {eFFBD with modeling
Hybrid] enhancements and formal operational | properties checking
(co)simulation semantics} and assessment

Dependability analysis

Figure 9: xFFBD modeling language expectations

Tasks are a good example of source for this engcitnTask models are widely used by
HMI community as a way to model the behavior of-eisdrs through their interaction with
the system. Tasks are activities that should beoeed by the final user of the system to
achieve a particular goal. GOMS (Goals, Operatigiesthods, Selection Rules) (Caedl al.
1986), UAN (User Action Notation) (Hamilton 1996)KS (Task Knowledge Structures)
(Hamilton 1996), or CTT (ConcurTaskTrees) (Metial. 2002) are best representatives of
such task modeling languages. In a task modelpwariemporal relationships can be defined
between tasks denoted T1 and T2 in the next thraleglicated operators. A total of eight
operators can be used (Paterno 1999):

» choice operator []: T1 [] T2 means that one of Titl @2 will happen;

» order independence operator |=|: T1 |=| T2 meatsTth and T2 will happen in any

order;

* concurrent operator |[|: T1 ||| T2 means that T1Tandill happen concurrently (the

operator [[]| is used to express information exgedmetween the tasks)

» disabling operator [>: T1 [> T2 means that T2 inipts T1 (which will not be re-

sumed);

» suspend/resume operator |>: T1 |> T2 means thau$gends T1, but T1 resumes

once T2 has finished;

* enabling operator >>: T1 >> T2 means that T2 happdter T1 is finished ([]>> is

used to express information exchange between ghe)ta

* iterative operator *: T1* means task T1 happensasgdly;

» optional operator []: [T1] means task T1 might hapjr not.

Although something similar does exist with the Flkitanch” which permits to interrupt
all other parallel functions when a function isigimed, current eFFBD do not have the same
expressiveness of interaction. Indeed, among tleéglet operators, two are missing in
eFFBD:Disablingand Suspend/ResullThese operators must be formally defined thraargh
adequate formal semantic.

Extending the eFFBD language with the operatorsodhiced above will thus allow
eFFBD to fully encompass task model expressiveraisy model transformation between
task models and eFFBD models, and at least bulasbprovide a common unified frame-
work for both system engineering and HMI commusitie

In the same way, these extensions could also holceps business or enterprise process
modeling. The envisaged extension to eFFBD coulkleniacompatible with the PSL ontolo-
gy (ISO 2004, Schelno#t al. 1999).

Extend and complement eFFBD flow semanticeFFBD have a unique and discrete way to
model flows. According to the semantic definiti@montents are all consumed when a func-
tion is activated and are then produced instantigmthe execution of the function end. Im-
plicitly, an eFFBD function behavior can be desedlby a simple Finite States Machine, as
illustrated by Figure 10.

ladle | — ——— e imple FSM

FunctionActivation[Ress ourcesAvallable-==Troe]— S -

-

TOnFlowdrrivallReseourcss Ayallable == Trus)

K=
- -~

I mEsT 7. [ElapssdTime 2= TransfomationDuratisn)

I TANFIRMMIMGriew ¥] 4

e

B Consumes inputFiow Sub Machine 7
= Dutputs CutputFlow

|
1
|
|
l
I

& Tk

T S Aottt %

OnFlowAmvalessounesAvalgable == Falss) i

_ / LackOrTime =% "
- ; CESOLNCE S A0 aIr
<L ackilfReenures e ga

" Error g | [Resumable] " Paused |

ResourcesLack | S e .l- !
I 1 1
; L . 9 AR
OwerRun [CrearRunmatie] / 'I

|
L

= Extensions for Explicit FSh

Figure 10: A model of a function and its flows

When modeling real cases, it is often needed terdesa continuous consummation
and/or production of flows. Consequently, flows aatics must be clarified, classified and
extended:

» there should be a classification between flows sfmdite events, and streams (infinite,
temporary etc.); moreover, it should be possibl@igtinguish between discrete or
continuous variables representing the values ofltve over the time, itself discrete
or continuous, leading to consider different typésystems behavior;

» it should be possible to describe different flowdy: matter, energy, or information,
and possibly extended to resource (something nefedletie function but “not con-
sumed”, only “used”). Some constraint rules mighatdaded in order to restrict the
usage of such flows to “realistic’ cases. E.g. aergy or a matter can be trans-
formed, but once they are used, they are “lost’féiother re-use, while information
can be used several times without alteration (yuread an email, store it locally on
your computer, and in the same time forward itdmeone else);

* as a proposal, MOC (Models Of Computation) suck@bl (implementing classical
FIFO behaviors) may be used, especially for stre@mstinuous consumption of in-
put, delivery at output, time delay, sampling,ejitttnd coding/dynamic constraints,
transformation, etc.). In addition, a stream metaleh, capturing specifics their fea-
tures, and standard streams transformation (codiegpding, delaying, filtering,
resampling etc.) may be added for flows characiéon,;

* basic algebra should be added, especially for mmédion flows, in order, to
add/group, subtract/split flows, to distinguishvibe¢n content and container (e.g. a
message can contain and convey information, a stdpoéds parameters ...).

Extend and complement the semantic of a functionself. In a same way, very few seman-
tics is associated to function. In one way, funtsiare seen as black-box which consume and
produce data and or event. On the other way, they@en as white box, composed of sub
functions modeled with eFFBD.

The formal description of the final flow transfortiwam (as algebraic equations, transfer
functions...) performed by leaves functions at thedolevel of decomposition is out of the
XFFBD envisaged semantic. However, xFFBD shouldrigeo some “extension points” al-
lowing the addition of such semantic. We could guedme envisaged interface to special-
ized language with a huge benefit in terms of madelysis:

» notations defining the transformation itself sushzatransform, Laplace transform...

* languages modeling the transformation functionlfitgend allowing execution of it

such as MatLab Simulink, Modelica...

* languages modeling the dysfunctional aspect, aligwdependability analysis to take

place (Altarica, for instance).

That means that xFFBD scope is not the whole miogertifacts of Systems Engineer-
ing, firstly, that Systems Modeling may use witméfit multipoint of views models and hy-
brid modeling, supported by a tool chain. So, xFRRd@ds interfacing capabilities with other
languages. It is thus required, as stated beforassume at least conceptual interoperability
i.e. conceptual and formal compatibility of xFFBD witie other cited modeling languages
such as Modelica or Altarica. Indeed, this allowspdsing of existing and reliable proof
mechanisms and tools.

Check model properties at the various levelsAs stated in MIT system design lectures
(MIT-ESD) “Architecting is thedeliberate manipulation of structure to achieve desired sys-
tembehavior andproperties’.

Behavior verification relies on functional modetnsilation yet supported by eFFBD re-
lated tools (Seidner2009). Foreseen extensionsnaneduced in theBuild Hybrid Simula-
tions paragraph. To be fully compliant to MIT directiyésremains to provide to system de-
signer the capability to define, to verify and topagate properties.

By defining properties semantics, we can first aersthe link to develop between
xFFBD and formal properties modeling languages saascliemporal Logic (TCTL, CTL...),
Property Specification Language (PSL) or Unifiedparties Specification Language (UPSL)
(Chapurlatet al. 2006, Alouiet al. 2008, Chapurlagt al. 2009). For instance, UPSL is based
on the property concept named CREI used to formalid check modeling requirements, the
part of stakeholder requirements that can be fdynchlecked in the models and various laws
(physical, chemical, electrical...) which must alwdnes applied but can be easily forgotten.
An extension of UPSL called UPSL-SE is designeddmplement the methodological and
technical tool box supporting the verification pees in SE context by considering formal
checking techniques. However, the various defingiand semantics proposed for defining
the concepts and relations used in the availablla&dguages do not allow or facilitate the use
of such techniques.

The waited benefits for xFFBD are then to gain fakwerification capabilities which re-
quires that:

» the models can be translated without loss, ambégyiand using automated methods
XFFBD models into more formal ones on which formpedof techniques can be ap-
plied. In other words, XFFBD must be interoperahkith formal checking tools, such
as those presented in (Yahoda 2003);

* the requirements may be formally described (Mica2@®8, Chapurlaet al. 2012)
and checkede. requirements modeling languages are themselvesperable with
xFFBD.

The next expected step would be the ability to pgape assessment of such properties or
characteristics up or down into the levels of fior@l breakdown, in a way similar to the
Critical Parameter Management of the DFB@gign for Six Sigmaapproach, implementing
propagation algorithm that would take advantageheffunctional to propagate properties.

Improve tools that will support XFFBD edition and smulation. Nowadays, there are a
certain number of system engineering workbenched bg system designers in order to sup-
port their design activities and to manage in asgiant way engineering information pro-
duced by these activities. However such tools dooffler an efficient digital environment.
Indeed, there is a need to offer a more agile enuient that will allow a system designer
team to better cooperate through system modelsghand to improve capabilities to “play”
on efficient views of the system being designedt ik to say to create and to bring more
value-added. In this context, following ideas neete explored:

» use of multi-touch surfaces to increase systemneegs interaction;

 ontological (or semantic) oriented browsing in gystem model through the exploita-
tion of system engineering meta-model;

* visualization of system information or system mouteblternative ways: while tradi-
tional views of the system information encompasshilkearchical aspects of things or
their intrinsic properties, a new way to be expibre to focus on their relationships.
Remember;A city is not a tree (Alexander 1996);

« direct manipulation of system composite views tppgut system engineering activities
such as allocation of functions to componentscation of flows to physical links, ...

Conclusion and perspectives

eFFBD represents a strong foundation for functianableling in systems engineering.
This position paper proposes and argues variousowements in order to make emerge or at
least to act as a preliminary roadmap to the xFBidleling language. This language has to
provide first a formal but understandable notati@sed on a set of required concepts and
operators which remain absents for the moment #&fBD. Second, xFFBD need the defi-
nition of a new and enriched formal operational aetics to become an expressive and exe-
cutable functional modeling language. Third, it s as interoperable as possible with oth-
er modeling languages handled by various toolsheg tan check properties, evaluate and
compare various criteria (such as performancefetygaon functional models.

So, the goal here is not to contrast the functigaaadigm for which xFFBD would be an
appreciable contribution with the object paradigsniraplemented for example by SysML.
Through their own virtues, qualities and limitaspreach of these paradigms is actively con-
tributing to the development and use of systemsneegng. They must co-exist and com-
plement each other. As such, xFFBD is fully in finectional paradigm and this paper allows
identifying roughly the required evolutions of eAPBnodeling language. At this moment,
the work to be done first consists in formalizifg tproposed formal extension to eFFBD,
such a team is now ready to start!

References

Alexander, C., 1996, A city is not a tré@gsignmagazine, Council of Industrial Design.

Aloui S., Chapurlat V. 2008. “A System Modeling aAdalysis Framework for Risk Analy-
sis”. In Socio-technical Systems, The best of Feafforum Académique et RObAFIS,
INCOSE INSIGHT, 11(3)

Card, S.K., Moran, T.P., Newell, A. 198Bhe Psychology of Human-Computer Interaction
Lawrence Erlbaum Associates.

Chapurlat V., Aloui S. 2006. “How to Detect Riskglwa Formal Approach?” From Property
Specification, Simulation Verification and Validati of Enterprise Information Sys-
tems (MSVVEIS'06), The 4th International WorkshapModelling.

Chapurlat V., Roque M. 2009. “Interoperability Ctragts and Requirements formal Model-
ling and Checking Framework”. In International Cemeince Advances in Production
Management Systems (APMS'09).

Chapurlat V., Daclin N. 2012, System interoper#pildefinition and proposition of interface
model in MBSE Context, to appear in INCOM 2012, @4 triennal symposium In-
formation Control problems in Manufacturing, May 23 Bucharest, Romania

Chesnut, H. 19675ystem Engineering Method¥/iley & Sons.

FAA. 2006. NAS System Engineering Manual, versidh 3

Hamilton, F. 1996. “Predictive evaluation usingkt&mowledge structures”, in Conference
companion on Human factors in computing systemsteon ground. ACM. 261— 262.

ISO. 2004. 18629:2004, Industrial automation systamd integration - PSL

Lime, D., Roux, O.H., Seidner, C., Traonouez, LAD09. “Roméo: a Parametric Model-
Checker for Petri Nets with Stopwatches”. In 15tteinational Conference on Tools
and Algorithms for the Construction and AnalysisSgstems. LCNS (5505): 54-57.

Merlin, P.M. 1974. A Study of Recoverability of Cpating Systems. Ph.D. thesis.

Micouin, P., 2008, Toward a Property Based Requar@s) Theory: System Requirements
Structured as a Semilattice, in System Engineekiofyme 11, Issue 3: 235-245

Mori, G., Paterno, F., Santoro, C. 2002. “CTTE: g for Developing and Analyzing Task
Models for Interactive System Design”. IEEE Trans Software Engineering, 28(9).

NASA. 1967. NASA/SP-610S8ystems Engineering Handbook

——. 2007. NASA/SP-2007-6105 Rev.Systems Engineering Handbook

Paterno, F. 199%Model-Based Design and Evaluation of Interactivgligations Springer-
Verlag.

Schlenoff, C., Gruninger, M., Ciocoiu, M., Lee 1999. “The Essence of the Process Specifi-
cation Language”. Special Issue on Modeling andu&ition of Manufacturing Sys-
tems in the Transactions of the Society for Comp8teulation.

Seidner, C., Roux, O.H. 2008. “Formal methods fgst&ns Engineering behavior models.”
IEEE Transactions on Industrial Informatics 4(402291.

Seidner, C. 2009. Vérification des eFFBD : Modetakting en Ingénierie Systéme. Ph.D.
thesis, University of Nantes [in French].

Seidner, C., Lerat, J.P., Roux, O.H. 2010. “Simaiatand Verification of [Dys]functional
Behavior Models: Model Checking for SE”, 20th Imtational Symposium of the IN-
COSE.

Yahoda. 2003. Formal verification tools overviewbnggte (http://anna.fi.muni.cz/yahoda/)

Biographies

Bruno Ai1zIER received an engineer's degree in Electronics aguiaBPro-
cessing from the ICPI-CPHnétitut de Chimie et de Physique Industriélles
engineering school of Lyon. As a research engiae&NSTA Bretagne (Su-
perior National School of Advanced Techniques aft&ny) since 2007, he is
contributing to research works on Systems of systamdeling with NAF
architecture framework (in partnership with therfete Ministry of Defense),
meta models engineering and hybrid modeling. Hjzeetise on the engineering of software-
intensive embedded systems is based on a courakeoot 25 years with major companies
such as Alcatel, France Telecom R&D, Cap GeminiNDThales Underwater Systems, or
Siemens VDO.

Vincent CHAPURLAT is a full professor at the Ecole des Mines d’Alésad
of the ISOE research team at the LGI2P. After a RhDomputer and Con-
trol Theory from the University of Montpellier 1hi1994, he holds an HDR
(accreditation to supervise PhD students). Hisareseaims to develop and
formalize concepts and tools for building and foltgn&erifying complex
systems models, applied in Enterprise Modeling 8gstems Engineering
domains. He is a member of the AFIS (French chagfténe INCOSE), of
the 5.3 Technical Committee at the IFAC Board (otemorise networking)
and of the Enterprise interoperability WG at thé’IBoard.

Stéphanie Lizy-DESTREZ is an associate professor in System Engineer-
ing (SE) and head of Specialized Master in Systewgirteering at ISAE
(Institut Supérieur de I'Aéronautique et de 'EspaSUPAERO with
more than 14 years of industrial experience in sstems engineering
from design to operations. She was able to depitar-disciplinary ap-
proach for Earth Observation, Telecommunicationswman Spaceflight
missions. In July 2009, she joined ISAE and theasased Department

of Mathematics, Computer Science and Control Th€DiMIA). Her research aims at for-
malizing System Engineering processes through Huspate flights applications. She is a
member of the AFIS (French chapter of the INCOSE).

Daniel PRUN is an associate professor in System Engineerigl) {8ENAC
(French Civil Aviation University) with more than Iyears of industrial
experience in the field of SE. In 1997 he obtaihedPhD in Computer Sci-
ence from the Pierre and Marie Curie University.léfeacademic research,
became an SE consultant to several customers iougasectors (defense,
air traffic control, aeronautic, railway, medical.fQr their SE activities
(specification, design, system integration, veafiocn and validation). In
2009, he has joined ENAC school and the Interaciomputing Laboratory
(LI with the objective to develop SE teaching aedearch activities on interaction. He is a
member of the INCOSE and the AFIS (French chadtéheo INCOSE). He also participates
at the BKCASE/GRCSE project.

Charlotte SEIDNER has obtained her master’s degree in Engineerin@s)20
and in Control and Computer Theory (2006) from Huole Centrale de
Nantes. In 2009, she defended her PhD thesis]eshtérification of eFF-
BDs: model checking in system engineeiang carried out in collaboration
with both the IRCCyN (the Research Institute on @Gamication and Cy-
bernetics in Nantes) and Sodius, an SME in Nahigb)y involved in Sys-
tems Engineering. Since 2010 she has been an ates@epfessor at the
University of Nantes and carries out her reseantlviges at the IRCCyN lab, on formal
methods applied to high-level problems.

Jean-Luc WIPPLER obtained his master's degree at SUPELEC (Ecolé-Sup
rieure d’Electricité) in signal processing. For thst 20 years he has worked
mainly in the sectors of space, defense, and afietrcontrol. As a system
architect, he has participated in various projéecthe field of Earth Obser-

_ vation or Satellite Navigation space based systemd,also contributed to

B systems engineering in the air-traffic control, meatland automobile fields.
In addition to his job as a senior system archjthet devotes his time to
teaching systems engineering at Master of Sciesd (ISAE-SUPAERO, ENAC) and con-
tinuing education.

