
HAL Id: hal-01022483
https://enac.hal.science/hal-01022483

Submitted on 21 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

xFFBD : towards a formal yet simple and complete
functional modeling technique for system designers

Bruno Aizier, Stéphanie Lizy-Destrez, Charlotte Seidner, Vincent Chapurlat,
Daniel Prun, Jean-Luc Wippler

To cite this version:
Bruno Aizier, Stéphanie Lizy-Destrez, Charlotte Seidner, Vincent Chapurlat, Daniel Prun, et al..
xFFBD : towards a formal yet simple and complete functional modeling technique for system designers.
INCOSE 2012, 22nd Annual International Council on Systems Engineering Symposium, Jul 2012,
Rome, Italy. pp xxx. �hal-01022483�

https://enac.hal.science/hal-01022483
https://hal.archives-ouvertes.fr

xFFBD: towards a formal yet functional modeling
language for system designers

Bruno AIZIER
ENSTA Bretagne

2 rue François Verny
29806 Brest CEDEX 9 – France
Bruno.Aizier@ensta-bretagne.fr

Vincent CHAPURLAT
LGI2P

Parc scientifique Georges Besse
30035 Nîmes CEDEX 1 – France
Vincent.Chapurlat@mines-ales.fr

Stéphanie LIZY-DESTREZ
ISAE – SUPAERO

10 avenue Édouard Belin
31055 Toulouse CEDEX 4 – France

Stephanie.Lizy-Destrez@isae.fr

Daniel PRUN
ENAC - LII

7 avenue Édouard Belin - BP 54005
31055 Toulouse – France

Daniel.Prun@enac.fr

Charlotte SEIDNER
L'UNAM - University of Nantes - IRCCyN

1 rue de la Noë, 44300 Nantes – France
Charlotte.Seidner@univ-nantes.fr

Jean-Luc WIPPLER
LUCA Ingénierie

1 Chemin de Pechmirol, 31320 Mervilla – France
jlwippler@gmail.com

Copyright © 2012 by Bruno AIZIER, Vincent CHAPURLAT, Stéphanie LIZY-DESTREZ,
Daniel PRUN, Charlotte SEIDNER & Jean-Luc WIPPLER. Permission granted to INCOSE to publish and use.

Abstract. Although the eFFBD formalism dates back to the 1990s (or even, in a simplified
form, the 1950s), it seems that it is still not as much used by the Systems Engineering com-
munity as it could. Indeed, eFFBD is a modeling language focusing on functional paradigm
i.e. allowing functional and behavioral modeling and reasoning about a system. Currently, it
is often confronted or compared to other languages such as SysML for activity modeling (ac-
tivity diagrams) based on object paradigm. This paper aims to demonstrate the interest and
the potential advantages for systems designers, like most of the discipline-oriented designers
to dispose of an enriched (conceptually and semantically) eFFBD modeling language called
here xFFBD. This has to be a credible framework for modeling, communicating and reason-
ing about complex systems. After shortly recalling the history, the key concepts and capabili-
ties of eFFBD, this paper compares eFFBD with other formalisms considered here as relevant
for the study, Petri nets and SysML. Several leads are then identified and discussed in order
to improve the eFFBD language and to provide a first draft version of xFFBD specification.

Functional and object paradigm
For many years now, systems designers involved in the development of complex systems

have been essentially guided or interested by the functional paradigm. This paradigm may be
summarized as “designing a system means to describe its functions, their organization in or-
der to fulfill a given mission, and to gather all these functions in a coherent functional archi-
tecture, later allocated to a physical architecture1. This allows then to describe and to reason
not only on what the system must do but also on when and how it must do it i.e. the resulting
dynamic of the entire system of interest”. Indeed, this dynamic or behavior is specified
through the functions' dynamic (their execution duration, temporal hypothesis, synchroniza-

1 “System architecture is the embodiment of concepts, and the allocation of physical/informational function to
elements of form, and definition of interfaces among the elements and with the surrounding context” (Ed. Craw-
ley – MIT)

tion rules…) and the control environment that is the usual control structures (loops, choices,
etc.). In this way, (e)FFBD provide means and concepts relevant for functional and dynamic
aspects modeling.

Since the last decade, OMG and INCOSE have promoted another way of modeling based
on object paradigm. This paradigm particularly highlights the possibility to model a system
by using encapsulation mechanisms (a set of common behaviors and knowledge is gathered
into a class allowing then to describe a sub set of entities of the world), the communication
between classes by using messages, the inheritance of behaviors between generic and more
specific classes. So, the object paradigm cannot be strictly opposed to the functional one but
has to be considered as different way of thinking a system. In real life, both are relevant for
systems such as embedded systems and more largely software intensive systems. As an ex-
ample, SysML (System Modeling Language) has gained a wide acceptance in the SE com-
munity as a general-purpose modeling language based on object paradigm. Based on UML,
often deemed too software-centric, it is also a graphical language, organized around dia-
grams.

In the context of designing complex systems within a multidisciplinary team encompass-
ing many engineering disciplines, at once fundamentals (mechanics, electronic, thermal …)
and transversal (integrated logistics support, supply-chain, human factors …), the functional
paradigm seems to be the most appropriate to build together, in a collaborative way, an opti-
mal solution against expected various stakeholders goals to be achieve. Even if the object
paradigm has truly demonstrated its potentiality, there is still a strong cultural gap for the
disciplines mentioned above, that are largely founded on the functional paradigm, to adopt
such a new paradigm for them. So, this paper intents to demonstrate the interest and the po-
tential advantages for system design multidisciplinary teams to dispose of an enriched (con-
ceptually and semantically) version of eFFBD modeling language called here xFFBD (x, as
variable x, means “unknown” at this stage). The goal is here to propose and formalize a cred-
ible extended functional-oriented framework for modeling, communicating and reasoning
about complex systems.

 (e)FFBD position

A brief history of (e)FFBD in Systems Engineering
The FFBD (Functional Flow Block Diagram) language was first introduced in the late

1950s at TRW. It was not the very first process - or functional- modeling language (see Fig-
ure 1), yet it can be considered as the first modeling technique favored by the Systems Engi-
neering community (Chesnut 1967). The FFBD language, focused on the control sequencing
of the functions was for instance used by NASA to model the time sequence of space systems
and flight missions. Indeed, this language provides system designers with an easy framework
to describe the behavior of complex, distributed, hierarchical, concurrent and communicating
systems.

In the 1990s, some enhancements were added to provide the designer with a way to mod-
el flows, whether they are input, output or triggering flows (FAA 2006, NASA 1995, NASA
2007). These enhanced FFBD (or eFFBD) can be described as discrete event systems and
therefore be executed in simulation tools, thus providing some validation capability (Seidner
et al. 2008, Seidner 2009). In the next section, the main characteristics of eFFBD are high-
lighted and discussed in contrast to some other modeling languages.

40’s 50’s 60’s 70’s 80’s 90’s 2000’s30’s

1921
Process Flow Chart
Frank Gilbreth, “Process Charts—First Steps in
Finding the One Best Way”

1947
Multi-Flow Process Chart
ASME Standard for Operation and Flow Process Charts

FFBD
(by
TRW) eFFBD

widely used by
NASA for space
mission

2009
eFFBD semantics formalisation
for eFFBD model checking
Charlotte SEIDNER, PhD Thesis

From (Chesnut 1967, 254-255)

Figure 1: A short history of (e)FFBD

eFFBD as a readable, understandable, executable and non-
ambiguous representation

As Albert Einstein once stated, “Everything should be made as simple as possible, but not
simpler”. We might add that the description of basic behaviors should also be as simple as
possible but neither simpler, nor use “tricks”. In this way, let us consider for instance the
classical pattern of the access in mutual exclusion to a single resource, where two concurrent
agents (of whatever nature they may be) are performing some activities or transformations
and need at a certain time to use a single available resource before releasing it. If one agent
wants to take the resource, while it is being used by the other agent, it has to wait and its re-
lated activity or function will be pending. This behavior is essential in concurrent processing
modeling, from parallel computing systems to manufacturing or organizational systems. This
behavior is rendered in eFFBD as illustrated in Figure 2.

Figure 2: The mutual exclusion pattern in EFFBD

This model remains easily readable, understandable and non-ambiguous by a large varie-
ty of stakeholders. Such models are not restricted to a “pure” engineering community, but
could be read, and thus validated, even by operational people. Moreover, a formal semantics

has been established in (Seidner et al. 2008). As a result, a simulation tool described in
(Seidner 2009, Seidner et al. 2010) has been developed. So, eFFBD formalism is here con-
sidered expressive enough to permit a direct execution of the model i.e. it does not require
any neither further model transformation nor additional information.

Such an execution is shown in Figure 3; one can then easily assess some performances
such as a percentage of resource usage, the amount of time during which agents are waiting
for the resource to be available and so on.

Waiting for
the resource

Resource not
used

Figure 3: Execution trace of the mutual exclusion pattern

This basic functional (or process) model can also be described by more or less formal
ones, such as Petri Nets and FCCS (Functional Charts for Control Systems), or by using ac-
tivity diagrams from SysML, which are very close to Statecharts specifications.

Petri net (PN). This formalism and some extensions such as the Timed Petri Nets (TPN) or
the Colored Petri Nets (CPN) have been developed precisely to describe and analyze such
parallel, concurrent and communicating systems (Merlin 1974). Many theoretical results and
tools can be used to assess such important properties as the presence of a deadlock or the
liveness of a model. However, as developed in a following subsection, their abstract and
mathematical nature often discourages their adoption by a large community. As an illustra-
tion, Figure 4 shows the PN (left) and CPN (right) models of mutual exclusion.

Resource

Waiting

Working

Idle

Waiting

Working

Idle

Pick-up Resource and
Do Something

Pick-up Resource and
Do Something else

Waiting

Working

Idle

X1

X1

X1

X1

n1 processes belonging to
C1 = {1, …, n1} process
class, in mutual exclusion
over n2 resources belonging
to C2 = {1, …, n2}

A process X1 is whether in
state Waiting, Working or
Idle

To jump from Waiting state
up to Working state, a
process X1 needs a resource
X2

X2

X2

<X1,X2>

<X1,X2>

Figure 4: The mutual exclusion pattern in PN and CPN

SysML. It is possible to build the above-mentioned pattern using a SysML activity diagram
(see Figure 5). However, we can note the following facts: activity diagrams (and their pro-
posed artifacts) cannot capture all the desired behaviors. Informal extensions are needed to
augment or enrich the knowledge described in the model. In this example, both a new stereo-
type, locally created, and informal textual notes are then required. As a consequence, no di-
rect execution of the diagram is possible and extra work has to be performed (for instance
adding non-standard pieces or artifacts to the model) before an execution can be carried out.
Moreover, the large number of available modeling artifacts (about 30) increases the complex-
ity of both writing and reading models, while not increasing the expressivity.

Figure 5: The mutual exclusion pattern in SysML

Finally, the fragmentation of modeling constructs into small pieces lead to potentially in-
correct models, while eFFBD models are more easily qualified as “well-formed” as illustrat-
ed by Figure 6.

Well-formed

3 artifacts :
•One parallel construct
•Two functions

Not well-formed

Not well-formed Well-formed

12 artifacts

E
F
F
B
D

S
y
S
M

L

Figure 6: well-formed models comparison

At the opposite, SysML requires several steps to model complex behaviors: until the final
step, the model cannot be considered as well-formed. Indeed SysML is more oriented to-
wards building diagrams than helping to rapidly build models of complex behaviors easy to
verify and express properties to be verified. As a result, the language is more suitable for cap-
turing and sharing knowledge rather than allowing objective reasoning about the system be-
ing developed: the models are rather descriptive but not constructive enough.

We consider thus that eFFBD represents a relevant compromise for system designers in
term of functional modeling. It is simple enough to be explained and shared by a wide variety
of stakeholders. It remains sufficiently expressive to model process-oriented or transfor-
mation-oriented behaviors of the system. Lastly it is quite formal to allow assessment of
some system properties leading to early verification and validation, objective comparison
among alternatives, etc. Such a verification technique is described in the next subsection.

eFFBD models can be verified and simulated
As stated before, eFFBD models can be simulated, thus helping for example the designer

to assess the system safety. Indeed, given today’s trend to develop ever larger and more com-
plex systems, verification actions have become a key element in the system design, all
through its life-cycle, and performing either tests on the actual system or simulations on a
behavioral model can help deciding whether the system behaves safely with regards to itself
or its environment.

However, such an analysis cannot be exhaustive, even on “reasonably sized” systems, and
carries the risk of missing potentially safety-critical situations. To overcome this limitation,
the designer may use a formal method such as model checking, where the identified proper-
ties are first formally expressed, then confronted to a formal model of the system, using effi-
cient algorithms and data structures. Previous works have shown that the inherent complexity
of model checking can be overcome and efficiently used in a SE context (Seidner et al.
2010). Indeed, it is possible to:

• define a set of standard behavioral properties (such as “the execution always com-
pletes, and within a certain time bound” or “executing function f always triggers the
execution of function g within a certain delay”), expressed in natural language;

• use the eFFBD formal semantics mentioned earlier to define the translation, without
any information loss:
- of any eFFBD model into an equivalent (timed) Petri Net;
- of the above mentioned properties into equivalent logical formulas (written for in-

stance using the Timed Computation Tree Logic or TCTL);
• use a model checker such as Romeo (Lime et al. 2009) to check the TCTL formula on

the Petri net;
• translate the results back into high-level terms, that is in terms of functions and flows.
It should be noted that all these steps can be hidden from the user: the model checking

technique can therefore contribute to the global dependability of the system as we have
demonstrated that the eFFBD formalism can support the checking of complex safety and vi-
vacity properties.

eFFBD limitations and required improvements
The current eFFBD modeling language has to overcome various challenges and is want-

ing a few improvements. These challenges arise essentially when performing the functional
design of complex systems in a multidisciplinary environment:

• even if all engineering disciplines deal with functions, they represent the functional
architecture with different tools, techniques and paradigms. Some are flow-oriented or

flow-driven (see for instance the use of block diagrams in signal processing or control
theory) while other are event-oriented or state-oriented (such as sequential function
charts or FCCS, Statecharts, Petri Nets, etc.);

• while the modeling of the system dynamics can, at a high level, be described efficient-
ly by a discrete model, at one point a continuous modeling might be mandatory. De-
pending on the level of focus or interest about the system, it could be seen either con-
tinuous, discrete, or hybrid;

• the system itself could be recursively broken down into subsystems, thus leading to a
multilevel functional architecture.

As stated before, eFFBD language can be used to capture various functional models into a
single hierarchical model. The following figures shows the equivalent representation of a
block diagram used in signal processing or control theory (Fig. 7) into an eFFBD (Fig. 8).

+
-

+
+

K(s)

Controller

r(s) e(s)
A(s)

Actuator

u(s)
P(s)

Process

M(s)

Sensor
(Measurement)

H(s)

Filtering

y(s)

Reference input
(Set point)

Controller error Actuating signal
Manipulated variable

Controlled variable

Disturbance

Measured control variableFiltered feedback signal

d

Figure 7: Classical control loop

Figure 8: Translation of the classical control loop

It is indeed true that we lose the readability of the model here (the control loop itself does
not appear anymore). However, the eFFBD can be simulated, and property checking tech-
niques mentioned before can be applied.

Expectations, propositions and benefits for xFFBD
Considering the current capabilities of eFFBD shown in previous sections and interests

for the context of a “functional paradigm driven system design process”, the goal is now to
overcome the limitations illustrated above and to propose and argue in what sense and how
the eFFBD modeling language can evolve into xFFBD. From our point of view, such model-
ing language has to bring the following foreseen expectations to reach perceptible benefits.

Paradigm
An xFFBD model does not “throw away” other functional models; it just provides the

“cement”. Unlike the use of SysML, it should not require all engineers to perform deep
changes in their functional modeling knowledge and know-how. The benefit is methodologi-
cal considering the respect of established ways of thinking, various best practices (pattern
driven approaches) and current level of experience / autonomy of systems designers and dis-
cipline oriented designers.

Towards “self contained” models
Even if the xFFBD modeling language misses some modeling aspects (considering for

example the control theory domain, it is not possible to model the transfer functions de-
scribed by using a Laplace or Z-transform notation), xFFBD has to constitute a suitable “con-
tainer” for the various pieces required. In the same way, model transformation techniques are
mature enough to envisage a quite complete and automatic transformation of these pieces into
xFFBD or reverse from xFFBD to tierce modeling languages in order to be able to improve
the checking, assessment and documentation of models. More generally, several “pieces” of
functional models, obtained using various techniques, can thus be re-assembled into a whole
containing model based, which is not possible directly on the present eFFBD language.

However, it should be kept in mind that, depending the envisaged usage scope of xFFBD
(functional architecture, refined functional architecture ready for mapping to organic archi-
tecture, etc.), all the required model transformations (to or from xFFBD) must improve in-
teroperability of models in an MBSE context. Indeed, it will be preferred to use specialized
languages for assuming modeling activities of some points of view.

The benefits consist here to gain in model interoperability and then to facilitate the future
developments and integration in existing systems engineering frameworks of modeling tools
supporting xFFBD.

Semantic: formal and operational semantics
As illustrated by Figure 9, it is necessary to be capable to:

Build hybrid simulations of the system behavior hence not requiring model transformation
or rewriting, inducing then a possible loss of semantic. In this sense and even if an eFFBD
model allows describing the sequencing of functions or activities, there are some shortcom-
ings for a full expressivity of eFFBD in terms of temporal sequencing model i.e. it is neces-
sary to enrich its operational semantics.

xFFBD ::= {eFFBD with modeling
enhancements and formal operational

semantics}
Hybrid

(co)simulation
properties checking

and assessment

Dependability analysis

Figure 9: xFFBD modeling language expectations
Tasks are a good example of source for this enrichment. Task models are widely used by

HMI community as a way to model the behavior of end-users through their interaction with
the system. Tasks are activities that should be performed by the final user of the system to
achieve a particular goal. GOMS (Goals, Operators, Methods, Selection Rules) (Card et al.
1986), UAN (User Action Notation) (Hamilton 1996), TKS (Task Knowledge Structures)
(Hamilton 1996), or CTT (ConcurTaskTrees) (Mori et al. 2002) are best representatives of
such task modeling languages. In a task model, various temporal relationships can be defined
between tasks denoted T1 and T2 in the next through dedicated operators. A total of eight
operators can be used (Paternò 1999):

• choice operator []: T1 [] T2 means that one of T1 and T2 will happen;
• order independence operator |=|: T1 |=| T2 means that T1 and T2 will happen in any

order;
• concurrent operator |||: T1 ||| T2 means that T1 and T2 will happen concurrently (the

operator |[]| is used to express information exchange between the tasks)
• disabling operator [>: T1 [> T2 means that T2 interrupts T1 (which will not be re-

sumed);
• suspend/resume operator |>: T1 |> T2 means that T2 suspends T1, but T1 resumes

once T2 has finished;
• enabling operator >>: T1 >> T2 means that T2 happens after T1 is finished ([]>> is

used to express information exchange between the tasks);
• iterative operator *: T1* means task T1 happens repeatedly;
• optional operator []: [T1] means task T1 might happen or not.
Although something similar does exist with the “kill branch” which permits to interrupt

all other parallel functions when a function is finished, current eFFBD do not have the same
expressiveness of interaction. Indeed, among these eight operators, two are missing in
eFFBD: Disabling and Suspend/Result. These operators must be formally defined through an
adequate formal semantic.

Extending the eFFBD language with the operators introduced above will thus allow
eFFBD to fully encompass task model expressiveness, allow model transformation between
task models and eFFBD models, and at least but not last provide a common unified frame-
work for both system engineering and HMI communities.

In the same way, these extensions could also hold process business or enterprise process
modeling. The envisaged extension to eFFBD could make it compatible with the PSL ontolo-
gy (ISO 2004, Schelnoff et al. 1999).

Extend and complement eFFBD flow semantic. eFFBD have a unique and discrete way to
model flows. According to the semantic definition, contents are all consumed when a func-
tion is activated and are then produced instantly when the execution of the function end. Im-
plicitly, an eFFBD function behavior can be described by a simple Finite States Machine, as
illustrated by Figure 10.

Figure 10: A model of a function and its flows

When modeling real cases, it is often needed to describe a continuous consummation
and/or production of flows. Consequently, flows semantics must be clarified, classified and
extended:

• there should be a classification between flows of discrete events, and streams (infinite,
temporary etc.); moreover, it should be possible to distinguish between discrete or
continuous variables representing the values of the flow over the time, itself discrete
or continuous, leading to consider different types of systems behavior;

• it should be possible to describe different flow types: matter, energy, or information,
and possibly extended to resource (something needed for the function but “not con-
sumed”, only “used”). Some constraint rules might be added in order to restrict the
usage of such flows to “realistic” cases. E.g. an energy or a matter can be trans-
formed, but once they are used, they are “lost” for further re-use, while information
can be used several times without alteration (you can read an email, store it locally on
your computer, and in the same time forward it to someone else);

• as a proposal, MOC (Models Of Computation) such as KPN (implementing classical
FIFO behaviors) may be used, especially for streams (continuous consumption of in-
put, delivery at output, time delay, sampling, jitter and coding/dynamic constraints,
transformation, etc.). In addition, a stream meta model, capturing specifics their fea-
tures, and standard streams transformation (coding, decoding, delaying, filtering,
resampling etc.) may be added for flows characterization;

• basic algebra should be added, especially for information flows, in order, to
add/group, subtract/split flows, to distinguish between content and container (e.g. a
message can contain and convey information, a request holds parameters …).

Extend and complement the semantic of a function itself. In a same way, very few seman-
tics is associated to function. In one way, functions are seen as black-box which consume and
produce data and or event. On the other way, they are seen as white box, composed of sub
functions modeled with eFFBD.

The formal description of the final flow transformation (as algebraic equations, transfer
functions…) performed by leaves functions at the lower level of decomposition is out of the
xFFBD envisaged semantic. However, xFFBD should provide some “extension points” al-
lowing the addition of such semantic. We could quote some envisaged interface to special-
ized language with a huge benefit in terms of model analysis:

• notations defining the transformation itself such as Z-transform, Laplace transform…
• languages modeling the transformation function itself, and allowing execution of it

such as MatLab Simulink, Modelica…
• languages modeling the dysfunctional aspect, allowing dependability analysis to take

place (Altarica, for instance).
That means that xFFBD scope is not the whole modeling artifacts of Systems Engineer-

ing, firstly, that Systems Modeling may use with benefit multipoint of views models and hy-
brid modeling, supported by a tool chain. So, xFFBD needs interfacing capabilities with other
languages. It is thus required, as stated before, to assume at least conceptual interoperability
i.e. conceptual and formal compatibility of xFFBD with the other cited modeling languages
such as Modelica or Altarica. Indeed, this allows disposing of existing and reliable proof
mechanisms and tools.

Check model properties at the various levels. As stated in MIT system design lectures
(MIT-ESD) “Architecting is the deliberate manipulation of structure to achieve desired sys-
tem behavior and properties”.

Behavior verification relies on functional model simulation yet supported by eFFBD re-
lated tools (Seidner2009). Foreseen extensions are introduced in the Build Hybrid Simula-
tions paragraph. To be fully compliant to MIT directives, it remains to provide to system de-
signer the capability to define, to verify and to propagate properties.

By defining properties semantics, we can first consider the link to develop between
xFFBD and formal properties modeling languages such as Temporal Logic (TCTL, CTL…),
Property Specification Language (PSL) or Unified Properties Specification Language (UPSL)
(Chapurlat et al. 2006, Aloui et al. 2008, Chapurlat et al. 2009). For instance, UPSL is based
on the property concept named CREI used to formalize and check modeling requirements, the
part of stakeholder requirements that can be formally checked in the models and various laws
(physical, chemical, electrical…) which must always be applied but can be easily forgotten.
An extension of UPSL called UPSL-SE is designed to complement the methodological and
technical tool box supporting the verification process in SE context by considering formal
checking techniques. However, the various definitions and semantics proposed for defining
the concepts and relations used in the available SE languages do not allow or facilitate the use
of such techniques.

The waited benefits for xFFBD are then to gain formal verification capabilities which re-
quires that:

• the models can be translated without loss, ambiguities, and using automated methods
xFFBD models into more formal ones on which formal proof techniques can be ap-
plied. In other words, xFFBD must be interoperable with formal checking tools, such
as those presented in (Yahoda 2003);

• the requirements may be formally described (Micouin 2008, Chapurlat et al. 2012)
and checked i.e. requirements modeling languages are themselves interoperable with
xFFBD.

The next expected step would be the ability to propagate assessment of such properties or
characteristics up or down into the levels of functional breakdown, in a way similar to the
Critical Parameter Management of the DFFS (Design for Six Sigma) approach, implementing
propagation algorithm that would take advantage of the functional to propagate properties.

Improve tools that will support xFFBD edition and simulation. Nowadays, there are a
certain number of system engineering workbenches used by system designers in order to sup-
port their design activities and to manage in a consistent way engineering information pro-
duced by these activities. However such tools do not offer an efficient digital environment.
Indeed, there is a need to offer a more agile environment that will allow a system designer
team to better cooperate through system models sharing, and to improve capabilities to “play”
on efficient views of the system being designed, that is to say to create and to bring more
value-added. In this context, following ideas need to be explored:

• use of multi-touch surfaces to increase system engineers interaction;
• ontological (or semantic) oriented browsing in the system model through the exploita-

tion of system engineering meta-model;
• visualization of system information or system model in alternative ways: while tradi-

tional views of the system information encompass the hierarchical aspects of things or
their intrinsic properties, a new way to be explored is to focus on their relationships.
Remember, “A city is not a tree”! (Alexander 1996);

• direct manipulation of system composite views to support system engineering activities
such as allocation of functions to components, allocation of flows to physical links, …

Conclusion and perspectives
eFFBD represents a strong foundation for functional modeling in systems engineering.

This position paper proposes and argues various improvements in order to make emerge or at
least to act as a preliminary roadmap to the xFFBD modeling language. This language has to
provide first a formal but understandable notation based on a set of required concepts and
operators which remain absents for the moment from eFFBD. Second, xFFBD need the defi-
nition of a new and enriched formal operational semantics to become an expressive and exe-
cutable functional modeling language. Third, it must be as interoperable as possible with oth-
er modeling languages handled by various tools so they can check properties, evaluate and
compare various criteria (such as performance or safety) on functional models.

So, the goal here is not to contrast the functional paradigm for which xFFBD would be an
appreciable contribution with the object paradigm as implemented for example by SysML.
Through their own virtues, qualities and limitations, each of these paradigms is actively con-
tributing to the development and use of systems engineering. They must co-exist and com-
plement each other. As such, xFFBD is fully in the functional paradigm and this paper allows
identifying roughly the required evolutions of eFFBD modeling language. At this moment,
the work to be done first consists in formalizing the proposed formal extension to eFFBD,
such a team is now ready to start!

References
Alexander, C., 1996, A city is not a tree, Design magazine, Council of Industrial Design.
Aloui S., Chapurlat V. 2008. “A System Modeling and Analysis Framework for Risk Analy-

sis”. In Socio-technical Systems, The best of France: Forum Académique et RobAFIS,
INCOSE INSIGHT, 11(3)

Card, S.K., Moran, T.P., Newell, A. 1986. The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates.

Chapurlat V., Aloui S. 2006. “How to Detect Risks with a Formal Approach?” From Property
Specification, Simulation Verification and Validation of Enterprise Information Sys-
tems (MSVVEIS'06), The 4th International Workshop on Modelling.

Chapurlat V., Roque M. 2009. “Interoperability Constraints and Requirements formal Model-
ling and Checking Framework”. In International Conference Advances in Production
Management Systems (APMS'09).

Chapurlat V., Daclin N. 2012, System interoperability: definition and proposition of interface
model in MBSE Context, to appear in INCOM 2012, IFAC's triennal symposium In-
formation Control problems in Manufacturing, May 23-25, Bucharest, Romania

Chesnut, H. 1967. System Engineering Methods. Wiley & Sons.
FAA. 2006. NAS System Engineering Manual, version 3.1
Hamilton, F. 1996. “Predictive evaluation using task knowledge structures”, in Conference

companion on Human factors in computing systems: common ground. ACM. 261– 262.
ISO. 2004. 18629:2004, Industrial automation systems and integration - PSL
Lime, D., Roux, O.H., Seidner, C., Traonouez, L.M. 2009. “Roméo: a Parametric Model-

Checker for Petri Nets with Stopwatches”. In 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. LCNS (5505): 54–57.

Merlin, P.M. 1974. A Study of Recoverability of Computing Systems. Ph.D. thesis.
Micouin, P., 2008, Toward a Property Based Requirements Theory: System Requirements

Structured as a Semilattice, in System Engineering, Volume 11, Issue 3: 235-245
Mori, G., Paternò, F., Santoro, C. 2002. “CTTE: Support for Developing and Analyzing Task

Models for Interactive System Design”. IEEE Trans. on Software Engineering, 28(9).
NASA. 1967. NASA/SP-610S: Systems Engineering Handbook.
–––. 2007. NASA/SP-2007-6105 Rev. 1: Systems Engineering Handbook.
Paternò, F. 1999. Model-Based Design and Evaluation of Interactive Applications, Springer-

Verlag.
Schlenoff, C., Gruninger, M., Ciocoiu, M., Lee, J. 1999. “The Essence of the Process Specifi-

cation Language”. Special Issue on Modeling and Simulation of Manufacturing Sys-
tems in the Transactions of the Society for Computer Simulation.

Seidner, C., Roux, O.H. 2008. “Formal methods for Systems Engineering behavior models.”
IEEE Transactions on Industrial Informatics 4(4): 280–291.

Seidner, C. 2009. Vérification des eFFBD : Model-checking en Ingénierie Système. Ph.D.
thesis, University of Nantes [in French].

Seidner, C., Lerat, J.P., Roux, O.H. 2010. “Simulation and Verification of [Dys]functional
Behavior Models: Model Checking for SE”, 20th International Symposium of the IN-
COSE.

Yahoda. 2003. Formal verification tools overview web site (http://anna.fi.muni.cz/yahoda/)

Biographies
Bruno A IZIER received an engineer's degree in Electronics and Signal Pro-
cessing from the ICPI-CPE (Institut de Chimie et de Physique Industrielles)
engineering school of Lyon. As a research engineer at ENSTA Bretagne (Su-
perior National School of Advanced Techniques of Brittany) since 2007, he is
contributing to research works on Systems of systems modeling with NAF
architecture framework (in partnership with the French Ministry of Defense),

meta models engineering and hybrid modeling. His expertise on the engineering of software-
intensive embedded systems is based on a course of about 25 years with major companies
such as Alcatel, France Telecom R&D, Cap Gemini, DCN, Thales Underwater Systems, or
Siemens VDO.

Vincent CHAPURLAT is a full professor at the École des Mines d’Alès, head
of the ISOE research team at the LGI2P. After a PhD in Computer and Con-
trol Theory from the University of Montpellier II in 1994, he holds an HDR
(accreditation to supervise PhD students). His research aims to develop and
formalize concepts and tools for building and formally verifying complex
systems models, applied in Enterprise Modeling and Systems Engineering
domains. He is a member of the AFIS (French chapter of the INCOSE), of
the 5.3 Technical Committee at the IFAC Board (on enterprise networking)

and of the Enterprise interoperability WG at the IFIP Board.

Stéphanie LIZY -DESTREZ is an associate professor in System Engineer-
ing (SE) and head of Specialized Master in System Engineering at ISAE
(Institut Supérieur de l’Aéronautique et de l’Espace) SUPAERO with
more than 14 years of industrial experience in space systems engineering
from design to operations. She was able to deploy inter-disciplinary ap-
proach for Earth Observation, Telecommunications or Human Spaceflight
missions. In July 2009, she joined ISAE and the associated Department

of Mathematics, Computer Science and Control Theory (DMIA). Her research aims at for-
malizing System Engineering processes through Human Space flights applications. She is a
member of the AFIS (French chapter of the INCOSE).

Daniel PRUN is an associate professor in System Engineering (SE) at ENAC
(French Civil Aviation University) with more than 15 years of industrial
experience in the field of SE. In 1997 he obtained his PhD in Computer Sci-
ence from the Pierre and Marie Curie University. He left academic research,
became an SE consultant to several customers in various sectors (defense,
air traffic control, aeronautic, railway, medical…) for their SE activities
(specification, design, system integration, verification and validation). In
2009, he has joined ENAC school and the Interactive Computing Laboratory

(LII) with the objective to develop SE teaching and research activities on interaction. He is a
member of the INCOSE and the AFIS (French chapter of the INCOSE). He also participates
at the BKCASE/GRCSE project.

Charlotte SEIDNER has obtained her master’s degree in Engineering (2005)
and in Control and Computer Theory (2006) from the École Centrale de
Nantes. In 2009, she defended her PhD thesis, entitled Verification of eFF-
BDs: model checking in system engineering and carried out in collaboration
with both the IRCCyN (the Research Institute on Communication and Cy-
bernetics in Nantes) and Sodius, an SME in Nantes, highly involved in Sys-
tems Engineering. Since 2010 she has been an associate professor at the

University of Nantes and carries out her research activities at the IRCCyN lab, on formal
methods applied to high-level problems.

Jean-Luc WIPPLER obtained his master's degree at SUPELEC (École Supé-
rieure d’Électricité) in signal processing. For the last 20 years he has worked
mainly in the sectors of space, defense, and air-traffic control. As a system
architect, he has participated in various projects in the field of Earth Obser-
vation or Satellite Navigation space based systems, and also contributed to
systems engineering in the air-traffic control, medical and automobile fields.
In addition to his job as a senior system architect, he devotes his time to

teaching systems engineering at Master of Science level (ISAE-SUPAERO, ENAC) and con-
tinuing education.

