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Abstract

We present a fast and simple method to compute bundled layouts of general graphs. For this, we first transform

a given graph drawing into a density map using kernel density estimation. Next, we apply an image sharpening

technique which progressively merges local height maxima by moving the convolved graph edges into the height

gradient flow. Our technique can be easily and efficiently implemented using standard graphics acceleration tech-

niques and produces graph bundlings of similar appearance and quality to state-of-the-art methods at a fraction of

the cost. Additionally, we show how to create bundled layouts constrained by obstacles and use shading to convey

information on the bundling quality. We demonstrate our method on several large graphs.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

Keywords: Graph layouts, edge bundles, image-based information visualization.

1. Introduction

Graphs are present in applications such as software com-

prehension, geovisualization, and network analysis. Visual-

ization metaphors for general graphs include node-link di-

agrams [TBET99], matrix plots [vH03], and graph splat-

ting [vLdL03]. In recent years, graph bundling methods

have gained increased attention. Bundling starts with a set

of node positions, given as input data or computed by a lay-

out algorithm. Edges being close in terms of graph struc-

ture, position, data attributes, or combinations thereof, are

drawn as tightly bundled curves. This trades clutter for

overdraw and produces images which emphasize the graph

structure. Blending or shading can be used to add infor-

mation or emphasize structure [HvW09, LBA10b, TE10].

Bundling algorithms exist for both compound (hierarchy-

and-association) [Hol06] and general graphs [HvW09,

CZQ∗08, PXY∗05, LBA10b, GHNS11, EHP∗11, SHH11].

However attractive, many bundling algorithms for general

graphs are quite complex and have high computational costs.

In this paper, we present a new method for bundling gen-

eral graphs. We work entirely image-based: Given a graph

drawing, we first convolve the edges with a special kernel to

construct a density map. Next, we advect edges in the gradi-

ent of this map and iterate the process for a few steps with

decreasing kernels. This delivers a layout with well sepa-

rated and smooth bundle structures. Separately, we modify

our density map to obtain bundles which avoid user-specified

obstacles of arbitrary sizes and shapes. Finally, we propose a

new shading technique which conveys the bundling quality

in an easy to interpret way. Our contributions are as follows:

• a bundling technique for general graphs which is robust,

simple to implement, and up to one order of magnitude

faster than state-of-the-art techniques;

• a technique to generate bundled layouts that smoothly

avoid obstacles of arbitrary shape and position;

• a way to visually convey bundling quality via shading.

The structure of this paper is as follows. Section 2 re-

views related work on edge bundles. Section 3 presents our

method. Section 4 details implementation and shows results

on real-world graphs. Section 5 presents our obstacle-driven

bundling and bundling quality visualization. Section 6 dis-

cusses our method. Section 7 concludes the paper.

2. Related Work

Related work in reducing clutter in large graph visualizations

can be organized as follows.

Graph simplification techniques reduce clutter by simpli-
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fying the graph prior to layout e.g. by creating metanodes of

strongly connected nodes and edges, next shown by classical

node-link layouts [AvHK06,AMA07]. This approach can be

sensitive to simplification parameters which may depend on

the graph type. It does not allow a continuous treatment of

the graph: Simplification events yield a set of discrete graphs

rather than an exploration scale [LBA10b]. Also, simplifica-

tion changes node positions (collapse to metanodes). This is

undesirable when positions encode information.

Edge bundling techniques trade clutter for overdraw by

routing related edges along similar paths. Details on clut-

ter causes and reduction strategies are given in [ED07].

Bundling can be seen as sharpening the edge spatial density,

by making it high along bundles and low elsewhere. This

improves readability for finding node-groups related to each

other by edge-groups (bundles) which are separated by white

space [GHNS11]. Dickerson et al. merge edges by reducing

non-planar graphs to planar ones [DEGM03]. Holten bun-

dled edges in compound graphs by routing edges along the

hierarchy layout using B-splines [Hol06]. Gansner and Ko-

ren bundle edges in a circular node layout similar to [Hol06]

by area optimization metrics [GK06]. Dwyer et al. use

curved edges in force-directed layouts to minimize cross-

ings, which implicitly creates bundle-like shapes [DMW07].

Force-directed edge bundling (FDEB) creates bundles by

attracting edge control points [HvW09], and was adapted

to separate opposite-direction bundles [SHH11]. The MIN-

GLE method uses multilevel clustering to accelerate the

bundling process [GHNS11]. Flow maps produce a binary

clustering of nodes in a directed flow graph to route curved

edges [PXY∗05]. Control meshes are used to route curved

edges, e.g. [QZW06, ZYC∗08], a Delaunay-based extension

called geometric-based edge bundling (GBEB) [CZQ∗08],

and ’winding roads’ (WR) which use Voronoi diagrams for

2D and 3D layouts [LBA10b, LBA10a]. Skeleton-based

edge bundling (SBEB) uses the skeletons of the graph draw-

ing’s thresholded distance transform as bundling cues to cre-

ate strongly ramified bundles [EHP∗11].

To render and explore bundled layouts, several techniques

exist: edge color interpolation for edge directions [Hol06,

CZQ∗08]; transparency or hue for edge density, or for

edge lengths [LBA10b]. Bundles can be drawn as com-

pact shapes whose structure is emphasized by shaded cush-

ions [TE10, SWvdW∗11]. Graph splatting visualizes node-

link diagrams as continuous scalar fields using color and/or

height maps [vLdL03, HTC09]. To explore crowded areas

where several bundles overlap, bundled layouts can be inter-

actively deformed using semantic lenses [HET11].

3. Algorithm

Most general-graph bundling methods use edge-to-edge

neighborhood information: Given a graph drawing G ⊂ R2

and a point x ∈ G, we can think of bundling as an operator

B : R2 → R2 which displaces x based on the spatial informa-

tion in G∩νε(x) where νε(x) is a small neighborhood cen-

tered at x. The result B(G) is a new layout whose edges are

gathered in dense groups (bundles) separated by low edge-

density areas (white space) to minimize drawing ink. Intu-

itively, we can see B as an image processing function which

sharpens the local spatial density ρ of edge points.

We model ρ using kernel density estimation (KDE) meth-

ods [Sil92]: Given a graph drawing G = {ei}1<i<N consist-

ing of edges ei ⊂ R2, we can estimate ρ : R2 → R+ as

ρ(x) =
N

∑
i=1

∫
y∈ei

K

(

x−y

h

)

(1)

where K : R2 → R+ is a density kernel of bandwidth h >
0. Typical kernel choices are Gaussian and Epanechnikov

(quadratic) functions. ρ can be computed by convolving G

with K, or building an accumulation map of K over G.

The density map ρ reflects the local edge density. A graph

drawing with uniformly distributed edges yields a flat map.

Large ρ values are zones of high edge density. More inter-

estingly, local maxima of ρ are located roughly in the middle

of local edge agglomerations. Ersoy et al. have shown that

these are good positions for placing edge bundles [EHP∗11],

and compute these points as the medial axes, or skeletons, of

the Euclidean distance transform of G thresholded at a small

value τ > 0. In contrast, we define bundling centers as the

local maxima of a continuous density map computed with

nonlinear kernels. As we shall see later, this implies several

differences and advantages for our method.

Given the density map ρ, we next define our kernel den-

sity estimation edge-bundling (KDEEB) operator B as the

solution of the following ordinary differential equation

dx

dt
=

h(t)∇ρ(t)

max(‖∇ρ(t)‖,ε)
(2)

for all points x in the graph drawing, with initial conditions

given by the input graph. The density gradient ∇ρ is nor-

malized in a regularized manner – the ε = 10−5 denomina-

tor value takes care of zero gradients. Normalizing ∇ρ con-

strains the movements ‖dx‖ to the kernel bandwidth h(t).
Since h(t) decreases in time (as explained next), this stabi-

lizes the advection process. Eqn. 2 is solved by Euler inte-

gration, i.e. we construct B(G) by iteratively computing the

density map ρ and advecting the points x∈G in the direction

of ∇ρ. The effect of Eqn. 2 is to sharpen the density ρ start-

ing with the (typically straight-line, unbundled) input graph

G and ending with a tightly bundled graph whose density

map asymptotically reaches bundle-aligned Dirac impulses.

The choice of the kernel K and bandwidth h are discussed

next. We use an Epanechnikov kernel K(x) = 1 − ‖x‖2,

which optimally approximates the ρ in a minimal variance

sense [Epa69, JMS96]. At each step i of the numerical inte-

gration, we decrease h by a geometric series hi = λihmax,

where hmax is the initial kernel bandwidth, set to the av-

erage inter-edge distance in the input graph G, and λ is

c© 2012 The Author(s)
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a) iteration 0

b) iteration 3

c) iteration 6

d) iteration 10

Figure 1: Evolution of density map and corresponding

bundling for the US migrations graph.

a kernel bandwidth reduction factor. Setting λ ∈ [0.5,0.9]
yields a kernel size which follows the average edge density.

The initial value hmax creates a smooth density ρ where any

edge point is influenced by at least one other edge and also

avoids density overestimations. During integration, edges

get closer, so we decrease the kernel hi to avoid density

overestimation. Decreasing hi also decreases the advection

speed, which stabilizes the process as the signal ρ is increas-

ingly ’sharpened’. In other words, edges converge towards

the local density maxima instead of jumping from one side

to the other of such maxima. More advanced methods for es-

timating the kernel bandwidth, such as data-based adaptive

selectors can be used, if desired [SJ91,JMS96]. However, we

do not need an exact density estimation for graph bundling

since we only use the density’s gradient and recompute the

density iteratively, so our simple heuristic suffices.

Figure 1 shows several iterations of the density map,

drawn as a height plot (normalized in height for display)

and corresponding bundled layouts for the US migrations

graph [HvW09,EHP∗11]. The density map gets sharper dur-

ing the iterative solving of Eqn. 2. This bundles edges along

the density local maxima. As the density map gets sharper,

the average distance between local maxima increases, so

bundles get tighter and separated by more white space.

Figure 2 shows iteration 10 of bundling the same graph,

this time without gradient normalization (Eqn. 2). Compared

to Fig. 1, the local maxima vary more, i.e. edge density

non-uniformities in the input graph get amplified during the

bundling. Edges close to the high peak top-right in Fig. 2 get

bundled strongly, while other edges converge very slowly.

Figure 2: Density map (left) and corresponding bundling for

non-normalized advection (compare to Fig. 1)

4. Implementation

An efficient implementation of our method uses a GPU

image-based approach, as follows (see also Fig. 3).

splatting
gradient

estimation

edge

advection
rendering

density

map

gradient

map

bundled

graph

final

image

input

graph

n iterations

Laplacian

smoothing

edge

resampling

smooth

bundles

sampled

edges

Figure 3: KDE edge bundling pipeline.

4.1. Graph representation

First, we discretize all edges ei of the input graph into sets of

points xi j , by using a small sampling step δ equal to roughly

1% of the size of the graph’s bounding box, similarly to other

methods [HvW09, Hol06, EHP∗11, LBA10b]. This typically

yields several tens of sample points per edge on average.

4.2. Density computation and gradient estimation

To compute the density map ρ (Eqn. 1) and gradient ∇ρ, we

can splat the kernel K, precomputed into an OpenGL 2D lu-

minance texture, at all edge sample points xi j , and accumu-

late results into a floating-point buffer by additive blending.

Maximal efficiency is achieved by drawing OpenGL point

sprites scaled by the bandwidth hi (Sec. 3). The accumula-

tion buffer size matches the screen size. From this accumu-

lation map, we compute ∇ρ by finite differences. A more

accurate way is to precompute ∂K/∂x and ∂K/∂y as two

separate luminance textures and accumulate the two com-

ponents of ∇ρ by splatting the two textures separately. The

two approaches are identical speed-wise: The former uses

two passes (accumulate, compute gradient); the latter uses a

single pass but creates two separate accumulation maps.

A better approximation of the kernel density estimation

(Eqn. 1) is obtained if we use edge-aligned kernels. For this,

we use elliptical kernels aligned with the edge segments

(xi j,xi j+1), i.e. draw rectangles textured by the radial ker-

nel K centered at the edge sample points, aligned with the

edge segments, and of size h (across the edge) and equal to

the average of ‖xi j − xi j+1‖ (along the edge). Another op-

tion is to use one-dimensional half-kernels stored as 1D tex-

tures and drawn as rectangles tangent to the edge segments.

c© 2012 The Author(s)
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The latter method was used by Ersoy et al., with a different

(distance) kernel, to create distance profiles [TE10]. Edge-

aligned kernels allow a lower edge sampling rate, since ker-

nels are scaled separately along and across edges, thus in-

crease splatting speed without decreasing the KDE quality.

4.3. Advection

After obtaining the gradient of our edge density map, we ad-

vect each edge by Euler integration of Eqn. 2 on the edge

sample points xi j . Edge endpoints are kept fixed. Since we

first compute the gradient map and then advect all edge

points, integration is explicit, which parallelizes easily. After

each advection step, we resample the edges (Sec. 4.1). This

is needed since div ∇ρ 6= 0 and edge endpoints are fixed, so

advection stretches and/or shrinks edges, which can lead to

edge self-intersections or subsampled edge fragments.

4.4. Smoothing

After each iteration, we do 5..10 Laplacian smoothing it-

erations of the advected edges with a kernel of fixed size,

roughly 8δ, similar to [HvW09]. This removes small-scale

advection artifacts caused by the imprecise estimation of the

density map ρ which is due to errors in the kernel bandwidth

estimation (Sec. 3), on the one hand, and to discretization er-

rors in the finite edge sampling and finite kernel splat texture

resolution (Sec. 4.2), on the other hand. Artifacts show up

as small-scale undulations in the density map, which cause

extra divergence points, i.e. slight rotations, of ∇ρ. In turn,

gradient imprecisions cause edges to become jagged dur-

ing advection, thus yield slight zig-zags in the final bundles.

Laplacian smoothing completely removes this problem and

generates smooth bundles. Our smoothing is equivalent to

anisotropically filtering the density map, prior to gradient

estimation, with a kernel aligned with the map’s curvature

minor eigenvector, i.e. along its ridges [Wei98]. However,

this type of image filtering is considerably more expensive,

and more complicated, than our Laplacian edge smoothing.

4.5. Iterative bundling

For all tested graphs, 8..10 iterations of gradient computa-

tion, advection, and smoothing yields a stable layout. The

process is monotonic: edges move in a single direction rather

than back-and-forth. This is due to the structure of the den-

sity map gradient: If two edge points x,y∈G are within each

other’s bandwidths at an iteration, both are equally advected

towards the midpoint (x+ y)/2, since we use the same ker-

nel size and shape at all points.

4.6. Examples

Figure 4 compares our KDEEB with recent bundling meth-

ods: FDEB [HvW09], GBEB [CZQ∗08], SBEB [EHP∗11],

and WR [LBA10b]. Overall, we produce tighter bundles

than FDEB and GBEB, and smoother bundles than SBEB.

While SBEB requires an edge pre-clustering on similar di-

rections and positions (Fig. 4 a,c,f,g), we obtain similar or

better results, i.e. tight, smooth, well-separated bundles, with

no clustering at all. If edge clusters are provided, we can use

these by bundling each cluster separately. For example, in

Fig. 4 (a,b), which shows a software dependency graph with

edges grouped by structural similarity, KDEEB delivers bet-

ter separated bundles, than SBEB. Also, compare Fig. 4 g

(US migrations graph, pre-clustered on edge similarity, bun-

dled with SBEB) with KDEEB where we bundle each cluster

separately (Fig. 4 h). Our result is more similar to bundlings

which do not use clustering (e.g. our method, Fig. 4 j or

WR, Fig. 4 l) than to SBEB. This indicates that our method

could be used in cases where we want to bundle parts of a

graph separately, e.g. interactive exploration or online graph

bundling. Per-cluster bundling does not decrease the speed

of our method, since its complexity is O(EI/δ) for a graph

with E edges, I bundling iterations, and an edge sampling

step δ. Figure 5 shows the US airlines graph bundled by

FDEB, SBEB, MINGLE, and our method. Again, our results

are tighter and arguably less cluttered than other methods.

5. Additions

We describe next two visual additions for bundled graphs

that are easily added atop of our bundling method: obstacle-

constrained bundles and visualizing bundling quality.

5.1. Obstacle-constrained bundles

Often, a layout needs to avoid some areas in the embedding

space, e.g. labels, icons, or other zones of interest. Although

many methods for laying out graphs with spatial constraints

exist, this use case has not been studied, to our knowledge,

for bundled layouts. We next present such an approach.

Given a set of 2D obstacles Ω1≤i≤B ⊂R2, we want to cre-

ate a bundled layout which (a) follows the general paradigm

of bundling close edges into smooth and tight bundles, and

(b) routes bundles around obstacles without creating sharp

bends or lengthening the bundles needlessly. Obstacles are

shapes of arbitrary geometry and topology, e.g. can have pro-

trusions, dents, or holes, and can be placed freely. We model

such shapes as binary images, with foreground pixels (Ω)

inside the shape and background pixels (Ω) outside.

To constrain bundles, we modify the density ρ used by our

method. Instead of the density ρ in Eqn. 1, we use now

ρobs = ρ−DT
(

T
(

DT
(

∪B
i=1Ωi

)

,τ
))

(3)

where DT (Ω) : Ω → R+ is the distance transform (DT) of

the shape’s boundary ∂Ω [CC00], computed on the fore-

ground, and T (·,τ) is the lower thresholding of a DT with

a value τ. Hence, we subtract from ρ the DT of an inflated

version Ωin f l = T (DT (Ω),τ) of our obstacle Ω with a dis-

tance τ. Since the gradient ∇DT (Ω) is a vector that points

c© 2012 The Author(s)
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a) SBEB c) SBEB d) KDEEBc) d)

f) KDEEB

g) SBEB h) KDEEB

i) FDEB j) KDEEB

k) GBEB l) WR

e) SBEB

b) KDEEB

Figure 4: Bundling examples. Radial graph (a,b); Poker graph (c,d); France airlines (e,f); US migrations, clustered (g,h); US

migrations, unclustered (i,j,k,l); Colors mark different edge clusters. More examples at www.cs.rug.nl/svcg/Shapes/KDEEB

from each point x ∈ Ω to the closest point on ∂Ω to x, by

using ρobs instead of ρ in Eqn. 2, we force edges that cross

obstacles to move in the shortest direction towards the ob-

stacles’ boundaries, i.e. route edges outside obstacles with

minimal stretching. Once edges exit an obstacle, this re-

pelling effect ceases, since DT (Ω)= 0 outside obstacles. For

shapes with sharp convex corners, ∇DT (Ω) is not a smooth

field: ∇DT (Ω) has discontinuities along the skeleton of ∂Ω,

which in turn has one separate branch for each such cor-

ner [CC00, TvW02]. However, such discontinuities create

no kinks or sharp bends in the advected edges, for several

reasons. First, outside obstacles, edges are only influenced

c© 2012 The Author(s)
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a) b)

c) d)

Figure 5: Bundling examples. US airlines (FDEB (a), SBEB (b), MINGLE (c), KDEEB (d)).

c) d)

a) b)

Figure 6: Obstacle-constrained bundling without endpoint displacement (a,c) and with endpoint displacement (b,d).

by the smooth C ∞ component ρ. Secondly, since we use in-

flated obstacles Ωin f l , any corners are rounded out, so edges

never get sharp bends when following the obstacles’ con-

tours. This matches our goal of smooth obstacle avoidance.

The parameter τ (10..20 pixels) controls how much corners

are smoothed, and also creates a thin halo-like band between

the routed edges and the obstacles, which helps better sepa-

rating the former from the latter.

This method has one singular case. Consider a rectangle

Ω crossed by an edge which is parallel to, and far from, its

short sides. The edge is parallel with ∇DT (Ω), so it only gets

shifted tangentially by ρobs. Laplacian smoothing (Sec. 4)

eliminates tangential shifts, so the edge never exits Ω.

We solve this problem as follows (see Fig. 7). For each

edge e that crosses an inflated obstacle Ωin f l , we compute

the intersection points {pi}= e∩∂Ωin f l . For simplicity, we

next consider that there are only two such points p1 and p2;

the method works the same for more intersection points. We

compute the shortest pixel path γ ⊂ ∂Ωin f l between p1 and

p2. If there are two such paths, we take any of them. Next,

c© 2012 The Author(s)
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we replace the edge segment e∩Ω inside the obstacle with

γ. This pushes e outside Ωin f l with a minimal deformation.

Finally, we apply Laplacian smoothing on e (Sec. 4.4), but

forbid the smoothed points to re-enter Ωin f l . This effectively

rounds concave corners made by e as it follows ∂Ωin f l . Since

convex corners are already rounded off by using the inflated

version of Ω, we obtain edges that smoothly avoid obstacles.

obstacle Ω

inflated

obstacle Ωinfl

τ

original

edge

shortest path γ

re-routed edge

DT(Ω)

DT(Ω)
_

p1

p2

a)

b)

shortest path γ1

shortest path γ2

medial axis S(Ω)

p2

p1

Sc

bundle passing

through Sc

Figure 7: a) Obstacle-constrained bundling refinement;

b) Bundle splitting singularity. The background shows the

shape’s distance transform for illustration (Sec. 5.1).

Figure 6 shows several obstacle-constrained bundles. Im-

ages (a,b) show our method on the France airlines graph

(Sec. 6.2), with and without endpoint displacement. Icons

show cities close to large flight endpoint agglomerations.

Images (c,d) show obstacle avoidance on the US airlines

graph (Sec. 6.2). Edges starting or ending inside an obsta-

cle are routed straight to the obstacle boundary, after which

they follow the bundle they are part of. If we allow node dis-

placement, endpoints inside obstacles are moved too. The

technique works both with our new bundling (Sec. 3, im-

ages (a,b)), but also on graphs bundled by other methods, e.g.

Fig. 6 c,d whose bundling was generated with [EHP∗11].

Finally, we present a different type of obstacle avoidance:

global whole-area avoidance, or outward bundling. In this

use-case, we want to create a bundled layout where bundles

are routed, if possible, outside the entire area where nodes

are placed. This frees up space close to and/or between nodes

which can be used to show other information e.g. maps, an-

notations, or different types of (unbundled) edges. In con-

trast to obstacle avoidance, this is a global process, as we

now want to avoid an entire, large, area rather than iso-

lated obstacles. We achieve this by shifting the splat kernels

(Sec. 4.2) slightly along the vector between the barycenter of

the graph node positions and the position of the current splat-

ting point. This effectively offsets the kernels outside the

edges, and thus pulls the edges globally away from the graph

center. Edges which connect nodes radially, i.e. in directions

roughly leading to the barycenter, will stay unchanged. Bun-

dles which connect nodes at relatively similar distances from

the graph center will, however, be repelled further from this

center. Figure 9 b shows this technique on the France airlines

graph. We see that, even though the bundle constraints are

large, bundles stay coherent but get routed outside the nodes’

agglomerations, if possible. The inner space thus freed can

be used for additional visualizations. Implementation-wise,

this technique is trivial, as it requires only shifting the splat-

ting locations in a given direction when evaluating Eqn. 1.

Obstacle avoidance is simple to implement: We compute

the obstacles’ distance transforms, inflations, and shortest

boundary paths using the AFMM method [TvW02] on im-

ages up to 10002 pixels in subsecond time. If higher speed

is needed, a CUDA version hereof can be used, which takes

under 10 milliseconds on modern graphics cards [EHP∗11].

Obstacle avoidance can be done during, or after, bundling.

In the former case, obstacles affect bunding: different edges

may get bundled than when no obstacles are used. In the

latter case, same-bundle edges get re-routed together on the

same side of an obstacle, which keeps bundled edges to-

gether except in the rare case when a bundle intersects the

center of the obstacle’s medial axis S(Ω) (Fig. 7 b). In this

case, edges which intersect S(Ω) on different sides of Sc are

re-routed to the two different shortest paths along the obsta-

cle’s boundary (blue and green curves γ1 and γ2 in Fig. 7 b).

This creates a natural bundle ’flow’ around the obstacle.

5.2. Visualizing bundling quality

Given any bundling method, how to measure its quality? One

can measure the results’ fitness for a given task e.g. by user

studies. Secondly, one can measure the quality of the pro-

duced images by some given image metrics. For the latter

approach, little work exists so far. We use here the second

approach: We model a graph’s bundling strength by measur-

ing how densely packed its edges are. Areas with high edge

density, separated by areas with zero density, indicate strong,

clearly delimited, bundles, and minimize ink [GHNS11].

Low edge density areas indicate spurious edges which could

not be bundled. These are either limitations of the bundling

method or actual data outliers, i.e. edges with no other

similar-direction edges in their proximity.

We address the above as follows. We compute our den-

sity map ρ, we compute its normal n, and next its Phong

shading, with diffuse color set to a user-chosen ’graph ma-

terial’ color and specular strength inversely proportional to

c© 2012 The Author(s)
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a) b)

Figure 8: Bundling quality visualized by shading. Shaded colorful structures indicate dense bundles. Outlier edges are white.

Radial graph (a), France airlines (b)

the density ρ. This creates two effects. First, strong bun-

dles appear as shaded cushions in the graph’s color, sim-

ilar to [TE10, EHP∗11]. Secondly, outlier edges appear as

strongly specular (e.g. white). Edges are rendered as lines

with classical alpha blending and shading applied at the edge

sample points xi j . Technically, our method is simpler than

the image-based shading in [TE10]: We only need to apply

Phong lighting to the edge sample points, whereas [TE10]

constructs 2D shaded bundle images by means of splatting,

thresholding, and skeletonization. Thin (outlier) edges ap-

pear clearly in our shading, whereas [TE10] only shades

bundles having a minimal thickness of several pixels.

Figure 8 shows two examples. The first graph (a) encodes

software dependencies i.e. nodes are functions and edges are

function calls. Shaded red structures show strong bundles in-

dicating groups of functions i.e. software subsystems calling

each other. These are clearly separated from outlier, unbun-

dled, edges (white). We see that many edges are not bundled.

In Fig. 8 b (France airlines graph), most edges are well bun-

dled, as there are very few white outliers. Note that the above

visualization is just an aid to reflect on the bundling strength

and not a self-contained bundled graph visualization tech-

nique in itself: To be effective, it should be combined with

suitable shading showing edge types, directions, and nodes.

6. Discussion

6.1. Comparison

Several differences are visible between our method vs ex-

isting methods (Fig. 4): We produce smoother, less twist-

ing, bundles than GBEB and SBEB, and tighter bundles

than FDEB and MINGLE. Figure 9 a shows the effect of

edge-aligned kernels (Sec. 4.1): The obtained bundling (US

migrations graph) resembles now more the style of GBEB

(Fig. 4 k) than the smooth style of FDEB or WR (Fig. 4 i,l).

Figure 9 c shows bundling of a synthetic graph of 100K

edges with nodes randomly placed in a square. The result is

a set of well structured, smooth, bundles, with little clutter.

There is no semantic associated to such bundles, since our

graph was random. However, this shows that KDEEB can

effectively declutter and bundle very dense graphs.

Our bundling (Eqns. 1 and 2) shares some aspects with

FDEB [HvW09] and SBEB [EHP∗11]. As FDEB, we move

edge points close to each other, but we do not need any ad-

ditional edge compatibility metrics ( [HvW09], Sec. 3.2).

As SBEB, we move edges close to their local center. While

SBEB computes this center explicitly as medial axes of

thresholded distance functions of similar-direction edges, we

move edges towards their implicit local center via the density

map gradient. Eqn. 2 resembles solving the Eikonal equa-

tion [TvW02], as we move edges with equal speed along a

radial kernel gradient, which resembles the gradient of an

Euclidean distance map. However, we recompute this gradi-

ent at each step, while [TvW02] uses a fixed motion direc-

tion given by an explicit initial boundary.

GPU image-based techniques based on a density map

computed from a graph drawing are also used by [FT09].

However, the aim is different: We ’concentrate’ the density

signal, and keep nodes fixed, to bundle edges, while [FT09]

works in the opposite direction, spreading nodes towards less

dense areas in order to declutter a given layout.

6.2. Performance and simplicity

Our entire bundling code is under 1000 lines of C#, and con-

sists of four simple steps: density computation (Sec. 4.2),
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Figure 9: Additional examples. GBEB-style layout (a); Outward bundling (b); Random 100K edge graph bundling (c).

edge advection (Sec. 4.3), and edge smoothing (Sec. 4.4).

Compared to other bundling methods whose implemen-

tations we could study [HvW09, LBA10b, EHP∗11], our

pipeline is simpler, e.g. we do not require graph clustering,

skeletons, Voronoi diagrams, or spatial search structures. We

only use OpenGL 1.1 as compared to the more complex

CUDA or pixel shader code in [EHP∗11, LBA10b].

Graph Nodes Edges Edge Bundling time (sec.)

samples 8800 GTX GeForce 580

US airlines 235 2099 86K 1.4 0.5

US migrations 1715 9780 220K 3.6 1.5

Radial 1024 4021 290K 4.5 1.5

France air 34550 17275 330K 3.8 1.8

Poker 859 2127 50K 0.8 0.4

Random 200K 100K 4.8M 43 18

Table 1: Graph statistics for datasets used in this paper.

Table 1 shows running times on two Nvidia cards, both

on a 3.3 GHz Core i5 PC, for 10 iterations. The Edge sam-

ples column shows the number of sample points on all graph

edges. Advection, resampling, and smoothing are done in

C# on 4 threads, which takes about 40% of the entire time,

the remainder being OpenGL-based splatting. These steps

can be easily accelerated further with e.g. vertex shaders or

CUDA. However, even without this extra boost, KDEEB

is much faster than similar approaches - on average for

the tested graphs, 16 times vs FDEB [HvW09], 6 times

vs GBEB [CZQ∗08], 5 vs than SBEB [EHP∗11], and 4 vs

WR [LBA10b]. The only faster bundling method we know

is MINGLE [GHNS11]: 2..3 times faster than KDEEB for

graphs up to 2000 edges, and about the same speed for larger

graphs. The lower performance of KDEEB for small graphs

is due to the relatively large amount of work done in C# on

the CPU for these graphs, which gets dominated by GPU

computations for larger graphs. Also, MINGLE arguably

produces more cluttered, less bundled, layouts (Fig. 5 c vs

Fig. 5 d), as it uses only the start and endpoints of edges to

bundle these, whereas we use the entire edge paths.

Memory-wise, we only need to store three frame buffers

equal to the screen size (density map and its two gradi-

ent components). This means practically zero data overhead

atop of the edge samples which describe the bundled layout.

7. Conclusion

We have presented a new method for creating bundled lay-

outs of general graphs. Our approach offers a simple, (GPU)

parallelizable method which is several times faster, and ar-

guably simpler to implement, than comparable methods.

Our method produces bundled graph layouts with tight and

smooth structures, robustly handles graphs of widely vari-

able complexity and size, and requires no complex user

parameter settings. We show how to constrain bundling to

avoid arbitrary-shaped obstacles placed in the embedding

space at user-selected positions, and also a way to glob-
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ally route bundles outside the nodes’ position area. Our ap-

proach, which follows an image sharpening technique, opens

new ways for analyzing and refining graph bundling based

on well understood image processing techniques.

Several future work directions exist. Speed-wise, our

method can directly use a fully-parallel (e.g. CUDA) opti-

mization. Secondly, by modifying the splat kernels, different

bundling styles could be obtained e.g. orthogonal layouts.

Last but not least, our image sharpening technique may have

direct applications in image processing and simplification,

beyond the confines of information visualization.
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