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Abstract:

The demand for an air transport market is very sensitive to many factors. 

The vagueness of the impacts of all these factors makes the task of 

prediction of this demand by classical methods very hazardous, especially 

when this estimation is used afterwards for critical decisions such as those 

related with the definition of supply (frequency of flights, number of seats 

put on the market, trip price..). Then it appears that crisp methods are not 

able to take fully into account all the uncertainty making up the demand 

while possibilistic reasoning could be a way to catch it. Following this idea, 

it is shown in this communication how regressions based on fuzzy logic 

which combine statistics and experts’ attitudes can be used to improve the 

estimation for air transport demand.  

In the first section of the communication, following Tanaka’s model, fuzzy 

linear regression is introduced. Then in the second part an extension using 

trapezoidal fuzzy numbers is displayed. Finally, in the last section, the 

application of the proposed fuzzy linear regression to the estimation of air 

transport demand is considered. 
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1. Introduction: 

The purpose of regression analysis is to relate analytically the variation of a 

dependent variable Y in terms of explanatory variables Nxx ,...,1 .  An 

estimation of Y denoted Ŷ  in terms of  )...1( 1 N
t

xxX   can be obtained 

from data samples (see table 1) through a linear statistical regression. The 

analysis of this latter has been much considered [2], where f was naturally

taken as a crisp linear function such as:      

                          NN xaxaxaXf  ...)( 1100   with 10 x                        

(1)

where Naaa ,...,, 10  are real values. Defining ),...,,( 10 N
t aaaA , we can 

write: AXXf t)( .

Since in general the relationship between the input and the output cannot be 

known exactly, a random variable u which represents the disturbance or the 

error term can be added to the right side of (1):
                                         iii uXfy  )(                                              

(2) 
This disturbance term is a surrogate for the uncertainty due not only to the 

a priori affine form chosen for function f, but also to the omitted variables 

that affect the output. The vector of the parameters ja  is then estimated 

through a least square regression as: 1ˆ ( )
t t

A TT T
   where T is the 

matrix composed by the inputs samples and Y is the vector of the output 

samples: 
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Table 1: Observed input output data 
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Then, given a set of predefined inputs X, a crisp estimation of Y will be 

given by: 

XAY t ˆˆ                                 (3)

and to get some insight into the estimation error, strong assumptions related 

with the distribution of the data must be made (for example the values of 

the error terms can be supposed mutually independent and identically 

distributed [2] along a centred normal distribution ),0( N ). In the 

following, fuzzy sets are used to contain the uncertainty related with the 

inputs-output relationship. 

2. Tanaka’s model: 

2.1.  Model’s exposition: 

In fuzzy linear regression (FLR) analysis [1], some of the assumptions of 

the classical statistical approach are relaxed and the uncertainty is traduced 

by a fuzzy relationship between the input and the output. Such a 

relationship is given by a fuzzy function f
~

. The present paper considers 

first the model of Tanaka [5] which is a pioneer for such models.  

 The basic Tanaka’s model assumes a linear fuzzy function: 

                        0 0 1 1( ) ...
t

N Nf X A x A x A x AX        With 10 x                 

(4)

Where A
~

 is the fuzzy vector of the model’s parameters.  

For every  Nj ,...,1,0 , jA
~

 is a symmetric fuzzy number presented by 

j j(c , w )  where jc  and jw  are respectively its centre and its width. The 

reference membership function of these numbers is denoted L and is such 

as: 

 ( ) ( )L x L x 
 (0) 1L 
 L is decreasing on  1,0

 ( ) 0L x   when [,1[ x

 L is concave on  1,1
-1 10-x x

L:  for a triangular shape

1
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L : L : for a

1
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Fig.1: Examples of reference membership functions 
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The membership function 
jA

~ is deduced from L as 

( ) (( ) / )
j

j j j jA
a L a c w    when 0jw  .

An interesting case is when the jA
~

 are triangular. It is the case the most 

developed in the literature; where:  

x1          if  11  x     

 0              if   not                    

and

    1 /j j jc a w            if j j j j jc w a c w   
0 otherwise. 

It can be shown (see [5]) that when the jA
~

are triangular fuzzy numbers, 

then the resulting Y (7) is a triangular fuzzy number as well. The centre of 

Y is then 
t
CX   and its width is the sum of the widths of all the 

terms:
t
W X , where C is the vector of the centres of the jA

~
and W is the one 

of their widths . The membership function of Y is then given by: 

Max (0,1
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Then the uncertainty about Y is illustrated by the width of the membership 

function of the resulting fuzzy number. Given a set of data samples D, it 

appears to be of interest to minimise the total vagueness resulting from the 

fuzzy regression through the tuning of its parameters. 

Given a threshold number h ( 0 1h  ), let us define a reduced data set Dh

where the sample i is retained if yi has a membership degree greater than h:  

           1,2,..., , ( )
i

h iY
i M y h                                  

(8)

where Mh is the size of Dh

This can be written: ( / )
t t

i i iL y CX W X h   and since L is decreasing over 

 0,1 then:  

                      
1
( ).

t t

i i iy CX L h W X
                           (9)

Observe that in the case of triangular fuzzy numbers, hhL 
1)(

1
. Let us 

estimate the total vagueness associated to Dh and W: 

1 0 0 1

( ) ( )
M N N M

j ij ij j
i j j i

w x x w      
Then a linear program can be formulated to minimise the total vagueness 

under an h-degree membership constraints over Dh :  

                       
, 0 1

( )
N M

h

L ij j
W C j i

M in x w
 

  
         st 1

0 0

( ) 1, ...
N N

j ij j ij i h
j j

c x L h w x y i M


 
    

                  1

0 0

( ) 1, . . .
N N

j ij j i j i h
j j

c x L h w x y i M


 
    

0W  ,
0, 1; 1, ..., .

N

i hC x i M   

The resulting linear fuzzy regression model will be denoted
h

LF .
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2.2.  Analysis of model: 

  If 
0 1( , , ..., )

t

h NC c c c
    and

0 1( , , . . . , )
t

h NW w w w
    compose the optimal 

solution of problem (11), then the vector of estimated parameters resulting 

from the regression h

LF is:  

h

L h h L

ˆ
A (C , W )

  .                   (12)

When another membership degree h’ ( hh ' ) is considered, it is easy to 

show that the resulting linear fuzzy regression 'h

LF is given by: 

' 1 1ˆ
( ,[ ( ) / ( ')] )

h

L h h LA C L h L h W
    . Then, once a given reference function L is 

adopted, the LFR associated to a threshold h can be deduced from the one 

corresponding to 0h  .

This model can be interpreted as an estimation of the interval of the 

dependent variable Y. At the beginning ( 0h  ) an interval containing all 

the observations is defined and when an effective threshold h is chosen a 

resulting narrower interval is defined for the estimation. As some data 

samples located near the bounds of the current interval become outliers, 

they are removed from the refined data set. Some observations can be made 

here about this method: it can be instructive to interpret the detected 

outliers samples instead of merely removing them. This method does not 

take fully into consideration the effective dispersion of the data samples 

within the learning interval. When rather large uncertainties are involved, L 

may be not a strictly decreasing function on  1,0  (trapezoidal numbers can 

be of interest in this case) and the above approach is no more applicable.  

3. Extension of the Tanaka’s model:

The proposed extension makes use of level fuzzy functions in the sense of 

Zimmermann[6]. A level fuzzy function f
~

 is given by  

 four level crisp functions: dcba ffff ,,, .

 cb ff ,  provide the curves for which the degree of membership reaches 

1.  da ff , provide the curves for which the grade of membership starts 

from zero. 

For consistency reasons, these four functions cannot intersect on the 

input domain given by  maxmin , XX (    1 min 1 max min max( ) , ( ) ... ( ) , ( )N Nx x x x   ):

  )()()()(,, maxmin xfxfxfxfXXx dcba 
Then a membership function can be attached to this level fuzzy function: 
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                          ))()(/())()(( xfxfxfxf aba        if    

)()()( xfxfxf ba 
1                                               if     

)()()( xfxfxf cb 
))()(/())()(( xfxfxfxf cdd        if     )()()( xfxfxf dc 

                                                                       0                                                 

otherwise 

A simple way to determine the extreme level functions af and df  is to use 

the Tanaka’s model considering the resolution of (11) for 0h  :

                        
0 1

N M

j ij
j i

Min w x
       

         st      
0 0

1,...
N N

j ij j ij i
j j

c x w x y i M
 

    
                  

0 0

1,...
N N

j ij j ij i
j j

c x w x y i M
 

    
                0W  , 0, 1; 1,..., .

N

iC x i M  

giving:    
N

j

N

j
jjjja xwxcXf

0 0

**)(  and 
0 0

N N

d j j j j
j j

f ( X ) c x w x
 

 
  

The determination of the central functions bf  and cf is not so 

straightforward. They provide the bounds of the certainty domain. There 

are many ways to define them, in the following two methods are 

considered. 

a) Method using an h-cut: 

The h-cut considered in the Tanaka’s model can be used here to define the 

bounds of the set of possibilities that will correspond to the certainty 

domain. It is assumed that any output value having a membership level 

higher than a given level 1h  (  1,01 h ) is in the certainty domain. So bf

and cf are here defined by the resolution of (11) where L is the triangular 

reference membership function and h is a chosen number in  1,0 .

))((~ xf
f



(14) 

(c )

(d)

(b)

(a)

(13) 
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b) Mixed method 

Since the methods presented above do not pay a direct attention to how the 

data samples are dispersed in the interval, with the mixed method, the level 

functions af and df are obtained through a 0-cut using Tanaka’s model 

while a least square regression is used to determine the central level 

functions bf  and cf . From the resulting statistical regression model 

ˆ ( )f X and standard deviation , bf  and cf are given by  f̂fb   and 

 f̂f c  where  is a positive constant chosen by an expert depending 

about his opinion about the representativeness of the proposed samples. A 

large   means that he has a poor opinion about their representativeness. 

    These two methods define trapezoidal fuzzy numbers taking into account 

all the data samples for the definition of their limits since they are effective 

realisations. Besides that, experts can choose directly the criteria used to 

determine the central functions bf  and cf . The possibilities above 

( )cf X can be interpreted as corresponding to optimistic scenarios and the 

ones under ( )bf X can be associated to pessimistic conditions. 

4. Example

In the air transport market uncertainty is very frequent so let us consider a 

simple example of air transport demand estimation as function of ticket 

price. The table below provides a set of data samples: 

price(u.m) 2 1,5 3 4 2,5 1,8 2,4 3,5 2,8 3.1 3,2 

Demand 250 350 200 120 160 380 240 250 300 430 310 

price(u.m) 3,8 1,6 1,3 2,1 1,9 3,4 2,7 1,2 4,2 2.05 2,9 

Demand 150 300 400 230 250 160 180 350 118 480 180 

h=0.

Y

Fig.5 . Interval estimation and construction of trapezoidal 
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Tanaka’s method in this example provides an estimate of the demand 

function centred in the interval (h=0), a  large number of observations is 

then excluded, contrarily to the proposed method to build trapezoidal fuzzy 

numbers which keeps all these data samples.  In this case, it can be 

observed that the concentration of the data is rather bellow the centre of the 

fuzzy estimation. 
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With the second trapezoidal fuzzy numbers method, the crisp linear 

regression estimate remains in the centre of the base of the trapezoidal 

fuzzy estimation. 

5. Conclusion 

In this paper, a new approach for fuzzy linear regression analysis has been 

introduced. This approach is inspired from the Tanaka’s method. The target 

of this approach is to build trapezoidal fuzzy sets for the estimated variable. 

It tries also to take into account all the data samples and sometimes the 

dispersion of these latter. A simple example has been treated to compare 

these methods.   
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