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Abstract—With the predicted growth of air traffic, traffic
flow managers need new tools to access information to sup-
port their decision making processes. Recent progress with
information visualization tools enables users to explore large
data sets and extract decisive knowledge. Their advantages for
air traffic applications are presented in this paper. They can
provide high level information to aggregate trajectories. With
constant feedback due to human perception, a flow model of
the airspace, reflecting its intrinsic structure, is elaborated and
can be used for further research.

I. INTRODUCTION

The goal of Traffic Flow Management is to maximize

both safety and capacity, so as to accept all flights while

protecting the lives of the passengers and avoiding delays.

With the expected growth of air traffic, new visualizations

and analysis tools need to be developed to help the engineer

design a more efficient and safer airspace/air traffic control

system/airtraffic management system and further improve

the safety level. In this perspective, air traffic practitioners

analyze data from traffic activity. Such multidimensional

data includes aircraft trajectories (3D location plus time),

flight routes (ordered sequences of spatio-temporal points

that represent planned routes), meteorological data, etc.

In many Traffic Flow Management tools, the initial posi-

tion of the aircraft (known with or without uncertainty) is the

key information. Mid-term and long-term en-route air traffic

management would benefit from a higher view approach,

using tracks and flows characteristics (e.g. routes, flight

plans, inter-arrival distances between aircraft). Prandini et al.

claim that [1] flows can provide more predictable and robust

estimates than watching aircraft individually. As developed

in [2], [3], dominant flow patterns and traffic flow interac-

tions constitute the basis for air traffic controllers to build

their abstraction of a sector. Flow patterns can be described

by many flow features [4], such as the number of flows, the

major flows and their size, the number of crossing flows,

etc. These indicators are useful to estimate and predict sector

demand based on the traffic flow pattern. They can be further

used to study the impact of severe weather, as explained

in [5]. The list of flow characteristics proposed in [4] can

also form a basis for the notion of traffic complexity. The

locations of high complexity regions is of special interest

for traffic flow managers [6].

Traffic models are needed to best represent the airspace

and the variability and complexity of traffic. In many re-

search approaches for TFM [7], a graph network is formed

linking chosen airports. Often times, the network includes

the entries and exits of each sector along the way. The result-

ing network is used to formulate TFM optimization problem.

Yet, modeling traffic as if aircraft were simply traveling

along a limited set of predefined air routes and jet routes

from an origin to a destination is unrealistic. Obtaining a

more precise understanding of the airspace and its capacity

is a means of improving the support for TFM under nominal

conditions, but also in the presence of perturbations. Data-

mining techniques are useful to identify and interpret the

behavior of a system. Extracting knowledge from large data

sets with no prior knowledge enables researchers to build

better predictive models. The specific properties of air traffic

data offer both new challenges and new opportunities for

data analysis. The semantics of traffic data is rich because

of its temporal and spatial ranges. More semantics can be

added by augmenting background data such as the traffic

network and the meteorological data. Air traffic datasets are

characterized by their large sizes, adding more challenges to

the analysis.

This paper seeks to present new data visualization tech-

niques and their purposeful use for building airspace flow

models. Section 2 focuses on the challenges of data visu-

alization and its application to large trajectory data sets.

Section 3 develops the use of graph bundling techniques to

build network flow models of an airspace. Section 4 draws

the conclusions of this paper and suggests future research

paths.

II. TRAJECTORY EXPLORATION AND ITS APPLICATION

TO LARGE DATA SETS

Much of air traffic data consists of sets of trajectories,

which often contain inaccuracies or errors. This section first

presents the direct manipulation requirements for trajectory

exploration, then the way users can interact with large sets

of trajectories and finally two applications in air traffic.

A. Direct manipulation of trajectories

An aircraft trajectory is a record of positions of an aircraft

in a given airspace (3D positioning with time and other



information such as identifier, speed etc). Exploration of

trajectory with direct manipulation techniques helps to:

• Understand past conflicts and then improve safety with

adequate evolutions,

• Assess new onboard and ground safety systems and the

resulting aircraft trails,

• Devise new air space organization and procedures to

handle traffic increase,

• Compare trails with environmental considerations (fuel

consumption, noise pollution, vertical profile compari-

son),

• Study profitability from a business trajectory point of

view (number of aircraft on a specific Flight Route per

day, number of aircraft that actually landed at a specific

airport),

• Filter and extract trajectories in order to re-use them

(this task will be later illustrated in this paper in the sec-

tion on trajectory extraction for Air Traffic Controllers

training).

FromDaDy [1] (which stands for FROM DAta to DisplaY)

was developed in this sense. It is a visualization tool that

tackles the challenge of representing, and interacting with

numerous trajectories (several millions trajectories com-

posed of up to 10 million points). FromDaDy employs a

simple paradigm to explore multidimensional data based on

scatterplots, brushing, pick and drop, juxtaposed views and

rapid visual configuration. Together with a finely tuned mix

between design customization and simple interaction, users

can filter, remove and add trajectories in an incremental man-

ner until they extract a set of relevant data, thus formulating

complex queries.

B. Views Organization and Navigation

A FromDaDy session starts with a view displaying all the

data in one scatterplot. The visualization employs a default

visual configuration, e.g. the mapping between data dimen-

sions and visual variables. The view is inside a window, and

occupies a cell in a virtual infinite grid that extends from

the four sides of the cell. The user can configure the two

axes of each scatterplot and use other visual variables such

as color and line width to display dataset dimensions. For

instance, in Figure 1, the dataset field latitude is attached to

the Y axis, and the field longitude to the X axis. The altitude

is used to color trajectory sections, so that low altitudes are

in green and high altitudes are in blue.

C. Trajectories Manipulation

A simple and efficient direct manipulation technique is

implemented: trajectories brush, pick and drop. The user

selects a subset of the dataset by means of a brushing

technique. Brushing is an interaction that allows the user to

brush graphical entities, using a size-configurable or shape-

configurable area controlled by the mouse pointer. Each

trajectory touched by this area is selected, and becomes gray.

Figure 1. One day record of traffic over France. The color gradient from
green to blue represents the ascending altitude of aircraft (green being the
lowest and blue the highest altitude). The French coastline is apparent here
in terms of pleasure flights by light aircraft and the straight blue lines
represent high altitude flight routes. A user interface shows the dataset
fields and the defined visual configuration.

The selection can be modified by further brush strokes (Ctrl

key pressed), or by removing parts of it with brush strokes

in the erase mode (Shift key pressed). The display shows

a brush trail, so that the user can see and remember more

easily how the selection was made. The combination of fast

switching between the add/erase mode, trajectory visualiza-

tion, rapid size-setting, and cursor-centered zooming allows

for fast and incremental selection.

Then the user can pick bushed trajectories by hitting the

space bar. Previously selected data can be extracted from the

current scatterplot and attaches it to the mouse pointer so it

appears in a fly-over view (transparent background). When

the user hits the space bar for the second time, a drop occurs

in the view under the cursor. If the view under the mouse

pointer is empty, the software creates a new scatterplot with

the selected data. If the space bar is pressed while moving

over an non-empty view, FromDaDy adds the selected data

to this scatterplot. Although it resembles a regular drag and

drop operation, we prefer to use the term pick and drop,

because the data is removed from the previous view and is

attached to the cursor even if the space bar is released. A

view can be removed if the brush selects all the trajectories

and if the user picks them.

D. Brush Pick and Drop Assets

The fundamentally new aspect of FromDaDy compared to

existing visualization systems, is to enable users to spread

data across views. Within FromDaDy, there is a single line

per trajectory instance: trajectories are not duplicated, but



spread across views. The advantage of this technique is mul-

tifold. It enables the user to remove data from a view (and

drop it on to the destination view). The fly-over view enables

the user to rapidly decide if the revealed data (previously

hidden by the picked data) is interesting. Secondly, it makes

it possible to build a data subset incrementally. In this case,

the user can immediately assess the quality of the selection,

by seeing it in the fly-over view. Furthermore, by removing

data from the first view, the user makes it less cluttered,

and this makes it easier for him to pick and drop more

trajectories.

Another asset of the Bush pick and Drop paradigm is that

this interaction helps the user to perform complex Boolean

operations such as the selection of trajectories that belong

to a given area but not the ones that are too high and only

those that are faster than a given minimum speed. A seminal

previous work uses containers (also called layers) to cluster

trajectories and explicitly applies Boolean operations to

combine them. Even with an astute interface, Boolean oper-

ations are cumbersome to produce, since results are difficult

to foresee. FromDady overcomes this drawback, since all

the operations of the interaction paradigm (brushing, pick-

ing and dropping) implicitly perform Boolean operations.

Removing trajectories corresponds to an XOR operation and

dropping trajectories corresponds to an ADD operation. The

following examples illustrate the union (AND), intersection

(OR) and negation (NOT) Boolean operations. With these

three basic operations the user can perform all kinds of

Boolean operation: AND, OR, NOT, XOR (Figure 2, Figure

3).

In Figure 2, users want to select trajectories that pass

through region A or through region B. They just have to

brush the two desired regions and Pick/Drop the selected

tracks into a new view. The resulting view contains their

query, and the previous view contains the negation of the

query. Figure 3, the same process is used to find the

trajectories that pass through A and B. By sequencing two

pick and drop operations, users formulate their request.

E. Example of application: Outliers identification

In this scenario, recordings of aircraft trajectories over

France over one day is exploited. In this dataset, a unique

and incremental identifier is assigned to each trajectory.

The first trajectory’s index is 0, the next one’s is 1, etc.

Figure 3 shows an abstract visualization of this dataset. The

X axis on the screen shows the time of each radar plot

and the Y axis on the screen shows the aircraft identifier.

Since these identifiers are incremental over the day, the

resulting visualization shows a noticeably continuous shape,

in which each horizontal line represents the duration of one

flight. The slope of the shape indicates the accumulation

of traffic during the day (due to the incrementally assigned

identifiers). Hence, the traffic notably increases at 5 am and

decreases at 10 pm as reflected in the change of slope. The

width of this shape indicates the average flight duration

in the dataset: it is about 2.5 hours, which represents the

average time taken by aircraft to cross France. But some

aircraft have longer trajectory durations. The user brushes

these long trails (the ones that come out of the curved

shape). When visualizing them with a latitude (Y screen) and

longitude (X screen) visual configuration, the user discovers

a figure of eight shaped trajectory. This trajectory covers 6

hours and performs 11 loops. After further investigation, it

was found that the trajectory corresponds to a military tanker

plane.

The user would have also been able to perform the same

data extraction task with a textual tool, like SQL queries. The

only difference is that, a textual tool would not have led the

user to the idea of exploring long flight duration in order to

extract military aircraft. Only with the incremental trajectory

exploration, can the user discover the valid requests for this

dataset. In a sense, the user explores the dataset, and at

the same time, explores the request to perform. Even if

this process is efficient, the direct manipulation cannot be

automatic. Analysts need interactive tools to enhance their

exploration capabilities. The power of interactive graphical

tools is now discussed in depth for an airspace analysis task.

F. Example of application: defining an airspace structure

The data used to build an airspace model is taken from

the Enhanced Traffic Management System (ETMS) data set

for the United States. The Cleveland center (ZOB ARTCC)

is selected bacause a large share of traffic to and from the

Northeast of the United States flies through it, and it is

known to be one of the most congested centers in the United

States. The ETMS data corresponds to aircraft radar tracks

(longitude, latitude, altitude), collected during 123 days,

between May and August 2005, this data was previously

filtered for inconsistencies. 270,007 trajectories remain and

are resampled to eight points each. This corresponds to more

than two millions points to explore with FromDaDy.

This large data set can be easily observed and manipulated

with FromDaDy. Using an accumulation map on the x and y

coordinates, and adapting the transparency of the trajectories

represented, the most dense areas in the airspace become

clearly visible. Such areas correspond to ”highways of the

sky”, as shown in Figure 5. The intersections of these routes

engender areas of high complexity associated with heavy

traffic loads which require careful monitoring and significant

effort by the controller to manage. Such a representation is

similar to the presence maps described in [6], that indicate

the local density of traffic. These maps can provide traffic

flow managers with information regarding the complexity

and difficulty required to manage a given airspace.

Also, en-route traffic and ascending or descending traffic

can be separated for further specific analysis. This is done

by using a vertical view in FromDaDy, brushing trajectories

with a portion under FL 100, picking them and dropping



Figure 2. Union Boolean operation.

Figure 3. Intersection Boolean operation.

Figure 4. Detection of supply planes with an abstract visualization

them into another window. In the xy plane, as shown in 6,

the ascending and descending traffic makes the airports in

the Cleveland center clearly identifiable (CLE, DTW and

PIT for instance). It further highlights the variability of

trajectories due to a large range in aircraft performance and

pilot decisions.

III. AIRSPACE FLOW MODELING THROUGH GRAPH

BUNDLING

A. Kernel Density Estimation-based Edge Bundling

(KDEEB)

In recent years, graph bundling methods have gained

increased attention. Bundling starts with a set of node

positions, given as input data or computed by a layout



Figure 5. Accumulation Map of three months of traffic in the Cleveland
center.

Figure 6. Ascending and descending traffic in the Cleveland center.

algorithm. Edges which are close in terms of graph structure,

position, data attributes, or combinations thereof, are drawn

as tightly bundled curves. This trades clutter for overdraw

and produces images which are easier to understand and/or

better emphasize the graph structure.

A new method for bundling general graphs was presented

in [10]. The algorithm behind it is entirely graphical. Kernel

density estimation is a non-parametric way to estimate the

probability density function of a random variable. Kernel

density estimation is a fundamental data smoothing problem,

where inferences about the population are made, based on a

finite data sample. For the present case, given a graph draw-

ing, the existing edges are re convolved with a special kernel

to construct a density map. Next, it advects edges in the

gradient of this map and iterates the process for a few steps

with decreasing kernels size. This delivers a layout with

well separated and smooth bundle structures. This bundling

technique is applicable to general graphs and it is robust,

simple to implement and up to one order of magnitude faster

than other state-of-the-art bundling techniques. Some of its

challenges are to intuitively control the look and feel of

the bundling (e.g. produce smooth or ramified bundles) and

to provide an easy implementation (no complex parameter

settings or algorithms).

A fast and simple method is chosen to compute bun-

dled layouts of general graphs. A given graph drawing

is transformed into a density map using kernel density

estimation. Then an image sharpening technique is applied,

which progressively merges local height maxima by moving

the convolved graph edges into the height gradient flow.

Moreover, the edges are smoothed to remove discontinuities

introduced by the gradient computation. Finally, the edges

are re sampled to maintain a uniform sampling rate for each

of the edges. Figure 7 details the computation pipeline to

produce a bundled graph. Figure 8 shows, an illustration of

the bundling process with detailed integration steps. Several

iterations of the density map are detailed, drawn as a height

plot (normalized in height for display) and corresponding

bundled layouts for the US migration graph. The density

map gets sharper during the iterative solving. This bundles

edges along the local maxima density. As the density map

gets sharper, the average distance between local maxima

increases, so the bundles get tighter and separated by more

empty space.

B. An airspace flow structure

In the previous section, FromDady was used to better

visualize the main routes in the airspace with ETMS data.

However, these routes are closely entangled, and isolating

them to identify the flows is, at first, complicated, over such

a large data set. The airspace may be represented as a flow

network, a set of routes (edges) with intersections (nodes)

that enable aircraft to travel to their destinations. KDEEB

can be used to declutter and separate the flows from each

other, as well as localize the main ”nodes” or areas with

high probability of conflict. This is done in two steps:

• Use KDEEB to bundle the trajectories into a less

cluttered graph,

• Use FromDaDy to extract each flow, composed of

bundled (i.e. distorted) trajectories.

One of the main issues is to control the outcome of

the bundling. The resulting graph needs to be sufficiently

decluttered to enable the separation of the flows, and yet

not lose the structure and complexity level of the airspace.

The final graph should not be too distorted, the airspace



Figure 7. Pipeline to obtain a bundled graph.

Figure 8. Iterative results of the bundling process.



Figure 9. Graph bundle obtained from ETMS data.

structure apparent in the accumulation maps needs to be

preserved. Three main parameters are used: the kernel size,

the accumulation map size and the smooth factor. Approxi-

mately 15 iterations are needed to obtain a final result. One

of the prominent advantages of this technique is the feedback

obtained at each iteration through the visualization to finely

tune the result. Figure 9 shows the graph obtained from

KDEEB, visualized in FromDaDy with an accumulation

map. The main flows are now sufficiently far apart for

separation and further processing. The number of flows can

be adjusted with the bundling, depending on the precision

of the outcome wanted.

To model the airspace, the flows are collected with From-

DaDy, through a succession of brushing, picking, dropping

and naming each flow. This process leads to the identifica-

tion of a total of 105 flows in the airspace. Figure 10 shows

one of the flows extracted, and it can be noted that some

trajectories have been slightly distorted. The original trajec-

tories, that served as input for the bundle, can be retrieved

with the trajectory identifier. The entry and exit points of the

airspace are identifiable at the boundaries of the center. The

”nodes” of the airspace can be located at the intersections of

the flows. Around 40 entry and exit nodes and approximately

80 intersection nodes are identified. FromDaDy also enables

the user to store the coordinates of the nodes in a click.

To draw a comparison, the same procedure was applied to

only one day of traffic (August 3rd 2005), that is 2,649

trajectories. It led to the extraction of 37 flows, 16 entry and

exit points and 21 intersection points. Of course, the flows

contained considerably less trajectories than when dealing

Figure 10. Example of a flow extracted in FromDaDy after the bundling.

with three months of data. It also highlights the fact that

this procedure leads to an extensive model of the airspace,

that is not entirely occupied on any day. It should be noted

that, to the best of our knowledge, this is one of the first

applications of graph bundling techniques.

C. Graph representation of the airspace

The result obtained by bundling ETMS data is a visual

graph, with a multitude of edges corresponding to the

trajectories. This graph is still very complex, with the same

number of edges. But the network we seek to extract is now

clear to the eye, since the trajectories have been aggregated

into clusters, or flows. The methodology for building such

a graph has been presented in [11]. It is based on a flow

representation, similar to the one extracted in the previous

subsection. The edges represent portions of flow corridors

in which aircraft fly, whereas the nodes correspond to where

aircraft may enter, change, or leave a flow corridor. To

generate the network, the following steps were carried out.

First, the regions where flows spatially interact are located.

These areas include intersections of flows and flow merging,

and engender a high probability of conflict. Then, the edges

that link the nodes of the network are computed, to re-

create the possible flow routes an aircraft can travel on. On

each flow, an edge is defined between all consecutive nodes

(whether entry, intersection, exit) along the flow.

The strength of the data visualization approach compared

to the one presented in [11] is that the dimensionality of

the problem has been further reduced. In the cited paper,

690 flows obtained with the same data set lead to an

airspace flow graph of 1288 nodes and 3085 edges. A

more compact network is obtained here with the combined

use of FromDaDy and KDEEB. With 105 flows, and a

total of 120 nodes, 210 edges are defined for the en route



traffic flow model. First, this corroborates the approximate

estimate of the Cleveland center complexity obtained when

interviewing former air traffic controllers of this airspace.

Second, in [11], the network flow model of the airspace is

used for optimizing traffic in the airspace using estimates

of controller taskload. If the network representation of

the airspace obtained through data visualization is more

compact, i.e. with less nodes and edges, the formulation of

the traffic optimization can be extended to the entire United

States, without computational issues. Furthermore, the work

presented here was only focused on en route traffic for the

sake of simplicity. Yet, the airports can be linked to the en

route network with their own smaller networks, joining the

main traffic at specific intersection nodes in the airspace.

The traffic optimization formulation could then incorporate

airports and delays.

Such a graph representation would be an entirely data-

based support for the implementation of advanced integer

optimization of large-scale air traffic flow management, such

as the one presented bu Bertsimas, Lulli and Odoni [12].

This network should also be studied from a graph theory

perspective, to determine its connectivity and resilience

to perturbations. The purpose is to identify the possible

weaknesses in the airspace structure.

IV. CONCLUSION

This paper focused on the use of information visualization

techniques and their specific use for air traffic analysis

and model building. Two specific tools were presented,

FromDaDy to explore large multidimensional data sets in an

intuitive fashion, and KDEEB, to bundle huge graphs. By

providing a graphical visualization of databases and queries,

users can find trends and exceptions easily. Several applica-

tions were developed. The identification of outliers, such

as military aircraft, was detailed. The complete extraction

of the structure of traffic in the Cleveland ARTCC was

explained, from extracting en route traffic with FromDady, to

bundling the trajectories to diminish the clutter, to extracting

the flows and nodes in FromDady. The methodology to build

a network model from the flows were recalled from [11], that

can serve as a basis for further traffic optimization.

This research is in continuing progress. Our next research

steps are to build a network flow model with this process of

a much large airspace, such as the continental United States.

The network model could then be used to optimize traffic,

using estimates of controller taskload based on flows, and

incorporating airport capacities, and delays.
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