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ABSTRACT

In this communication is proposed a new neural network structure
to design a robust controller for non-exactly known nonlinear
systems. Based on input-output data, the neural network structure
provides a global affine model of the controlled system which is
compatible with well known nonlinear control techniques. An
Affine Neural Tracking controller is developed and applied to an
inverted pendulum submitted to random perturbations. The
performance of the controller and the main advantage of the
proposed approach are discussed.

I.  INTRODUCTION

In the last decade nonlinear inverse control theories
have been widely developed (input-output linearization).
They are known to be especially suited for control tasks such
as trajectory tracking and output decoupling. This kind of
control approaches is always based on the assumption that
precise analytical models of the controlled system are
available, and, in addition, an affine model is preferred for
the system. But due to practical difficulties of modelisation,
the applicability of this class of nonlinear control techniques
is often limited.

In this paper, the stabilization problem of an inverse
pendulum on a moving car is solved using an inverse control
technique combined with a new affine neural network [4].
To apply this combined approach to the considered problem
only a priori input-output data relative to the behavior of the
pendulum is necessary and no additional formal
modelisation is necded.

In the second section of the paper the affine neural
network is presented and a procedure to establish an inverse
controller applying this affine neural network is shown. In
the third section the effectiveness of the proposed approach
is displayed by simulation results.

II. AFFINE NEURAL NETWORK AND NEURAL TRACKING
CONTROLLER

The following approach can be applied to both SISO

and MIMO systems, but for the convenience of a simplified
presentation, the new neural structure is presented
considering SISO discrete-time nonlinear systems.

Let T' be a general input-output model of a nonlinear
dynamic system which is supposed to be of the n™ order,
square, output feedback controllable and with state
observation index v [2], The system output, y(k +1), can be
taken as a continuous function of 2(v-1) dimensional
inputs y(k),..., v(k-v+1 ), u(k),..., u(k-v+1):

y(k+1) =Ty, y(k=1),..., y(k —v+1),
u(k),uk = 1,...,ulk —v+1)]
where u(k) is the considered control input for the system.

2.1)

Affine Neural Approximator

This neural structure approximates an input-output
mapping by the affine form :
Jk +1) = F(W, Y (k)
+GW,Y(k) -uk) VY(k)eU

where (F(W,Y(k)),G(W,Y(k))" is the output vector of a

neural network while W represents its parameter weight
matrices and bias vectors, with

Y(k)y=( y(k),.o, y(k =v + 1), 0(k),....u(k v +1)) e R*™ D a n d

where U is the operations domain, supposed compact.

2.2)

DEFINITION. A Multi-layer Neural Network who has
(F,G) as output vector and verifies the condition:
[+ —yk+Df<e

23
et - utk)|<e  VY(h)eU;eeR* @)

is called a Global Affine Neural Approximator of degree € .
If the conditions are verified only on V < U,V # U then the

neural network is called Local Affine Neural Approximaior.
Here i(k)=G"(W,Y(k)) [y(k+1)- F(W,Y(k))] where
(uk), y(k+1)), (u(k),y(k+1) are respectively measured

input-output pairs of the system and the approximate values
obtained from the neural network defined on U.

In [4] a neunral network, called N, of type



szw ni,2 (Narendra's notation, [2]) with hyperbolic

tangent activation functions in the hidden layers and
sigmoid functions (with range parameters) in the output
layer is shown to be an affine neural approximator of any
continuous input-output mapping. The main result which
concerns the use of distal teachers, [1], to train a global
affine neural approximator is reminded below. Interested
readers are referred to [4] for more details.

MaIN ReEsuLT: Let U be an admissible domain for a
smooth nonlinear function I, let V,, i=1,2,....p be compact
neighborhoods of p input-output pairs defined over U with

VuV,u...uV, =U,let N, bea neural network of type
N.;v__”‘l. ;.2 Which has P =[V,Y,,....,Y, ] as batch training

input vectors and Q=((F.G))".....(F,.G,)"] as batch
P

training target vectors, let E; =3 E, be a global error
i=1

index, then N, can be trained to be a global affine neural

approximator of I', through p parallel distal teachers N, ,
i=1.2:.p

Figure 1. Affine neural network and the
learning architecture

3-Dimension Error Backpropagation

To train N_,,. a 3-D Error Back-propagation

architecture is proposed (Figure 1) where the connections
drawn in thick lines represent the classical neural network
forward mappings and the error back-propagation paths.

TR T=[y(k,+1) ylky+1) y(kp+])}‘
ulk,) u(k,) u(k,)
f:[?, f, r"p], f=Nj [{;},i=l.2...,p and Nj,
G.
is given by:

Nip=| ) 2.4)
Tl -116, yik+1)1G}? '

P
The global error index is defined as E; = Y E, , where

i=1
E; =(1/Dl(yk, +D— 5k, + )" +

(2.5)
(uk;)—a(k,)*]

In Figure 1, D represents the decomposition function
of a p columns matrix into p separate vectors while M is the
inverse function.

Affine Neural Tracking (ANT) Controller

Once the input-output relation of a system is
approximated by an affine form, inverse control techniques
(input-output linearization) can be applied.

If the considered system is approximated by the
following model :

yk+1=F+Gu(k) VY(k)eU (2.6)
with
F) ;
[G ) = N oyt W, YD, .., y(k =V + 1),
Uk, ..., u(k —v +1)) @7

= N o (W, Y (K))

70 5 R, then the following feedback

where N .. R
control law:
H(k) = G_l {ydmud (k + ]) - F]

can be used to track the desired trajectory yaesiredk+1).

(2.8)

The corresponding controller is called Affine Neural
Tracking (ANT) controller. If ¥ and G are globally trained
over U, then the ANT controller is a global nonlinear
controller.

It has been shown [4] that either the approximated
system 1s affine or not, the affine neural network can
precisely approximate the input-output relation of the system
by an affine form for the ANT controller use. Especially, if
the controlled system is actually an affine system
(y(k+1)= F(Y)+G(Y)u(k) ), the parameters convergence

(F = F;G — G) can be easily obtained if the input-output
data-base used by training is well designed.

ITI. ANGLE STABILITY OF INVERTED PENDULUM

An inverted pendulum mounted on a motor-driven
cart is an unstable but controllable system. It can be seen as
a model of the attitude control of vertically launched rockets,
which, without suitable control action, may fall down any
time in any direction.

A simplified two-dimensional inverted pendulum that



moves only in a vertical (the cart displacement is not of
concern) is shown in Figure 2. Here the problem of keeping
the pendulum in a vertical position or at a desired
inclination angle is treated.

Figure 2. Inverted pendulum system
(I=0.305cm; m=0.21kg; M=0.45kg)

Taking the notations as shown in the above figure
and assuming that the pendulum mass is concentrated at the
end of a massless rode, the following mathematical model of
the system is obtained [3].
0=F@©.0)+GO.0)u (3.1
—mi(cos8 sinﬁ)é (M + m)gsinB

= and
M +msin™8)

with F@®.8)=

—cosb

Ge,é =—
68 I(M +msin®0)

It can be observed that this mathematical model is
affine and that if the angular displacement of the pendulum
is small, the system can practically be considered as linear:

§=Mimeo ., Ly 3.2)
Ml Ml

Since the system model is originally in affine form
and —1/ Ml is largely different from zero (—1/ MIl=7), it
is found that the lincarized model is precise enough to allow
the synthesis of a control law that stabilizes the system. For
example, based on (3.2), the linear inverse control law

u=-Mia®,-0)+b0,—-0)+
R (M+m)g
Lf (0, ~6)r —=——==0]
can casily stabilize the inverted pendulum at any desired
angle not greater than 0.8 radian (]9d| <08rad). Once the

(3.3)

pendulum angle runs out of this range the lincarized model
becomes too rough to keep the system stable (some other

angle regulation examples of the inverted pendulum can be
found in [3]).

To show the comparative effectiveness of the
proposed approach with respect to linear techniques, the
ANT controller will be used to make the system to track
various angular positions such that [ ,| <08 radian.

Contrary Lo the linear approach, in the following
development, either the mathematical relations or the
physical specifications of the inverted pendulum system are
supposed completely unknown. Only some measured
input-output data pairs are used to tune an affine neural
network, which will provide the necessary affine parameters,

( F,G), to the ANT controller.

To easily get a well excited data base for the training
of the affine neural network, the demonstration example of a
stabilized inverted pendulum system taken from
Matlab/Simulink V 4.0 (a scientific software of MathWorks)
is used. This system, being originally stabilized by a classical
LQR-controller, was modified to use the above mentioned
linear inverse control law. Then with the pendulum angle
initialized at 0, =-05radian, the system is made to
stabilize at © = (0.8 radian while the system is continuously
perturbed by an uniform distributed random force,
—5<u<5. 150 pairs of inputs, (0.8,u), and corresponding

output, § , were successfully recorded during this simulation
stage.

An affine neural network of type N, ., 1S then
globally trained (off-line) to approximate the pendulum
system, while the range parameters in the last layer of the
network are chosen such that —-50< F<50 and
-12<G<-2.

(C] Perturbation
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Figure 3. Neural control loop of the inverted
pendulum system

Figure 3 shows the ANT control structure of the
inverted pendulum system, where



©=0,+29280,-0)+
42828(9,, —0)+400[ 0, ~0)dt
With theses control parameters the error dynamics,

e(t)=0,()-8(), of the closed loop system can be

expected to be represented by the following linear
characteristic equation:
A+ s)s* +2pws+m®) =0

(3.4)

(3.5)

with p =0.707, @ =20 and s is the Laplace variable.

IV. SIMULATION RESULTS

In a fifteen-second simulation time, 8, 1§
successively set to -0.8, 0, 0.6, 0.8 and 0 radian, with

6,=6,=0,=0and Od(f)=éd(r) =0. In addition, a
random perturbation force uniformly distributed between =5
is applied permanently to the system. Simulation results are
shown in Figure 4. It can be seen that the ANT controller
make the inverted pendulum to rest at any desired angular
position such that —-08<6, <08.

1.0 ~
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T 0.0 -
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=04
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12 . . " ;

0 3 6 9 13
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Figure 4. Response of Inverted pendulum system
using ANT control, |6, | <08 radian.

CONCLUSION

For many simple controllable systems, complicated
control techniques are not necessary to get an acceptable
control performance, but a suitable model i1s always needed
and, very often, this is the main difficulty or inconvenience
1o apply well known control techniques.

In this paper bas been proposed an Affine Neural
Approximator, which can be used to modelize both MIMO
and SISO controllable systems in affine form by only
referring to input-output measurements of the considered

systems. This neural network structure makes feasible the
application of inverse control techniques and is specially
practical for the control of simple (SISO, affine) systems, for
which a neural network can be trained over the whole
operation domain with little empirical effort.

An application of this approach - Affine Neural
Tracking Controller - has been presented here in the case of
the angle-tracking problem of an inverted pendulum (which
is SISO and affine). Simulation results show that the ANT
controller can easily make the pendulum rest at any angular
position over its training domain.

Other much more complex applications have been
already considered with success (Aircraft Landing Control,

[5D.

In the case where a too large operation domain or a
very complex system is considered, on-line training can be
used to get a local but adaptive affine neural approximator
compatible with the inverse control approach.
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