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Full Paper — For 3D direction finding, one can use

vector-sensor antennas. For such antennas, a linear

system can been introduced to determine the field

components at one point from the measured signals.

The condition number of this system evaluates the

sensitivity of the antenna to small perturbations.

The previous method leads to antennas with a large

number of elements. To reduce this number, a feed-

ing network is added that is defined from a singular

value decomposition. Numerical experiments are

realized to test its performance.

I. INTRODUCTION

There are several ways to estimate the direction of

arrival (DoA) of an incoming signal in the context of

radio direction finding. A possible solution is to use

a sensor with polarization diversity, i.e. an antenna

constituted by several elements capable of measuring

the 6 components of the electromagnetic fields at one

point.

In this context, an ideal configuration would consist

in 6 co-located elements [1]: Three short electric

dipoles and three short magnetic dipoles. They would

measure the components of the electric and magnetic

fields, respectively. However, the co-location of the

6 elements cannot be simply realized in practical

configurations, notably because this implies strong

mutual couplings. A way to overcome this difficulty is

to spatially separate the elements of the antenna [2].

But in this case, we have to determine which spatial

configuration of the vector-sensor antenna may lead

to an efficient DoA estimation.

In [3], we have proposed a general method to

determine the 6 components of the electromagnetic

fields at the antenna center for a vector sensor

comprising Na ports. This method works regardless

of the positions and types of the antenna elements,

and takes into account their mutual couplings. This

implies a linear system of size Na × Ns where Ns is

the highest order of the spherical harmonics radiated

by the antenna. The system is solved in the least

square sense, upon assuming that Na ≥ Ns , i.e. the

number of antenna elements must be greater than or

equal to the number of radiated spherical harmonics.

We have also demonstrated that the capability of the

configuration to estimate the field components in

presence of spatial noise (multipath) is related to the

condition number of this linear system. In practical

applications, the condition Na ≥ Ns correponds to

have an antenna with a large number of elements,

typically Na ≥ 16.

In this article, we propose a feeding network

to reduce this number. The feeding network of

dimension 6 × Na is obtained by minimizing the

influence of spherical harmonics of order greater

than 6 that are not needed for the DoA estimation.

This is realized from a singular value decomposition.

Besides, we introduce two numbers, that characterize

the efficiency of an antenna-network configuration to

estimate the DoA.

This article is organized as follows. In Section II,

we present the configuration and the modal repre-

sentations that are employed. Next in Section III, we

show how to characterize the vector-sensor antenna

in terms of spherical harmonics via reciprocity. In

Section IV, we introduce a feeding network to reduce

the number of antenna elements. Finally in Section V,

we perform numerical tests before some concluding

remarks.

II. VECTOR-SENSOR ANTENNAS AND ASSOCIATED

MODAL REPRESENTATIONS

A. Configuration

The vector-sensor antenna is constituted by Na

elements of any type as shown in Fig. 1. We seek
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the direction of arrival of an incoming field from the

signals measured at the port of each element. To this

end, we aim at estimating the 6 components of the

electric and magnetic fields at O, from which we can

obtain the DoA from the Poynting vector.

Fig. 1. Antenna configuration .

B. Representations of fields with spherical harmonics

When the antenna is either emitting or receiving,

the electromagnetic fields can be represented in terms

of ingoing or outgoing spherical harmonics. This

modal representation can be cast as

E =
∑

p

s+p e
sph,+
p + s−p e

sph,−
p ,

H =
∑

p

s+p h
sph,+
p + s−p h

sph,−
p ,

(1)

where
(

e
sph,+
p ,h

sph,+
p

)

and
(

e
sph,−
p ,h

sph,−
p

)

correspond

to the electromagnetic fields of outgoing and ingoing

spherical harmonics, respectively. The harmonics am-

plitudes s−p and s+p are given by the following integrals

over a sphere SR of radius R

s+p =
1

2

∫

SR

[

E.
(

h
sph,−
p ×r̂

)

+H.
(

e
sph,−
p ×r̂

)]

dS,

s−p =
1

2

∫

SR

[

E.
(

h
sph,+
p ×r̂

)

+H.
(

e
sph,+
p ×r̂

)]

dS,

(2)

with r̂ the outgoing normal to the sphere.

C. Representations of fields with waveguide modes

At the n-th antenna port, we assume that the fields

can be represented by one ingoing or outgoing waveg-

uide mode, denoted
(

e+n ,h+
n

)

and
(

e−n ,h−
n

)

, respectively.

The modal amplitudes can be expressed as

a+
n =

1

2

∫

Sn

[

E.
(

h−
n × n̂

)

+H.
(

e−n × n̂
)]

dS,

a−
n =

1

2

∫

Sn

[

E.
(

h+
n × n̂

)

+H.
(

e+n × n̂
)]

dS,

(3)

with Sn the transverse surface of the port, and n̂ the

associated outgoing normal.

III. CHARACTERIZATION OF VECTOR-SENSOR ANTENNAS

VIA RECIPROCITY

A. Emitting state of excitation

In a first state of excitation, the antenna is excited

at its ports by outgoing waves of amplitudes a+ =

[a+
1 , · · · , a+

Na
]T for n ∈ {1, · · · , Na}. We expand the fields

associated with this excitation into outgoing spherical

harmonics defined from a coordinate system centered

at O. Theoretically, there is an infinite number of

spherical harmonics. Nevertheless, since the elements

of the antenna are distributed inside a limited area

around O, only the lowest-order harmonics are ra-

diated so that we can consider s+p = 0 for p > Ns .

Note that the number of significant harmonics Ns

increases with the total size of the antenna. Finally,

the radiated fields can be represented by the vector

s+ = [s+1 , · · · , s+
Ns

]T . Using the linearity of Maxwell equa-

tions, we define a matrix M+ that links the vector of

excitation to the radiated spherical harmonics, i.e.

s+ = M+a+. (4)

To compute the n-th column of this matrix, we

consider that only the n-th antenna element is

excited by a+
n = 1. The other elements are assumed

matched, i.e. a+

n′ = 0 for n 6= n′. We compute the fields

radiated by this excitation on a discretized sphere of

radius R . This can be performed using any antenna

computation software. On the sphere, the numerical

integration of (2) yields the column elements of M+.

B. Receiving state of excitation

In a second state of excitation, the antenna is

excited by an external source. This corresponds to the

intial state of interest, for which we seek the direction

of arrival. The ingoing field can be represented by

ingoing spherical harmonics. Similarly to the emitting

state, because of its limited size, the antenna is only

capable of receiving the first Ns harmonics. We note

s− = [s−1 , · · · , s−Ns
]T the vector of excitation. The fields

induced by s− at each antenna port can be repre-

sented via fundamental modes of amplitudes a−
n given

by (3). Using linearity, we can define the matrix M−

such that

a−
= M−s−. (5)

This matrix is of primary importance in our method.

Indeed, if we determine M− and invert this linear sys-

tem, we can obtain the ingoing spherical harmonics

from the measured signal. The field at O can then be
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obtained by summing the 6 lowest-order harmonics.

Indeed, they are the only ingoing harmonics that do

not vanish at O.

To determine M− from M+, we make use of the

reaction theorem [3]. This yields

M−
=−M+T . (6)

C. Appication to 3D direction finding

Upon assuming Na ≥ Ns , i.e. the number of el-

ements is equal to or greater than the number of

significant harmonics, the linear system (5) can be

solved in the least square sense. Thus, from the

measured signals a−
n , we can obtain the associated

ingoing spherical harmonics s−p , from which we can

deduce the electric and magnetic fields at O, and the

DoA.

The inversion of the linear system (5) is the main

step to estimate the components of the electric and

magnetic fields at O from the signals measured at the

output of the antenna. The condition number of M−

gives the sensitivy of the result to variations of a−. If

the system is ill-conditioned, the determination of the

ingoing harmonics, and consequently, the field at O,

will lack of accuracy for any small perturbation of a−.

Thus, the condition number of M− is an estimation

of the capability of the configuration to estimate the

DoA in presence of spatial noise (multipath).

IV. REDUCTION OF THE SENSOR NUMBER VIA AN SVD

DECOMPOSITION

A. Definition of the feeding network

The hypothesis Na ≥ Ns means that the number

of antenna elements must be equal to or greater

than the number of radiated spherical harmonics.

In practical applications, most antennas with non

co-located elements are such that Ns ≥ 16. This

implies that the antenna should have a large number

of elements. The method actually estimates more

than what we need. Indeed, the solution of the linear

system gives the amplitude of the Ns lowest-order

spherical harmonics while we only need the 6 first

ones to obtain the field components at O. Thus, we

can expect that the number of elements is reductible.

We now consider the case Na < Ns , for which the

number of elements is smaller than the number

of significant harmonics. We propose to add a

reciprocal and linear feeding network, so that when

the antenna is fed through this network, only the 6

lowest-order outgoing spherical harmonics can be

radiated. Reciprocally, when excited by a source to

be localized, the antenna combined with the network

will only be sensitive to the 6 lowest-order ingoing

spherical harmonics.

(a) Emitting state of excitation

(b) Receiving state of excitation

Fig. 2. Antenna with the feeding network in both states of

excitation .

To define this network, we consider the emitting

state of excitation. The network is such that

a+
= Pb+, (7)

where b+ corresponds to the input of the network

as illustrated in Fig. 2. The matrix P of dimension

6×Na characterizes the passage through the network.

This matrix must be chosen so that the radiation

of spherical harmonics of order greater than 6 is

minimized. To this end, we firstly split the linear

system (4) into two blocks

s+1 = M+
1 a+, s+2 = M+

2 a+. (8)

The first block is associated with the 6 spherical

harmonics of interest, the second one corresponds to

higher-order harmonics. They are denoted with the

subscripts 1 and 2, respectively. If we introduce the

feeding network in these expressions, we obtain

s+1 = M+
1 Pb+, s+2 = M+

2 Pb+. (9)

In order to minimize the radiation of harmonics of

order greater than 6, we must choose P such that

‖s+2 ‖ is minimal. To achieve this goal, the matrix M+
2

is subjected to a singular value decomposition. The

matrix P is then defined so that b+ can only excite

the 6 smallest singular values. This will guarantee that

‖s+2 ‖ is minimal. Explicitly, the decomposition can be

written as

M+
2 =

[

u1 · · · uNs

]

















σ1

. . .

σNa

0























vT
1
...

vT
Na






(10)
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where σ1 ≥ σ2 ≥ ·· · ≥ σNa are the singular values.

Besides, ui and vi correspond to the i -th left and

right singular vectors, respectively. The matrix P can

be expressed as

P =
[

vNa−5 · · · vNa

]

. (11)

B. Application to 3D direction finding

When the antenna is emitting, if P renders ‖s+2 ‖

negligible with respect to ‖s+1 ‖, the radiation of the

antenna in the presence of the network amounts to a

linear system of dimension 6×6 given by s+1 = M+
1 Pb+.

By reciprocity, when the antenna is receiving, the 6

ingoing spherical harmonics of interest s−1 can be

estimated by solving the linear system

b−
=−(M+

1 P)T s−1 (12)

where b− are the signals measured at the network

ports. Thus, from the measured signals, the solution

gives the 6 ingoing spherical harmonics, from which

we can deduce the electric and magnetic fields at the

origin, and the DoA.

C. Efficiency of an antenna-network configuration

As for the method without the svd presented in

[3], we can introduce figures of merits that determine

the ability of a configuration to estimate the DoA. We

introduce here to 2 numbers for that purpose.

The first number is associated with the efficiency

of the feeding network to remove the influence of

harmonics of order greater than 6. This corresponds

to have ‖s+2 ‖ small compared to ‖s+1 ‖ for any excita-

tion. Mathematically, this can be characterized by the

number

esvd =
σNa−5

σ′
, (13)

where σ′ is the smallest singular value of M+
1 P. Note

that the smaller esvd is, the better the feeding network

works.

The second number is associated with the sen-

sitivity of the result to variations in the measured

signals b−. This corresponds to the condition number

of (M+
1 P)T , denoted econd.

V. NUMERICAL EXPERIMENTS

We consider an antenna constituted by Na = 12

short electric dipoles placed as shown in Fig. 3. The

distance between the dipoles and the origin is denoted

d .

Using classical analytic expressions for the radiation

of short dipoles we determine the field radiated by

Fig. 3. Antenna constitued by Na = 12 electric short dipoles .

each dipole on a discretized sphere of radius R . As

explained in Section II D, the computation of (2) on

the sphere yields the columns of the matrix M+, from

which we compute the matrix P associated with the

feeding network as defined in (11).

(a) Efficiency of the feeding network

(b) Condition number of the linear system

Fig. 4. Efficiency of the antenna-network configuration with

respect to the antenna size d .

In Fig. 4, we display esvd and econd with respect to

d . We observe that esvd increases with d until a pick

localized at d ≈ 0.43λ. Hence in this configuration,

when the antenna size increases, the feeding network

becomes less efficient to remove harmonics of order

greater than 6. Moreover, we see that the condition

number of the linear system econd is poor for d → 0

and d ≈ 0.43λ. This confirms that there may be
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configurations for which the antenna is sensitive to

small variations of the measured signals.

(a) d = 0.01λ

(b) d = 0.05λ

(c) d = 0.25λ

Fig. 5. Monte Carlo analysis of the DoA estimation in presence

of an additive noise for 3 sizes of antenna.

We now test whether esvd and econd characterize

the efficiency of the antenna-network system for DoA

estimations. We consider the previous antenna illumi-

nated by a source localized in the direction θ = 30◦,φ=

−120◦ in the presence of an additive gaussian noise

of standard deviation 0.01. For three values of d , we

apply our method to estimate the DoA with 15000

noise samples.

For d = 0.01, the estimated DoA are centered on the

true value. In this case, esvd is small, thus the network

works correctly. On the other hand, the estimated

DoA are very sensitive to the noise because econd is

large. For d = 0.05, the estimated DoA are centered on

the true DoA with a moderate influence of the noise

because both esvd and econd are relatively small. For

the last case d = 0.25, even if econd is almost ideal, the

value of esvd becomes large so that the estimated DoA

are not centered on the true DoA.

VI. CONCLUSION

We have presented a general method to determine

the 6 components of the electromagnetic fields at one

point from the signal measured at the Na ports of a

vector-sensor antenna. This method implies a linear

system of size Na ×Ns where Ns is the highest order

of the spherical harmonics radiated by the antenna.

We have proposed a feeding network to reduce the

number of the antenna elements. The feeding network

of dimension 6×Na has been obtained by minimizing

the influence of spherical harmonics of order greater

than 6 that are not needed for the DoA estimation.

This has been realized from a singular value de-

composition. Besides, we have introduced two figures

of merit. The first one characterizes the efficiency

of the feeding network to remove the influence of

high-order harmonics. The second one characterizes

the influence of small perturbations in the measured

signals, i.e. noise, on the DoA estimation.

This method has been successfully tested on an

antenna constituted by 12 short dipoles. The figures of

merits have been confronted to a Monte Carlo analysis

in the presence of noise.

For future works, we intend to apply this method

to a realistic vector-sensor antenna, including the

couplings of the elements.
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