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An Exa
t Spe
tral Representation of the WaveEquation for Propagation Over a TerrainA. Chabory, C. Morlaas, R. Douvenot, and B. Souny ∗Abstra
t � An exa
t spe
tral representation of thewave equation above a diele
tri
 ground is proposed.The formulation is based on the diagonalisationof the verti
al operator, takes into a

ount theangle-dependan
e of the re�exion 
oe�
ient, anddoes not in
lude any paraxial approximation. Theexpressions of the spe
trum 
omprise two parts:a 
ontinuous part and a dis
rete part. The latter
orresponds to a possible surfa
e wave. The useof this result in split-step algorithms to simulatewave propagation requires a dis
retization of thespe
trum. To render the dis
retization 
onsistent,an alternative dis
rete spe
tral representation isproposed that intrinsi
aly in
ludes the trun
ationof the 
omputation domain at a �nite high.1 INTRODUCTIONTo model the propagation of ele
tromagneti
waves over the ground at large distan
es, one
an rely on split-step methods based on theparaboli
 approximation of the wave equation [1℄.The 
omputation is performed step by step atin
reasing distan
es, going ba
k and forth from aspatial to a spe
tral representation of the wave.Su
h methods 
an generally take into a

ount theterrain pro�le, a possible ground wave, and theele
tri
al 
hara
teristi
s of the atmosphere.To model a ground 
hara
terized by a 
onstantsurfa
e impedan
e, the 
ontinuous mixed Fouriertransform has been proposed [2℄. This trans-form mat
hes the spe
tral representation to animpedan
e boundary 
ondition via a 
hangeof variable. A dis
retized 
ounterpart of thistransform, the dis
rete mixed Fourier transform(DMFT), has been developed to render the s
hemeself 
onsistent and avoid numeri
al instabilities.In many appli
ations, e.g. for rough surfa
es, a
onstant impedan
e may not be su�
ient to modelthe boundary 
ondition at the ground level be
ausethe re�exion 
oe�
ient depends on the angle ofin
iden
e. To deal with this di�
ulty, Kuttler andDo
kery have proposed to keep the impedan
e
onstant at a given range, but to extra
t theimpedan
e value from the dominant propagationdire
tion [2℄. Janaswamy has proposed a morerigourous solution to model the propagation over
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a non
onstant immittan
e plane [3℄, i.e. with anangle-dependant re�exion 
oe�
ient.In this arti
le, we theoreti
ally develop an exa
tspe
tral representation of the verti
al operatortaking into a

ount the angle dependan
e ofthe re�exion 
oe�
ient. We dire
tly start fromMaxwell equations, i.e. without the paraboli
approximation. The demonstration is dire
tlyfounded on the diagonalisation of the verti
aloperator [4℄. Besides, in order to avoid the numer-i
al di�
ulties that may arise when dis
retizing a
ontinuous spe
tral representation, we introdu
ean alternative formulation for a domain of �nitehigh. Thus, this formulation in
ludes the ne
essarytrun
ation of the 
omputation domain at a �nitealtitude. We show that this leads to a dis
retespe
trum.This arti
le is organized as follows. In Se
tion2 we present the 
on�guration. The spe
tral rep-resentation is demonstrated in Se
tion 3. Next, inSe
tion 4 we modify this representation to a

ountfor a domain of �nite high before presenting theappli
ation of the method in Se
tion 5.2 CONFIGURATIONWe 
onsider a time-harmoni
 
on�guration wherethe �elds are transverse magneti
 (TM) with re-spe
t to the verti
al axis z. Note that the trans-verse ele
tri
 
ase 
an be analyzed in a similar way.Let (r, φ, z) be the lo
al 
ylindri
al 
oordinate sys-tem with unit ve
tors (r̂, φ̂, ẑ). We assume a ro-tationnal symmetry about the verti
al axis. Theground/atmosphere are 
hara
terized by a 
onstantpermeability µ0 and by spa
e-varying permittivity
εr(r, z) and 
ondu
tivity σ(r, z) The problem 
anbe formulated from a ve
tor potential Πe su
h that

E = Πe −∇
1

k2
∇ ·Πe,

H =
1

−jωµ0
∇×Πe.

(1)where k = −jωµ0(σ + jωε) is the wavenumber.



3 HOMOGENEOUS ATMOSPHEREABOVE A DIELECTRIC GROUND3.1 FormulationFor an homogeneous atmosphere and ground, uponrepla
ing Πe by ψẑ, the wave equation 
an be 
astin 
ylindri
al 
oordinates as
−
1

r

∂

∂r

(

r
∂

∂r
Ψ

)

−
∂2

∂z2
Ψ− k2(z)Ψ = 0, (2)with r ∈]0,∞[, z ∈ R. Furthermore

k(z) =

{

ka z > 0,

kg z < 0,
(3)with ka and kg the wavenumbers in the atmosphereand ground, respe
tively. At in�nity, Ψ is subje
tedto radiating boundary 
onditions. At the groundlevel z = 0, the boundary 
onditions is imposed bythe ground/atmosphere interfa
e.3.2 Prin
iple of the determination of theverti
al spe
tral representationThe variables r and z are separate in (2). Conse-quently, we introdu
e an operator Lz a
ting on theverti
al 
oordinate z su
h that

LzΨ = −

(

∂2

∂z2
+ k2(z)

)

Ψ. (4)This operator 
an be asso
iated with a Sturm-Liouville problem of the third kind. The spe
tralrepresentation is introdu
ed via the diagonalisationof this operator.To do so, we employ the method developed in [4℄,that 
an be divided in 3 steps:
• We determine the Green's fun
tion G(z, z′, λ)of the operator Lz − λI, with λ ∈ C, I theidentity operator, and (z′, z) the position ofthe sour
e and observation, respe
tively.
• We write the following identity, demonstratedin [4℄,

1

2jπ
lim

R→∞

∮

CR

G(z, z′, λ)dλ = −δ(z − z′), (5)where CR is the 
ir
le 
entered at 0 of radii
R in the 
omplex λ-plane. Then, we evaluateexpli
itly the integral in (5) taking 
are of the
ontributions of bran
h 
uts and poles.

• Finally, we write
Ψ(r, z) =

∫ ∞

0

δ(z − z′)Ψ(r, z′)dz′. (6)

Using (5), we 
an substitute δ(z − z′) by theexpli
it 
ontributions of the bran
h 
uts andpoles. The expression that we obtain is thespre
tral representation of the operator.3.3 Green's fun
tionThe Green's fun
tion of Lz − λI is the solution of
−

∂

∂z2
G(z, z′, λ)−(k2+λ)G(z, z′, λ) = δ(z−z′), (7)for (z, z′) ∈ R2. Besides, at z → +∞, G is sub-je
ted to radiation boundary 
onditions. At z = 0,a re�exion 
oe�
ient is introdu
ed to restri
t the
omputation to the domain z ≥ 0 and z′ ≥ 0, be-
ause in this arti
le we are only interested by the�eld in the atmosphere. Using a 
lassi
al method[4℄ for the determination of Green's fun
tions, weobtain

G(z, z′, λ) =
e−jkza|z−z′| + Γe−jkza(z+z′)

2jkza
, (8)for z ≥ 0 and z′ ≥ 0, with kza =

√

k2a + λ.The suitable determination of the square root isthe one that respe
ts the radiation 
ondition, i.e.Im(kza) ≤ 0. The re�exion 
oe�
ient is given by
Γ =

Za − Zg

Za + Zg

, (9)with
Za =

jkza
σa + jωεa

, Zg =
jkzg

σg + jωεg
. (10)Note that the 
ondition at z = 0 
orresponds in thespe
tral domain to the following impedan
e bound-ary 
ondition

∂

∂z
G(z, z′, λ)− jkza

1− Γ

1 + Γ
G(z, z′, λ) = 0, (11)inside whi
h the impedan
e depends on the spe
tralvariable kza. This 
ondition 
an be obtained bysolving the equation in the 
omplete domain z ∈R. Thus, it is an exa
t formulation for the groundinterfa
e.3.4 Integration in the 
omplex λ-planeWe now have to evaluate the integral in (5). In the
omplex λ-plane, the square root in kza introdu
esa bran
h 
ut. As indi
ated in Fig. 1, we de�nea new 
ontour Ca to add the 
ontribution of thebran
h 
ut to the integral.We note that on the lower part of Ca, kza is realand positive, while on the upper part kza is real



Figure 1: Contours of integration in the 
omplex
λ-plane.and negative. A 
hange of variable λ ↔ kza in theintegral of G(z, z′, λ) over both parts of Ca yields
∫

Ca

G(z, z′, λ)dλ =

∫ +∞

0

(

ejkzaz + Γe−jkzaz
)

.
(

ejkzaz
′

+ Γe−jkzaz
′

) j

Γ
dkza.

(12)To evaluate the integral in (5), we also have to 
on-sider the possible presen
e of poles inside the 
on-tour CR. Note that G is regular when λ → k2a de-spite the fa
tor 1/kza in (8). Thus, the only poleswe have to 
onsider in G are the poles of Γ. From(9), if Γ has a pole, its expression is given by
λp =

k2a
1 + ǫ

, (13)where
ǫ =

σa + jωǫa
σb + jωǫb

. (14)The residue of this pole 
orresponds toRes(G, λp) = −2jkpza
1− ǫ2

e−jkp
za(z+z′) (15)with

kpza =

√

k2a
ǫ

1 + ǫ
. (16)Finally, if the 
ontribution of the bran
h 
ut (12)and the pole (15) are taken into a

ount, the ex-pression (5) expli
itly results in

δ(z−z′) =
2jkpza
1− ǫ2

e−jkp
za(z+z′)

+
1

2π

∫ +∞

0

1

Γ

(

ejkzaz
′

+ Γe−jkzaz
′

)

.
(

ejkzaz + Γe−jkzaz
)

dkza.

(17)

3.5 Spe
tral representationSubstituting (17) in (6), and inter
hanging the or-der of integration, we end up with the spe
tral rep-resentation
Ψ(r, z) = Ψ̃p(r)e−jkp

zaz+
∫ +∞

0

Ψ̃(r, kz)
(

ejkzz + Γ(kz)e
−jkzz

)

dkz
(18)with

Ψ̃p(r) =
2jkpza
1− ǫ2

∫ +∞

0

Ψ(r, z)e−jkp
zazdz,

Ψ̃(r, kza) =
1

2π

∫ +∞

0

Ψ(r, z)

Γ(kza)

.
(

ejkzaz + Γ(kza)e
−jkzaz

)

dz.

(19)The �rst term of (18) 
orreponds to the 
ontribu-tion of the pole, and 
an be asso
iated with a pos-sible ground/surfa
e wave. The se
ond term is the
ontinuous spe
trum that represents plane wavesand their re�exion over the ground.The spe
tral representation has been obtainedhere for TM �elds and for a ground modeled by adiele
tri
 interfa
e. Note that the formulation 
anbe extended to other 
ases where the re�exion 
o-e�
ient Γ(kza) and its asso
iated poles are known.This may in
lude, for example, grounds 
hara
ter-ized by a rough surfa
e or by a multilayer diele
tri
slab.4 HOMOGENEOUS ATMOSPHERE OFFINITE HIGHIn the previous spe
tral representation, the 
on-tinuous spe
trum 
omes from the fa
t that thedomain is not bounded, i.e. z ∈ [0,+∞[. However,for obvious numeri
al reasons, the 
omputationdomain must be bounded. We introdu
e in thisSe
tion a spe
tral representation for a domain of�nite high. We show that this leads to a dis
retespe
trum.The method is similar to the previous one ex
eptthat there now exists a boundary 
ondition at a�nite high z = h given by
∂

∂z
G(z, z′, λ)− jkza

1− Γ

1 + Γ
G(z, z′, λ) = 0. (20)The evaluation of the Green's fun
tion yields

G(z, z′,λ) =
−1

4kzaΓ(kza) sin(kzah)

.
(

ejkza(z
′−h) + Γ(kza)e

−jkza(z
′−h)

)

.
(

ejkzaz + Γ(kza)e
−jkzaz

)

(21)



for 0 < z < z′, and
G(z, z′,λ) =

−1

4kzaΓ(kza) sin(kzah)

.
(

ejkzaz
′

+ Γ(kza)e
−jkzaz

′

)

.
(

ejkza(z−h) + Γ(kza)e
−jkza(z−h)

)

(22)for z′ < z < h. Taking 
are of the 
ontributionsof the poles and bran
h 
uts, the integration of Gover CR in (5) leads to a dis
rete spe
trum. Itsexpression is given by
Ψ(r, z) = Ψ̃p(r)e−jkp

zaz

+

+∞
∑

n=1

Ψ̃n(r)
(

ej
nπ
h

z + Γne
−j nπ

h
z
)

(23)with Γn = Γ(nπ/h). The spe
tral 
omponents 
anbe expressed as
Ψ̃p(r) =

2jkpza
1−e−2jkp

zah

1

1−ǫ2

∫ h

0

Ψ(r, z)e−jkp
zazdz

Ψ̃n(r) =

∫ h

0

Ψ(r, z)

2hΓn

(

ej
nπz
h + Γne

−j nπz
h

)

dz.(24)5 APPLICATION TO PROPAGATIONSIMULATIONS5.1 Homogeneous ground/atmosphereThe previous spe
tral representation 
an be used tomodel the propagation in an homogeneous atmo-sphere above an homogeneous ground. We assumethat Ψ(r0, z) is known. To obtain Ψ at r > r0, wedetermine both 
omponents of the spe
tral repre-sentation Ψ̃p(r0) and Ψ̃(r0, kza) using the expres-sions in (24). Then, for r > r0, Ψ̃p(r) and Ψ̃(r, kza)are solutions of
1

r

∂

∂r

(

r
∂

∂r
Ψ̃

)

+ (k2a − k2za)Ψ̃ = 0 (25)If the �eld is propagating towards r > r0, we 
ansolve this equation. We end up with
Ψ̃(r, kz) = Ψ̃(r0, z)

H
(2)
0 (krr)

H
(2)
0 (krr0)

, (26)with H
(2)
0 the Hankel fun
tion of the se
ond kindand of order 0, and kr =

√

k2a − k2za whereIm(kr) ≤ 0. Finally, using (18), we 
an obtain
Ψ(r, z) from Ψ̃(r, kz). Note that for r − r0 greaterthan few wavelength, the Hankel fun
tions 
an besimpli�ed, and the expression is redu
ed to

Ψ̃(r, kz) = Ψ̃(r0, z)e
−jkr(r−r0). (27)

5.2 General 
aseTo model the propagation, we have gone ba
k andforth from a spatial to a spe
tral representation.Thus, there exists an analogy with 
lassi
al meth-ods based on the paraboli
 equation (PWE). How-ever here no hypothesis on the paraxiality is made.Besides the variation of the re�exion 
oe�
ientwith kza (and thus with in
iden
e) is intrinsi
alymodeled. As with PWE, it is be possible to derivea more-general split-step algorithm that takes intoa

ount the terrain pro�le, and variations in theele
tri
al 
hara
teristi
s. Details of su
h an algo-rithm are presented in [5℄.6 CONCLUSIONWe have proposed a spe
tral representation of TM�elds in an homogeneous atmosphere above a di-ele
tri
 ground that takes into a

ount the angle-dependan
e of the re�exion 
oe�
ient. The spe
-tral representation in
ludes a 
ontinuous and a dis-
rete part. The former 
orresponds to plane wavesand their re�exion over the ground. The latter 
or-responds to a possible ground wave. This method
an be extended to TE 
on�gurations and to anyground for whi
h the re�exion 
oe�
ient and itspoles are known.An alternative dis
rete formulation has been pro-posed that in
ludes a trun
ation of the domain at�nite high. This formulation is suitable for be-ing employed in split-step algorithms, for whi
h theproblem must be bounded in spa
e and dis
retized.Referen
es[1℄ M. Levy, Paraboli
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-tromagneti
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-tromagneti
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