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An Exact Spectral Representation of the Wave
Equation for Propagation Over a Terrain

A. Chabory, C. Morlaas, R. Douvenot, and B. Souny *

Abstract — An exact spectral representation of the
wave equation above a dielectric ground is proposed.
The formulation is based on the diagonalisation
of the vertical operator, takes into account the
angle-dependance of the reflexion coefficient, and
does not include any paraxial approximation. The
expressions of the spectrum comprise two parts:
a continuous part and a discrete part. The latter
corresponds to a possible surface wave. The use
of this result in split-step algorithms to simulate
wave propagation requires a discretization of the
spectrum. To render the discretization consistent,
an alternative discrete spectral representation is
proposed that intrinsicaly includes the truncation
of the computation domain at a finite high.

1 INTRODUCTION

To model the propagation of electromagnetic
waves over the ground at large distances, one
can rely on split-step methods based on the
parabolic approximation of the wave equation [1].
The computation is performed step by step at
increasing distances, going back and forth from a
spatial to a spectral representation of the wave.
Such methods can generally take into account the
terrain profile, a possible ground wave, and the
electrical characteristics of the atmosphere.

To model a ground characterized by a constant
surface impedance, the continuous mixed Fourier
transform has been proposed [2]. This trans-
form matches the spectral representation to an
impedance boundary condition via a change
of variable. A discretized counterpart of this
transform, the discrete mixed Fourier transform
(DMFT), has been developed to render the scheme
self consistent and avoid numerical instabilities.

In many applications, e.g. for rough surfaces, a
constant impedance may not be sufficient to model
the boundary condition at the ground level because
the reflexion coefficient depends on the angle of
incidence. To deal with this difficulty, Kuttler and
Dockery have proposed to keep the impedance
constant at a given range, but to extract the
impedance value from the dominant propagation
direction [2]. Janaswamy has proposed a more
rigourous solution to model the propagation over
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a nonconstant immittance plane [3], i.e. with an

angle-dependant reflexion coefficient.

In this article, we theoretically develop an exact
spectral representation of the vertical operator
taking into account the angle dependance of
the reflexion coefficient. We directly start from
Maxwell equations, i.e. without the parabolic
approximation. The demonstration is directly
founded on the diagonalisation of the vertical
operator [4]. Besides, in order to avoid the numer-
ical difficulties that may arise when discretizing a
continuous spectral representation, we introduce
an alternative formulation for a domain of finite
high. Thus, this formulation includes the necessary
truncation of the computation domain at a finite
altitude. We show that this leads to a discrete
spectrum.

This article is organized as follows. In Section
2 we present the configuration. The spectral rep-
resentation is demonstrated in Section 3. Next, in
Section 4 we modify this representation to account
for a domain of finite high before presenting the
application of the method in Section 5.

2 CONFIGURATION

We consider a time-harmonic configuration where
the fields are transverse magnetic (TM) with re-
spect to the vertical axis z. Note that the trans-
verse electric case can be analyzed in a similar way.
Let (r, ¢, z) be the local cylindrical coordinate sys-
tem with unit vectors (7, (Ab,i) We assume a ro-
tationnal symmetry about the vertical axis. The
ground/atmosphere are characterized by a constant
permeability po and by space-varying permittivity
er(r, z) and conductivity o(r,z) The problem can
be formulated from a vector potential I, such that

1
E=IL - V5V IL,
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where k = —jwpuo(o + jwe) is the wavenumber.



3 HOMOGENEOUS ATMOSPHERE
ABOVE A DIELECTRIC GROUND

3.1 Formulation

For an homogeneous atmosphere and ground, upon
replacing I, by ¥z, the wave equation can be cast
in cylindrical coordinates as

10 0 0? 2
~ % (ra\ll) — @\I’ — k5 (2)¥ =0, (2)

with r €]0, c0[, z € R. Furthermore

z >0,
z <0,

(3)
with k, and k4 the wavenumbers in the atmosphere
and ground, respectively. At infinity, ¥ is subjected
to radiating boundary conditions. At the ground
level z = 0, the boundary conditions is imposed by
the ground/atmosphere interface.

3.2 Principle of the determination of the
vertical spectral representation

The variables r and z are separate in (2). Conse-
quently, we introduce an operator L, acting on the
vertical coordinate z such that

LV =— <a_2 + k2(z)) .

9.2 (4)

This operator can be associated with a Sturm-
Liouville problem of the third kind. The spectral
representation is introduced via the diagonalisation
of this operator.

To do so, we employ the method developed in [4],
that can be divided in 3 steps:

e We determine the Green’s function G(z, z’, \)
of the operator L, — M\, with A € C, I the
identity operator, and (z’,z) the position of
the source and observation, respectively.

e We write the following identity, demonstrated
in [4],

1
—— lim

/ _ o
Sim A, CRG(Z,Z,/\)d)\f 0(z—2"), (5)

where Cr is the circle centered at 0 of radii
R in the complex A-plane. Then, we evaluate
explicitly the integral in (5) taking care of the
contributions of branch cuts and poles.

e Finally, we write

U(r,z2) = /OOo 5z —2")W(r,2")dz".  (6)

Using (5), we can substitute §(z — z’) by the
explicit contributions of the branch cuts and
poles. The expression that we obtain is the
sprectral representation of the operator.

3.3 Green’s function

The Green’s function of L, — AI is the solution of

f%G(z, 2N = (2N G(z, 2/, \) = 6(2—2), (7)
for (z,2') € R2. Besides, at z — +o00, G is sub-
jected to radiation boundary conditions. At z = 0,
a reflexion coefficient is introduced to restrict the
computation to the domain z > 0 and 2’ > 0, be-
cause in this article we are only interested by the
field in the atmosphere. Using a classical method
[4] for the determination of Green’s functions, we
obtain

e_jkza‘z_zll + Fe_jkza(z"l‘zl)
2jkza ’

for z > 0 and 2/ > 0, with k., = k24
The suitable determination of the square root is
the one that respects the radiation condition, i.e.
Im(k,,) < 0. The reflexion coefficient is given by

G(z,2',)\) =

Lo— 2
= ga (9)
Zo+ 2,
with
.kza kz
Za:]%’ Zg:‘ji_g_ (10)
Oq + JWE, Og + Jwey

Note that the condition at z = 0 corresponds in the
spectral domain to the following impedance bound-
ary condition

1= FG(,z, 2\ =0,

0 , .
_G(sz 7)\) *]kzal_i_—r

7 (11)

inside which the impedance depends on the spectral
variable k,,. This condition can be obtained by
solving the equation in the complete domain z €
R. Thus, it is an exact formulation for the ground
interface.

3.4 Integration in the complex A-plane

We now have to evaluate the integral in (5). In the
complex A-plane, the square root in k., introduces
a branch cut. As indicated in Fig. 1, we define
a new contour C, to add the contribution of the
branch cut to the integral.

We note that on the lower part of C,, k., is real
and positive, while on the upper part k., is real



Figure 1: Contours of integration in the complex
A-plane.

and negative. A change of variable A <> k., in the
integral of G(z,2’,\) over both parts of C, yields

+oo )
/G(Z) ZI; )\)d)\ = / (e]kzaz + Fe_szaZ)
Ca 0

. (12)

X jkzazl 1—‘ _jkzaz/) ldk .

(6 +1le T za

To evaluate the integral in (5), we also have to con-
sider the possible presence of poles inside the con-
tour Cg. Note that G is regular when A\ — k2 de-
spite the factor 1/k,, in (8). Thus, the only poles
we have to consider in G are the poles of I'. From
(9), if T has a pole, its expression is given by

where
¢ = Ja T JWea (14)
op + Jwey

The residue of this pole corresponds to

—25kP LD /
Res(G, M) = %geﬂkw(yrz )

€
kP = k2 .
za a14>6

Finally, if the contribution of the branch cut (12)
and the pole (15) are taken into account, the ex-
pression (5) explicitly results in

with

(16)

§(z—2") = Lkgaefjki’a(zﬂ’)

1 —e2
1 [r°1, .. . o
% f (eszaz + Feﬂkmz ) (17)
0
(e7F=e% 4 Temdk=02) dk,.

3.5 Spectral representation

Substituting (17) in (6), and interchanging the or-
der of integration, we end up with the spectral rep-
resentation

U(r,z) = UP(r)e k2?4

+oo ) ) (18)
/ U(r,k.) (e7%% + D(k,)e 7%*) dk.
0
with
T, 2.7k§a e —jk? 2
() = - 762/0 U(r, 2)e Iz d,
(19)

~ 1 [T ()
U(r k.q) = —/0 T (ko)

. (ejkzaz + F(kza)efjkzaz) dz.

The first term of (18) correponds to the contribu-
tion of the pole, and can be associated with a pos-
sible ground/surface wave. The second term is the
continuous spectrum that represents plane waves
and their reflexion over the ground.

The spectral representation has been obtained
here for TM fields and for a ground modeled by a
dielectric interface. Note that the formulation can
be extended to other cases where the reflexion co-
efficient I'(k.,) and its associated poles are known.
This may include, for example, grounds character-
ized by a rough surface or by a multilayer dielectric
slab.

4 HOMOGENEOUS ATMOSPHERE OF
FINITE HIGH

In the previous spectral representation, the con-
tinuous spectrum comes from the fact that the
domain is not bounded, i.e. z € [0, +00[. However,
for obvious numerical reasons, the computation
domain must be bounded. We introduce in this
Section a spectral representation for a domain of
finite high. We show that this leads to a discrete
spectrum.

The method is similar to the previous one except
that there now exists a boundary condition at a
finite high z = h given by

0 , ., 1-T ,
— ) —— =0. (2
aZG(z,z,)\) jkza1+FG(z,z,A) 0. (20)
The evaluation of the Green’s function yields
G(z,2'\) = _
T kT (kg sin(kah)

.(ejkza(z/—h)+1—\(kza)€—jkza(z/—h)) (21)

X (ejkzaz + F(kza)e_jkzaz)



for 0 < z < 2/, and
-1
4k, (koo) sin(k.qh)

. (ejkzazl + F(kza)e_jkzaz/)

_ (ejkza(th) 4 F(kza)efjkza(th))

G(z,2'\) =

(22)

for 2/ < z < h. Taking care of the contributions
of the poles and branch cuts, the integration of G
over Cr in (5) leads to a discrete spectrum. Its
expression is given by

U(r, z) = \i/p(r)e_jkgaz
I o o 23
) (e ®
n=1

with T',, = I'(nw/h). The spectral components can
be expressed as

T 2]k§a 1 ! —jkP =z
W) = e [V e

B = [ 4

onr,
5 APPLICATION TO PROPAGATION
SIMULATIONS

nwz

SNz s
(ej o+ e h

) dz.
(24)

5.1 Homogeneous ground/atmosphere

The previous spectral representation can be used to
model the propagation in an homogeneous atmo-
sphere above an homogeneous ground. We assume
that U(rg, z) is known. To obtain ¥ at r > rg, we
determine both components of the spectral repre-
sentation WP(rg) and U(rg, k.,) using the expres-
sions in (24). Then, for r > 7o, UP(r) and U(r, k.,)
are solutions of

10 [ 0- e
;E (TE\I/) + (ka - kza)\I/ =0 (25)

If the field is propagating towards r > rg, we can
solve this equation. We end up with

H(gQ) (Kyr)

\i/(r, k,) = \i/(ro, Z2)—————
Héz)(kr’fo)

: (26)

with H(()Q) the Hankel function of the second kind
and of order 0, and k., = +/k2—k2, where
Im(k,) < 0. Finally, using (18), we can obtain
U(r,z) from W(r, k.). Note that for r — ro greater
than few wavelength, the Hankel functions can be
simplified, and the expression is reduced to

\il(r, k.)= \i/(ro,z)efjkr(“ro). (27)

5.2 General case

To model the propagation, we have gone back and
forth from a spatial to a spectral representation.
Thus, there exists an analogy with classical meth-
ods based on the parabolic equation (PWE). How-
ever here no hypothesis on the paraxiality is made.
Besides the variation of the reflexion coefficient
with k., (and thus with incidence) is intrinsicaly
modeled. As with PWE; it is be possible to derive
a more-general split-step algorithm that takes into
account the terrain profile, and variations in the
electrical characteristics. Details of such an algo-
rithm are presented in [5].

6 CONCLUSION

We have proposed a spectral representation of TM
fields in an homogeneous atmosphere above a di-
electric ground that takes into account the angle-
dependance of the reflexion coefficient. The spec-
tral representation includes a continuous and a dis-
crete part. The former corresponds to plane waves
and their reflexion over the ground. The latter cor-
responds to a possible ground wave. This method
can be extended to TE configurations and to any
ground for which the reflexion coefficient and its
poles are known.

An alternative discrete formulation has been pro-
posed that includes a truncation of the domain at
finite high. This formulation is suitable for be-
ing employed in split-step algorithms, for which the
problem must be bounded in space and discretized.
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