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An Exat Spetral Representation of the WaveEquation for Propagation Over a TerrainA. Chabory, C. Morlaas, R. Douvenot, and B. Souny ∗Abstrat � An exat spetral representation of thewave equation above a dieletri ground is proposed.The formulation is based on the diagonalisationof the vertial operator, takes into aount theangle-dependane of the re�exion oe�ient, anddoes not inlude any paraxial approximation. Theexpressions of the spetrum omprise two parts:a ontinuous part and a disrete part. The latterorresponds to a possible surfae wave. The useof this result in split-step algorithms to simulatewave propagation requires a disretization of thespetrum. To render the disretization onsistent,an alternative disrete spetral representation isproposed that intrinsialy inludes the trunationof the omputation domain at a �nite high.1 INTRODUCTIONTo model the propagation of eletromagnetiwaves over the ground at large distanes, onean rely on split-step methods based on theparaboli approximation of the wave equation [1℄.The omputation is performed step by step atinreasing distanes, going bak and forth from aspatial to a spetral representation of the wave.Suh methods an generally take into aount theterrain pro�le, a possible ground wave, and theeletrial harateristis of the atmosphere.To model a ground haraterized by a onstantsurfae impedane, the ontinuous mixed Fouriertransform has been proposed [2℄. This trans-form mathes the spetral representation to animpedane boundary ondition via a hangeof variable. A disretized ounterpart of thistransform, the disrete mixed Fourier transform(DMFT), has been developed to render the shemeself onsistent and avoid numerial instabilities.In many appliations, e.g. for rough surfaes, aonstant impedane may not be su�ient to modelthe boundary ondition at the ground level beausethe re�exion oe�ient depends on the angle ofinidene. To deal with this di�ulty, Kuttler andDokery have proposed to keep the impedaneonstant at a given range, but to extrat theimpedane value from the dominant propagationdiretion [2℄. Janaswamy has proposed a morerigourous solution to model the propagation over
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a nononstant immittane plane [3℄, i.e. with anangle-dependant re�exion oe�ient.In this artile, we theoretially develop an exatspetral representation of the vertial operatortaking into aount the angle dependane ofthe re�exion oe�ient. We diretly start fromMaxwell equations, i.e. without the paraboliapproximation. The demonstration is diretlyfounded on the diagonalisation of the vertialoperator [4℄. Besides, in order to avoid the numer-ial di�ulties that may arise when disretizing aontinuous spetral representation, we introduean alternative formulation for a domain of �nitehigh. Thus, this formulation inludes the neessarytrunation of the omputation domain at a �nitealtitude. We show that this leads to a disretespetrum.This artile is organized as follows. In Setion2 we present the on�guration. The spetral rep-resentation is demonstrated in Setion 3. Next, inSetion 4 we modify this representation to aountfor a domain of �nite high before presenting theappliation of the method in Setion 5.2 CONFIGURATIONWe onsider a time-harmoni on�guration wherethe �elds are transverse magneti (TM) with re-spet to the vertial axis z. Note that the trans-verse eletri ase an be analyzed in a similar way.Let (r, φ, z) be the loal ylindrial oordinate sys-tem with unit vetors (r̂, φ̂, ẑ). We assume a ro-tationnal symmetry about the vertial axis. Theground/atmosphere are haraterized by a onstantpermeability µ0 and by spae-varying permittivity
εr(r, z) and ondutivity σ(r, z) The problem anbe formulated from a vetor potential Πe suh that

E = Πe −∇
1

k2
∇ ·Πe,

H =
1

−jωµ0
∇×Πe.

(1)where k = −jωµ0(σ + jωε) is the wavenumber.



3 HOMOGENEOUS ATMOSPHEREABOVE A DIELECTRIC GROUND3.1 FormulationFor an homogeneous atmosphere and ground, uponreplaing Πe by ψẑ, the wave equation an be astin ylindrial oordinates as
−
1

r

∂

∂r

(

r
∂

∂r
Ψ

)

−
∂2

∂z2
Ψ− k2(z)Ψ = 0, (2)with r ∈]0,∞[, z ∈ R. Furthermore

k(z) =

{

ka z > 0,

kg z < 0,
(3)with ka and kg the wavenumbers in the atmosphereand ground, respetively. At in�nity, Ψ is subjetedto radiating boundary onditions. At the groundlevel z = 0, the boundary onditions is imposed bythe ground/atmosphere interfae.3.2 Priniple of the determination of thevertial spetral representationThe variables r and z are separate in (2). Conse-quently, we introdue an operator Lz ating on thevertial oordinate z suh that

LzΨ = −

(

∂2

∂z2
+ k2(z)

)

Ψ. (4)This operator an be assoiated with a Sturm-Liouville problem of the third kind. The spetralrepresentation is introdued via the diagonalisationof this operator.To do so, we employ the method developed in [4℄,that an be divided in 3 steps:
• We determine the Green's funtion G(z, z′, λ)of the operator Lz − λI, with λ ∈ C, I theidentity operator, and (z′, z) the position ofthe soure and observation, respetively.
• We write the following identity, demonstratedin [4℄,

1

2jπ
lim

R→∞

∮

CR

G(z, z′, λ)dλ = −δ(z − z′), (5)where CR is the irle entered at 0 of radii
R in the omplex λ-plane. Then, we evaluateexpliitly the integral in (5) taking are of theontributions of branh uts and poles.

• Finally, we write
Ψ(r, z) =

∫ ∞

0

δ(z − z′)Ψ(r, z′)dz′. (6)

Using (5), we an substitute δ(z − z′) by theexpliit ontributions of the branh uts andpoles. The expression that we obtain is thespretral representation of the operator.3.3 Green's funtionThe Green's funtion of Lz − λI is the solution of
−

∂

∂z2
G(z, z′, λ)−(k2+λ)G(z, z′, λ) = δ(z−z′), (7)for (z, z′) ∈ R2. Besides, at z → +∞, G is sub-jeted to radiation boundary onditions. At z = 0,a re�exion oe�ient is introdued to restrit theomputation to the domain z ≥ 0 and z′ ≥ 0, be-ause in this artile we are only interested by the�eld in the atmosphere. Using a lassial method[4℄ for the determination of Green's funtions, weobtain

G(z, z′, λ) =
e−jkza|z−z′| + Γe−jkza(z+z′)

2jkza
, (8)for z ≥ 0 and z′ ≥ 0, with kza =

√

k2a + λ.The suitable determination of the square root isthe one that respets the radiation ondition, i.e.Im(kza) ≤ 0. The re�exion oe�ient is given by
Γ =

Za − Zg

Za + Zg

, (9)with
Za =

jkza
σa + jωεa

, Zg =
jkzg

σg + jωεg
. (10)Note that the ondition at z = 0 orresponds in thespetral domain to the following impedane bound-ary ondition

∂

∂z
G(z, z′, λ)− jkza

1− Γ

1 + Γ
G(z, z′, λ) = 0, (11)inside whih the impedane depends on the spetralvariable kza. This ondition an be obtained bysolving the equation in the omplete domain z ∈R. Thus, it is an exat formulation for the groundinterfae.3.4 Integration in the omplex λ-planeWe now have to evaluate the integral in (5). In theomplex λ-plane, the square root in kza introduesa branh ut. As indiated in Fig. 1, we de�nea new ontour Ca to add the ontribution of thebranh ut to the integral.We note that on the lower part of Ca, kza is realand positive, while on the upper part kza is real



Figure 1: Contours of integration in the omplex
λ-plane.and negative. A hange of variable λ ↔ kza in theintegral of G(z, z′, λ) over both parts of Ca yields
∫

Ca

G(z, z′, λ)dλ =

∫ +∞

0

(

ejkzaz + Γe−jkzaz
)

.
(

ejkzaz
′

+ Γe−jkzaz
′

) j

Γ
dkza.

(12)To evaluate the integral in (5), we also have to on-sider the possible presene of poles inside the on-tour CR. Note that G is regular when λ → k2a de-spite the fator 1/kza in (8). Thus, the only poleswe have to onsider in G are the poles of Γ. From(9), if Γ has a pole, its expression is given by
λp =

k2a
1 + ǫ

, (13)where
ǫ =

σa + jωǫa
σb + jωǫb

. (14)The residue of this pole orresponds toRes(G, λp) = −2jkpza
1− ǫ2

e−jkp
za(z+z′) (15)with

kpza =

√

k2a
ǫ

1 + ǫ
. (16)Finally, if the ontribution of the branh ut (12)and the pole (15) are taken into aount, the ex-pression (5) expliitly results in
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+
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(17)

3.5 Spetral representationSubstituting (17) in (6), and interhanging the or-der of integration, we end up with the spetral rep-resentation
Ψ(r, z) = Ψ̃p(r)e−jkp

zaz+
∫ +∞

0

Ψ̃(r, kz)
(

ejkzz + Γ(kz)e
−jkzz

)

dkz
(18)with

Ψ̃p(r) =
2jkpza
1− ǫ2

∫ +∞

0

Ψ(r, z)e−jkp
zazdz,

Ψ̃(r, kza) =
1

2π

∫ +∞

0

Ψ(r, z)

Γ(kza)

.
(

ejkzaz + Γ(kza)e
−jkzaz

)

dz.

(19)The �rst term of (18) orreponds to the ontribu-tion of the pole, and an be assoiated with a pos-sible ground/surfae wave. The seond term is theontinuous spetrum that represents plane wavesand their re�exion over the ground.The spetral representation has been obtainedhere for TM �elds and for a ground modeled by adieletri interfae. Note that the formulation anbe extended to other ases where the re�exion o-e�ient Γ(kza) and its assoiated poles are known.This may inlude, for example, grounds harater-ized by a rough surfae or by a multilayer dieletrislab.4 HOMOGENEOUS ATMOSPHERE OFFINITE HIGHIn the previous spetral representation, the on-tinuous spetrum omes from the fat that thedomain is not bounded, i.e. z ∈ [0,+∞[. However,for obvious numerial reasons, the omputationdomain must be bounded. We introdue in thisSetion a spetral representation for a domain of�nite high. We show that this leads to a disretespetrum.The method is similar to the previous one exeptthat there now exists a boundary ondition at a�nite high z = h given by
∂

∂z
G(z, z′, λ)− jkza

1− Γ

1 + Γ
G(z, z′, λ) = 0. (20)The evaluation of the Green's funtion yields

G(z, z′,λ) =
−1

4kzaΓ(kza) sin(kzah)
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)

(21)



for 0 < z < z′, and
G(z, z′,λ) =

−1

4kzaΓ(kza) sin(kzah)
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−jkzaz
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)

.
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)

(22)for z′ < z < h. Taking are of the ontributionsof the poles and branh uts, the integration of Gover CR in (5) leads to a disrete spetrum. Itsexpression is given by
Ψ(r, z) = Ψ̃p(r)e−jkp
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)

(23)with Γn = Γ(nπ/h). The spetral omponents anbe expressed as
Ψ̃p(r) =

2jkpza
1−e−2jkp

zah
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zazdz
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)

dz.(24)5 APPLICATION TO PROPAGATIONSIMULATIONS5.1 Homogeneous ground/atmosphereThe previous spetral representation an be used tomodel the propagation in an homogeneous atmo-sphere above an homogeneous ground. We assumethat Ψ(r0, z) is known. To obtain Ψ at r > r0, wedetermine both omponents of the spetral repre-sentation Ψ̃p(r0) and Ψ̃(r0, kza) using the expres-sions in (24). Then, for r > r0, Ψ̃p(r) and Ψ̃(r, kza)are solutions of
1

r

∂

∂r

(

r
∂

∂r
Ψ̃

)

+ (k2a − k2za)Ψ̃ = 0 (25)If the �eld is propagating towards r > r0, we ansolve this equation. We end up with
Ψ̃(r, kz) = Ψ̃(r0, z)

H
(2)
0 (krr)

H
(2)
0 (krr0)

, (26)with H
(2)
0 the Hankel funtion of the seond kindand of order 0, and kr =

√

k2a − k2za whereIm(kr) ≤ 0. Finally, using (18), we an obtain
Ψ(r, z) from Ψ̃(r, kz). Note that for r − r0 greaterthan few wavelength, the Hankel funtions an besimpli�ed, and the expression is redued to

Ψ̃(r, kz) = Ψ̃(r0, z)e
−jkr(r−r0). (27)

5.2 General aseTo model the propagation, we have gone bak andforth from a spatial to a spetral representation.Thus, there exists an analogy with lassial meth-ods based on the paraboli equation (PWE). How-ever here no hypothesis on the paraxiality is made.Besides the variation of the re�exion oe�ientwith kza (and thus with inidene) is intrinsialymodeled. As with PWE, it is be possible to derivea more-general split-step algorithm that takes intoaount the terrain pro�le, and variations in theeletrial harateristis. Details of suh an algo-rithm are presented in [5℄.6 CONCLUSIONWe have proposed a spetral representation of TM�elds in an homogeneous atmosphere above a di-eletri ground that takes into aount the angle-dependane of the re�exion oe�ient. The spe-tral representation inludes a ontinuous and a dis-rete part. The former orresponds to plane wavesand their re�exion over the ground. The latter or-responds to a possible ground wave. This methodan be extended to TE on�gurations and to anyground for whih the re�exion oe�ient and itspoles are known.An alternative disrete formulation has been pro-posed that inludes a trunation of the domain at�nite high. This formulation is suitable for be-ing employed in split-step algorithms, for whih theproblem must be bounded in spae and disretized.Referenes[1℄ M. Levy, Paraboli Equation Methods for Ele-tromagneti Wave Propagation, ser. IEE ele-tromagneti waves series 45, IET, Ed., 2000.[2℄ D. G. Dokery and J. R. Kuttler, �Animproved impedane-boundary algorithm forFourier split-step solutions of the paraboliwave equation,� IEEE trans. Antennas Propag.,vol. 44, no. 12, pp. 1592-1599, 1996.[3℄ R. Janaswamy, �Radio wave propagation overa nononstant immitttane plane�, Radio Si.,vol. 36, no. 3, pp.387-405, 2001.[4℄ D. G. Dudley, Mathematial Foundations forEletromagneti Theory, IEEE press, New-York, 1994.[5℄ R. Douvenot, C. Morlaas, A. Chabory, B.Souny, �Matrix split-step resolution for propa-gation based on an exat spetral formulation�,in ICEAA, 2012.


