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Full Paper—In quasi-optical systems, dichroic surfaces are
used to split, filter, or mix signals. Such surfaces cannot be
modeled by existing Gaussian-beam methods. In this article we
propose a technique to model the interaction of a Gaussian
beam (GB) with a dichroic surface based on a matching in
the spectral domain. For a GB illumination of the surface,
the reflected and transmitted fields are approximated by one
reflected and one transmitted Gaussian beams. Their charac-
teristics are determined by means of the spectral matching
through a second-order approximation of the dichroic surface
response when excited by plane-waves. Numerical experiments
and comparisons with reference solutions show the efficiency
of the method in terms of accuracy and computation time.
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I. INTRODUCTION

In mm-wave radiometry, quasi-optical systems are used

to guide, filter, split, or mix the input signals. Such systems

are generally constituted by the combination of different

elements, e.g. mirrors, lenses, dichroic filters, or horn

antennas. The number and the size of these elements

render their modeling difficultly amenable by classical

methods [1] in acceptable computation times. For such

systems, even physical optics may become computationally

costly.

The use of Gaussian beams (GBs) constitute a possible

alternative [2]. Such methods are generally divided in two

parts. In the first one, the incident field is expanded into

a finite sum of GBs. In the second part, the beams are

tracked through the system. The interaction of a GB with

many elements of quasi-optical systems is well-known.

Indeed, in [3], Deschamps has demonstrated that the

fields reflected and/or transmitted at a dielectric/metallic

moderately-curved interface illuminated by an incident

GB can be approximated by Gaussian beams. In contrast,

dichroic surfaces cannot be modeled by such methods

because they are in some cases structures which period

may not exceed a fraction of wavelength [4], [5].

To deal with periodic structures, one generally assumes

a plane-wave illumination. The response can then be

computed with the help of the method of moments

coupled with a Bloch-Floquet modal description [6]. For

the modeling of a complete quasi-optical system, one has

to integrate this response [7].

In this article, we propose a solution to model

the interaction of a GB with a dichroic surface. The

method consists in assuming that the fields reflected and

transmitted by the interface are GBs. This is realized with

a general analytical formulation of GBs that includes the

fundamental GB [8]. The characteristics of the reflected

and transmitted beams are found by means of a matching

in the spectral domain. This involves an approximation of

the dichroic surface response for plane-waves illuminations.

This article is organized as follows. Details about the

configuration are presented in Section II. In Section III

we briefly present GBs. Next in Section IV, we explain the

spectrum-matching method. Numerical experiments are

performed to confront the results with reference methods

in the last section.

II. CONFIGURATION

The configuration is presented in Fig. 1. We associate

a reference frame (0i , x̂i , ŷi , ẑi ) with the incident GB. The

dichroic surface is of arbitrary shape and thickness, and

can be associated with a coordinate system(0d , x̂d , ŷd , ẑd ).

This dichroic surface is either made of periodic elements

or dielectric layers. In order to describe the orientation of

the different reference frames, we use the classic definition

of Euler angles such as presented in Fig. 2.

The dichroic surface response is assumed to be already

known, for example in a tabulated form. In practice, this

response can be computed numerically using a method

based on Floquet modes, for example via [6].
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Fig. 1: Configuration.

Fig. 2: Euler angles.

III. GAUSSIAN BEAMS

A. Definition

Gaussian beams are analytical solutions of the approx-

imated wave equation upon the paraxial approximation.

This requires that the field is only weakly diverging with

respect to its main propagation direction. The maximal

angle of divergence generally admitted is of 20o [8].

In this article, we use a formulation as general as possible

in order to describe accurately the reflected and transmitted

fields. The transverse electric field of a GB in zi = 0 is so

that

Et ,i (xi , yi ,0) = ui (xi , yi ,0)
[

ai x x̂i +ai y ŷi

]

(1)

with ai x and ai y the coefficients associated with the xi and

yi polarization, respectively. Besides ui represents the scalar

GB expression in zi = 0, and is given by

ui (xi , yi ,0) = exp
[

− j
k

2

(

ρi −ρi0

)t
Qi0

(

ρi −ρi0

)

− jβt
i

(

ρi −ρi0

)

]

.

(2)

with k the wavenumber and

ρi =

[

xi

yi

]

, ρi0 =

[

xi0

yi0

]

and βi0 =

[

βxi0

βyi0

]

.

Qi0 represents the complex curvature matrix of the GB.

When diagonal, this matrix can be related to the sizes

and the positions of the waists of the GB. From these

expressions, in its reference frame the beam is characterized

by five parameters, i.e. two complex amplitudes (ai x , ai y ),

a complex curvature matrix Qi0 , a spectral shift βi0 and a

spatial shift ρi0 .

B. Paraxial formulation

Assuming a propagation of the beam towards zi ≥ 0, the

field can be expressed as

Ei (xi , yi , zi ) =

Ï∞

∞

Ẽi (kxi ,kyi )e− j kt
i

ri dkxi dkyi (3)

with kt
i =

[

kxi kyi kzi

]

the wavevector, rt
i
=

[

xi yi zi

]

and,

Ẽi (kxi ,kyi ) = ũi (kxi ,kyi )ei (kxi ,kyi ). (4)

In this expression,

ei = ai x x̂i +ai y ŷi −
(

kxi /kzi ai x +kyi /kzi ai y

)

ẑi , (5)

ũi =
j 2π

k
√

det (Qi0)
exp

[

j
1

2k

(

kρi −βi0

)t
Q−1

i0

(

kρi −βi0

)

+ jρt
i0kρi

]

,

(6)

with

kρi =

[

kxi

kyi

]

.

If βzi0 =
√

k2 −β2
xi0

−β2
yi0

< k, the GB spectrum is centered

on a propagative plane wave. We associate with this GB a

new coordinate system (0β, x̂β, ŷβ, ẑβ) such as





xβ

yβ
zβ



= Pi→β





xi − xi0

yi − yi0

zi



 , (7)

where Pi→β is a 3 × 3 transformation matrix from the

incidence reference frame to a new coordinate system with

Euler angles (φ0,θ0,0) as illustrated in Fig. 3.

Fig. 3: Reference frame of the incident GB.

Note that
φ0 = angle

(

βxi0 ,βyi0

)

θ0 = acos
(

βzi0/k
)

.
(8)

In this coordinate system, the asymptotic evaluation of (3)

via the steepest descent path method [9] yields the classical

paraxial formulation of GB

Ei (xβ, yβ, zβ) =ui (xβ, yβ, zβ)

[

aβx x̂β+aβy ŷβ

−
j

k

(

aβx
∂ui

∂x
+aβy

∂ui

∂y

)

ẑβ

]

,

(9)
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with

ui (xβ, yβ, zβ) =

√

det Qβ(zβ)
√

det Qβ0

exp
(

− j kzβ
)

.exp

(

− j
k

2
ρt
βQβ(zβ)ρβ

)

,

(10)

and

Q−1
β (zβ) = Q−1

β0 + zβI, (11)

inside which I is the identity matrix. In the new coordinate

system, the beam curvature matrix Qβ0 and coefficients

(aβx , aβy ) are given by





aβx

aβy

0



= Pi→β





ai x

ai y

−cosφ0 ai x − sinφ0 ai y



 , (12)

and

Qβ0 = R−1t

Q−1
i0 R−1 (13)

with

R =
1

cosθ0

[

cosφ0 −cosθ0 sinφ0

sinφ0 cosθ0 cosφ0

]

, (14)

Note that an alternative formulation can be obtained that

only depends on the far-field approximation by applying the

stationary phase method to (3).

IV. METHOD

A. Principle

We suppose that the incident GB yields one transmitted

and one reflected GBs. Because the method is similar for

both cases, only the study of the transmitted field will be

exposed in details. The transmitted GB must be as close as

possible to the transmitted field. Therefore, the goal is to

determine its reference frame and parameters.

In order to keep spectrum with Gaussian amplitudes, we

make the matching of the incident/transmitted spectrum in

the reference frame of the incident beam. Besides, the spec-

trum matching is realized on the transverse components of

the spectrum. For the incident GB, these components can

be expressed as

Ẽt ,i (kxi ,kyi ) = ũi (kxi ,kyi )
(

ai x x̂i +ai y ŷi

)

(15)

For the transmitted field to be approximated by a GB, its

transverse components must be approach by a similar form,

i.e.

Ẽt ,tr (kxi ,kyi ) = ũt (kxi ,kyi )
(

at x x̂i +at y ŷi

)

(16)

The principle of the method can be divided in two parts. We

find the expression of the transmitted spectrum from the

incident spectrum and the response of the dichroic surface.

Then, this expression is matched to (16).

B. Expression of the transmitted spectrum

Each plane wave impinging the dichroic plate is ex-

panded in parallel and orthogonal polarizations. For the

incident spectrum (4), this yields

Ẽ
Ë

i
= ũi (ei .êË), Ẽ⊥

i = ũi (ei .ê⊥). (17)

with

ê⊥ =
ŝi × n̂d

∥ ŝi × n̂d ∥
, êË = ê⊥× ŝi , ŝi = ki /k, (18)

and n̂d the normal to the dichroic plate.

Making use of the dichroic surface response, we end

up with the orthogonal and parallel components of the

transmitted spectrum

[

Ẽ
Ë
tr

Ẽ⊥
tr

]

=

[

T Ë,Ë T Ë,⊥

T ⊥,Ë T ⊥,⊥

][

Ẽ
Ë

i
Ẽ⊥

i

]

, (19)

where T Ë,Ë,T Ë,⊥,T ⊥,Ë,T ⊥,⊥ are the transmitted coefficients

associated with both polarizations. Finally, the transmitted

spectrum is expressed as

Ẽtr = Ẽ
Ë
tr êË+ Ẽ⊥

tr ê⊥. (20)

Using (17), (19) and (20), the transverse components of Ẽtr

can be formulated as

Ẽt ,tr = ũi (kxi ,kyi )S(kxi ,kyi ), (21)

with

S = Sx (kxi ,kyi )x̂i +Sy (kxi ,kyi )ŷi . (22)

C. Spectrum matching

To match (16) with (21), we need the following approxi-

mation of S(kxi ,kyi )

S ≈ Sa =
(

sx0x̂i + sy0ŷi

)

exp
(

kt
ρiρs +kt

ρi Qs kρi

)

(23)

where (sx0, sy0) are complex coefficients, ρs is a complex

vector, and Qs is a complex symmetric matrix. (sx0, sy0) are

obtained by matching S with Sa at the maximal value of

the incident spectrum, i.e. kxi =βxi0 and kyi =βyi0. Then,

we project (23) on
(

sx0x̂i + sy0ŷi

)

. We end up with

S.
(

s∗x0x̂i + s∗y0ŷi

)

|sx0|
2 +|sy0|

2
≈ exp

(

kt
ρiρs +kt

ρi Qs kρi

)

. (24)

This approximation must be valid in the interval where the

incident spectrum is significant. In order to obtain these

coefficients, we perform a point matching at nine different

plane-waves: one at kxi = βxi and kyi = βyi and two at

half of the maximal power of the incident GB spectrum for

φ= (0◦,45◦,90◦,135◦).
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D. Identification

From (21) and (23), we find

Ẽt ,tr ≈ũi (kxi ,kyi )exp
(

kt
ρiρs +kt

ρi Qs kρi

)

.
(

sx0x̂i + sy0ŷi

)

.
(25)

We insert (6) and (25) in (21) and we obtain

Q−1
tr 0 = Q−1

i0 − j 2kQs

βtr 0 = Im
(

Q−1
tr 0

)−1 (

Im
(

Q−1
i0

)

βi0 +kRe
(

ρs

))

ρtr 0 =ρi0 − Im
(

ρs

)

+
βtr 0Re

(

Q−1
t0

)

−βi0Re
(

Q−1
i0

)

k
[

atr x

atr y

]

=

[

sx0

sy0

]

√

det Qtr 0 exp
(

j 1
2k

βt
i0Q−1

i0
βi0

)

√

det Qi0 exp
(

j 1
2k

βt
tr 0Q−1

tr 0βtr 0

)

(26)

We have completely specified the transmitted GB. The

reflected beam can be determined in a similar way. Its

reference frame is chosen as the image of the incident

reference frame. Finally, either the paraxial or the far-field

formulation of GBs (9) can be employed to compute the

fields at any point of space.

V. NUMERICAL CONFRONTATIONS WITH REFERENCE

METHODS

A. Configuration

For validation purpose, we consider a dichroic surface

constituted by a thick infinite dielectric slab of relative per-

mittivity εr = 4 and thickness 2λ0 placed at zi = 0.1m. The

Euler angles between the incident beam reference frame

and the dichroic plate reference frame are (0◦,45◦,0◦). The

frequency is set at 100GHz. The configuration is presented

in Fig. 4.

Fig. 4: Configuration.

B. Methods

We confront the Gaussian beam matching (GBM) with

two reference methods. Because the dichroic surface is only

made by large dielectric interfaces, we can compare our

results with the GB tracking method (GBT). This method is

classically used in GB techniques [2].

The second one is based on the radiation of equivalent

currents. They are obtained by modeling the dichroic sur-

face by means of the reflexion and transmission coefficients.

This method is denoted “RTC” and is classically used

to model dichroic surfaces in quasi-optical systems [7].

Contrarily to GBT, this method is exact but slow.

C. Incident field

The incident beam parameters are

[

ai x

ai y

]

=

[

1

0

]

, βi0 =

[

0

0

]

, ρi0 =

[

0

0

]

(27)

and

Q−1
i0 =

[

j
kW 2

0

2
− zi0 0

0 j
kW 2

0

2
− zi0

]

, (28)

with W0 = 1.5λ0 and zi0 = 0.1m the sizes and positions

of the beam waist. In other words, the incident field is

a fundamental GB polarized according to xi with a waist

placed at the dielectric slab.

D. Results

In Fig. 5, we show the total near-field obtained with GBM.

In Fig. 6, we display the difference of this result with the

reference solution RTC.

(a) ‖EGB M ‖dB, φ= 0◦ (b) ‖EGB M ‖dB, φ= 90◦

Fig. 5: Normalized total electric field obtained with GBM

(dB): (a) plane φ= 0◦, (b) plane φ= 90◦.

(a) ‖EGB M −ERTC ‖dB, φ= 0◦ (b) ‖EGB M −ERTC ‖dB, φ= 90◦

Fig. 6: Difference with the RTC method (dB): (a) plane φ=

0◦, (b) plane φ= 90◦.

We see that GBM yields very low errors, that mainly

originate in the paraxial approximation. This is confirmed

by the far-field patterns displayed in Figs. 7 and 8. Beam

parameters are modified when passing through the surface,

e.g. the spatial and angular shifts are of
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[

φr e f 0

θr e f 0

]

≈

[

0

−2.2◦

]

and ρr e f 0 ≈

[

1.7λ

0

]

, (29)

for the reflected GB, and of
[

φtr 0

θtr 0

]

≈

[

0

−0.3◦

]

and ρtr 0 ≈

[

−1.12λ

0

]

, (30)

for the transmitted GB. The complex curvature matrices

of both GBs are significantly modified. Moreover, due to

the tracking process, GBT yields several transmitted and

reflected GBs, which is not the case with GBM. This explain

why GBM outperforms GBT in terms of computation time

in this simulation. Note also that we observe in the far-field

pattern that GBT does not model the angular shift.

Fig. 7: Normalized far field (dB), reflected (left) and trans-

mitted (right). Obtained with GBM, GBT, and RTC.

Fig. 8: Difference of GBM and GBT with RTC in the far field

(dB).

VI. CONCLUSION

In this paper, we have proposed a method to treat the

interaction of a Gaussian beam (GB) with a dichroic surface.

This has been achieved by assuming that the transmitted

and reflected fields are also GBs. The method uses general

analytical formulations for the GBs that depend either on

a paraxial or far-field approximation. The beam parameters

have been obtained by means of a matching in the spectral

domain.

To validate these formulations, numerical tests have been

performed for a thick dielectric slab. We have presented

comparisons with two reference methods in the far-field

and near-field zones. We have observed results that show

that the modifications of the beam when passing through

the surface are correctly estimated, notably the spatial and

angular offsets. This method can be used with any incident

field represented by a sum of GBs. Thus it can be used

to model a complete quasi-optical system that includes

dichroic surfaces.

Simulations of a complete quasi-optical system including

periodic dichroic surfaces will be realized in future works.
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