
HAL Id: hal-01022284
https://enac.hal.science/hal-01022284

Submitted on 30 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New methodology to develop certified safe and secure
aeronautical software - An embedded router case study

Antoine Varet, Nicolas Larrieu

To cite this version:
Antoine Varet, Nicolas Larrieu. New methodology to develop certified safe and secure aeronautical
software - An embedded router case study. DASC 2011, 30th IEEE/AIAA Digital Avionics Systems
Conference, Oct 2011, Seattle, United States. pp 1-24, �10.1109/DASC.2011.6096284�. �hal-01022284�

https://enac.hal.science/hal-01022284
https://hal.archives-ouvertes.fr

 1

NEW METHODOLOGY TO DEVELOP CERTIFIED SAFE AND SECURE
AERONAUTICAL SOFTWARE – AN EMBEDDED ROUTER CASE STUDY

Antoine Varet, Ecole Nationale de l’Aviation Civile (ENAC), Toulouse, France
Nicolas Larrieu, Ecole Nationale de l’Aviation Civile (ENAC), Toulouse, France

Abstract
New aeronautical traffic profiles are growing

in usage and complexity. Higher throughputs and
new opportunities could be served by multiplexing
some different data but the heterogeneity of their
safety and security constraints remains the main
problem for promoting multiplexing solutions
through a unique network link. For this purpose we
are producing an IP based Secure Next Generation
Router (SNG Router). This SNG Router provides
regulation, routing, secure merging of different data
sources as well as preserving their segregation.

In order to ease the SNG router development
we defined a new methodology for the process of
aeronautical software development. This
methodology permits us to rapidly transform
verifiable models into a safe and secure byte-code
certifiable at DO-178B highest levels with reduced
costs. This paper presents the methodology tool
chain, which uses a qualified model transformer to
generate code for a secure virtualization
infrastructure with controlled inter-partition
communications. A separation kernel running on an
embedded target enforces the segregation of
computations done on the data. The case study of
the SNG Router illustrates concretely how the
methodology can be conducted.

Introduction

Heterogeneous aeronautical networks
Future aeronautical environment is in

continuous evolution and new traffic profiles are
growing in usage and complexity: new services are
added to the Aeronautical Traffic Communications
(ATC) and its two subclasses which are Aircraft
Communication Domain (ACD) for the flight
management system communications and Airlines
Information Services Domain (AISD) for the flight
helper system communications. Airline
communication needs are growing with new usages

of the In-Flight Entertainment networks (IFE) and
facilities for passengers could appear in a near
future in the context of the Aircraft Passengers
Communications (APC).

These new opportunities need higher
throughputs and more security such as
confidentiality, integrity, availability and
authentication. Multiplexing different
communications through a unique network link,
such as the ATC with the APC on a single Satellite
Communication Data link, could serve these
requirements but the heterogeneity of the
communications and their independence remain the
main problem for promoting multiplexing solutions.

In order to overcome these issues, we are
elaborating an IP based Secure Next Generation
embedded Router (SNG Router) in collaboration
with the firm Thales Avionics France, providing
regulation, routing, secure merging of different data
sources and preserving their segregation.

During the design process we were searching
for a set of solutions to minimize the certification,
design and development costs and maintain a high
level of security and therefore we have built the
development methodology we present in this paper.

The structure of this document is as follows:
first we will introduce some safety and security
standards used in the aeronautical world, and then
we will present some tools we need to instantiate
the methodology. In the second section, the
methodology is explained in detail then a specific
tool chain is developed to instantiate the different
steps of the methodology. The last section of this
paper illustrates how we can apply our methodology
with the design of our embedded SNG Router case
study.

Safe development for aeronautical software
Any critical embedded system in avionic suite

must be certified against dysfunctions and their
potentially catastrophic consequences. Since 1992

 2

the DO-178B [1] “Software Considerations in
Airborne Systems and Equipment Certification”
published by RTCA is the aeronautical standard for
safety certification of embedded software.

This standard enables a software to be
evaluated with different levels of assurance called
Design Assurance Level (DAL) between A and E:
the lowest DAL-E is required for software which
failure has no impact on safety, aircraft operation or
crew workload whereas the highest DAL-A is
required when a software failure may cause a crash
or cause a loss of a critical function. DAL-A-
certified software gives more confidence in its
safety than DAL-B software but is more expensive
in evaluation effort, as described in table 1.

Table 1 DO-178B DAL evaluation costs

Software level Objectives
to satisfy

…to satisfy
with

independence1
DAL-A
(Catastrophic)

66 25

DAL-B
(Hazardous)

65 14

DAL-C (Major) 57 2
DAL-D (Minor) 28 2
DAL-E (No
effect)

0 0

Conforming to DO-178B standard, the load for
certification of the final product can be reduced
with the qualification of some development and
verification tools by enforcing certain properties
related to the results of these tools: embedded
software can be certified for a specific level of
safety assurance for a specific avionic suite, tools to
build or check software can be qualified. For
instance, a DAL-B qualified compiler can be used
to produce a certified binary image of code at level
B, C, D (DAL-E does not require certification).

Secure software development: the Common
Criteria

Since the beginning of the aviation, safety
considerations have been a central requirement in
the aeronautical world: verification processes and

1 “[…] Independence is achieved when the verification activity
is performed by a person(s) other than the developer of the item
being verified, […]”, DO-178B P.82

system redundancies reduce unattended
dysfunctions. Avionic systems being in closed
perimeters, the security were mainly enforced by
physical security for the different areas, reducing
the vulnerabilities for potential attackers. Since the
September 11, 2001, the place for security
considerations has grown: avionic systems are more
and more open and securing the different physical
perimeters is not sufficient anymore.

Some standards exist to increase the assurance
in security of generic software production
processes. The ISO/CEI 15408 [2] called “Common
Criteria for Information Technology Security
Evaluation” (CC ITSEC, or smaller CC) is a
framework to specify security requirements and to
provide assurance in computer systems.

Like the DAL defined in DO178B, the CC
enables the product to be evaluated at a level of
assurance, from the lowest Evaluation Assurance
Level 1 (EAL-1) to the highest level EAL-7. We
can note that formal method usages are mandatory
for EAL-5 evaluation and higher.

The application of the CC in our work is in
progress (this framework has been indeed used to
evaluate some tools presented in this paper) but is
beyond the scope of this paper. Some publications
deal with the application of the CC requirements in
aeronautical processes [3].

A methodology to develop our software
The aeronautical context constrained by safety

and security requirements conducted us to elaborate
a new methodology to produce rapidly aeronautical
software with certification and evaluation effort
reduction. The methodology we propose is based on
model-into-code transformers and virtualization
infrastructures with separation micro-kernel: the
qualified transformers generate code and binaries
with assurance for safety and the separation micro-
kernel enforces MILS principles (Multiple
Independent Levels of Security is defined below)
which increases the assurance in security. We can
note that the conception is the most important for
the software safety and security, the tool
qualification and the separation kernel usage are
additional increases.

Model Checking (MC) and Formal Methods
(FM) can be used to enforce the confidence of the

 3

safety of the originating models, nevertheless the
application of these techniques are out of the scope
of this paper.

The separation micro-kernel provides secure
inter-partitions communication facilities (S-IPC)
which may be compatible with the ARINC 653 [4]
Application Executive (APEX) standard. This
document specifies indeed a list of services to
provide for partitions through API calls: partition
and process management, error handling, time
management, intra- and inter-partitions
communications.

Some qualified code-based model generators
The generation of lines of code from graphical

or textual models is the main objective of code-
based-model transformers. These programs take
models produced by design tools and convert them
into code by applying deterministic rules. In this
section we will present only few tools useful for
illustrating our methodology.

Simulink(R) software [5] is a well-known
graphical user interface (GUI) to model, simulate
and analyze dynamic systems. This commercial
Matlab toolbox enables the designer to model a
prototype and test its behavior. The graphical
approach of Simulink consists in inserting and
linking into a model or its sub-models some blocks
representing linear or non-linear subsystems,
functions, inputs, outputs, switches... The
simulation capacities can support simultaneously
continuous and discrete time and provides facilities
to define complex inputs and friendly scopes to
represent numerical outputs.

Scicos [6] is an alternative for Simulink, the
main difference between Scicos and Simulink
concerns the licenses: Scicos is free and open
source while Simulink is commercial; moreover
Scicos is standalone software whereas Simulink
needs Matlab.

The Stateflow(R) product [7] completes
Simulink by permitting the modeling and the
simulation of reactive systems also called event-
driven systems, where the finite-state machines can
change from a state to another through conditional
(event or logic condition) or unconditional
transitions. The state models made with Stateflow
are subsystems integrated into Simulink system

models and called periodically or on request of
another subsystem. Stateflow enables to model
machines with parallel states (different states active
simultaneously), with graphical functions based on
flow diagrams, with the temporal logic to increase
event scheduling... For our knowledge, it does not
exist any alternative to Stateflow to complete Scicos
yet.

The files generated by modeling tools can be
converted into source code files: these model-to-
code transformers may be viewed as compilers of a
high level of abstraction. The most known tool in
the aeronautical domain to convert models into
source code is probably the SCADE development
environment [8], commercialized by Esterel
Technologies: supporting up to DO-178B DAL-A
qualification to produce C and Ada source code, it
has graphical design, model test coverage and
formal proof verifier capabilities. For instance,
Airbus and Eurocopter used it to develop,
respectively, the Primary Flight Control Systems for
A380 and the Automatic Pilots of EC-135, two
highly critical software projects.

Since 2006, the Gene-Auto ITEA European
project [9,10,11] aims at building a free and open-
source qualified C code generator from systems
models. The tool is now in a stable version and can
transform Stateflow/Simulink models or/and Scicos
models into C library source code; it will soon
support Ada language as target. Like SCADE,
Gene-Auto has been designed to be qualified for
aeronautical safe software development. Free and
open-source provides some advantages presented
later in section “Different tool chain proposals for
the methodology”. We chose to use this tool to
develop our SNG Router case study.

Some virtualization infrastructures
A virtualization infrastructure permits to run

on a single processor different software components
such as applications and operating systems (OS)
into “virtual machines” or “partitions”, with
isolation between them for some resources or
behaviors: the space partitioning designates
isolation between the memory spaces used by
different partitions while the time partitioning
means a scheduling with no interference between
the processor time-slots assigned for the different
partitions (a partition cannot “steal” the time-slots

 4

assigned to other partitions and then “freeze” the
system indefinitely).

Most of time, a “real” OS called “host OS”
runs the different partitions, the “virtual” OS
running in virtual machines are then called “guest
OS”. The host and guest distinction is useful to
separate what is outside and inside the virtual
machines. The resources (processor, memory,
input/output...) used by the guests are controlled by
the host. Using different virtual machines on a
single real machine may appear inefficient (system
complexity increasing) but in fact it can provide
some optimizations for load repartitions and a great
stability for servers in case of some virtual machine
failure by isolating the faults. Figure 1 illustrates
how a partition can stop without altering the
execution of the other partitions: the unprivileged
p3 process raises a fault (to do so, we used the
following sample of code { int*n=NULL; (*n)++; }
to lead to a segmentation fault), conducting the B
partition to halt and then the p4 process to stop its
execution; the A partition and its 2 processes p1 and
p2 are not affected by the B partition failure.

Figure 1 Fault protection enforced by a partition

One technique of virtualization is called the
paravirtualization or embedded virtualization
[12,13]: during its execution in its partition, the
guest software components accesses to the
resources through an interface provided by the host.
This technique enables guest applications to run
faster than with other techniques such as hardware
emulation, but needs an adaptation of the guest

application to use the resources not directly but
through specific host functionalities.

When the host software is dedicated to the
paravirtualization, this software is called separation
kernel (or micro-kernel). It may provide some Inter-
Partition Communications (IPC), some assurances
in the scheduling (for real time requirements), in the
space partitioning (with the help of some Memory
Management Unit)…

WindRiver(R) VxWorks platforms are the
current leaders for Real Time Operating Systems
(RTOS). Commercialized by the Californian
WindRiver Company, the VxWorks product [14]
exists in different sub-series: VxWorks (generic
version), VxWorks 653 (RTOS advised for DAL-A
qualification), VxWorks MILS (this secure RTOS is
evaluated at CC31-EAL6+ and then advised for
security evaluation of suites based on this RTOS).

Sysgo PikeOS [15] is a concurrent RTOS
produced by a Franco-German company. Compliant
with the MILS principles and evaluated at CC31-
EAL3+ (EAL5+ is in progress), this RTOS can be
certified for DAL-A software. APEX and POSIX
compliance API for Sysgo PikeOS are optional. It
provides the CODEO plug-in for Eclipse IDE which
shorts the development phase for Sysgo PikeOS
based applications.

Proposed methodology

General presentation
This methodology has been elaborated to

develop rapidly safe and secure software. It is based
on model transformers and virtualization
infrastructures. A separation micro-kernel enables
the hardware to run concurrently different
applications (software which implements the
function) or operating systems (software which
provides facilities to run software). Each concurrent
execution is associated to a dedicated partition, with
specific time and space resources separated from
other partition's resources. For instance, a partition
has access to a specific area of the memory and
cannot alter the memory area assigned to another
partition.

 5

Figure 2 Steps of our methodology

In our methodology, we use the inter-partition
communication facilities to enable the different
parts of our system to run together. The
methodology requires a secure separation micro-
kernel to enforce some assurances about the
security of the allowed IPC: pipes and shared
memory are constrained for data type, length and
access. The granularity of the controls is at the
partition level. The architect of the system defines
all resource assignments and the different IPC for
each partition and specifies what is allowed and
what is forbidden (more precisely, all operations not
explicitly allowed are forbidden for safety and
security considerations).

The first step of the methodology presented in
figure 2 is the partitioning: the architect divides the
future software product into different “partition
classes”, each partition class being assigned to a
subset of the product functionalities. The product
will run a set of instances of these partition classes.
The partition instances may communicate with each
others. Then when the design of a feature is divided
into 2 partition classes, the feature is realized in fact
by at least 2 partition instances and all the
communications between them.

In a second step, the designer models one
implementation for each partition class. A model
may be directly implemented in C source code but
graphical tools increase the level of abstraction and
permit to ease the design, to check more efficiently
certain aspects of the models (such as the code
coverage) or to ensure the model to have some
properties (for instance to avoid any dead code).
Figure 3 illustrates the complementary goals of the
designer and the architect.

The third step consists of transforming each
partition class model into a library source code: the
generated code cannot be compiled and run directly,
because contrary to application source code, library
code has not a single entry point but has one entry
point for each exported function and data.

 6

Figure 3 Architect’s and designer’s tasks

In the fourth step the glue code between the
library source code and the separation kernel
communication interface is manually written or
automatically generated with a tool we will call “the
glue maker” below in this paper: this code provides
a unique entry point for the partition class; it reads
all the inputs of the partition through the S-IPC
API, calls the library functions, writes the outputs
and redo these three steps indefinitely.

During the fifth and sixth steps the developer
compiles codes for all partition classes then
assembles and links them together into a binary
image containing the separation micro-kernel part.
The user-defined architecture from the first step
drives the generation.

The developer can now download then run this
final binary image on the embedded target or an
emulator in order to confirm the correct behavior of
the software and its performances.

The steps may be summed up as:

1. Partitioning

2. Design

3. Transforming

4. Glueing

5. Compiling

6. Integrating

7. Running

Advantages
This methodology shorts the process of

software development in different ways. High-level
models enable designers to verify and correct the
behavior of the system as soon as possible in the
development phase, reducing the risk of
divergences in the final product and then the costs
of repair/containment.

The functional decomposition into partitions
not only eases the design phase but permit to isolate
some underspecified or incorrect functionality and
to insert partitions dedicated for safety and security
controls over the inputs and outputs of other
partitions, easing the instrumentation of the final
software. Moreover, the engineer may reuse some
partition classes for other projects.

The automatic production of most part of the
code reduces some problems of repetitive low-level
tasks and bugs generated by the copy-and-paste: for
instance, programmers do not have anymore to
manage manually some low-level tasks such as
shared memory access control or calculation
validation because the high-level model semantic
and the different transformers perform together
these tasks. For example, a division by zero
conducts the processor to raise a potentially fatal
error and must absolutely be avoided; the
transformer can produce a code with a systematic
verification circumventing this failure. Moreover,
the introduction of hidden channels by a malicious
programmer is more complex because there is a
smaller quantity of source code and graphical charts
to hide them. Nevertheless, a conception error in the
transformer may produce a malformed code with an
error repeated a lot of times: that is why the
transformer must have passed the qualification
phase to produce code with a high-level of
assurance.

The library code generated from the different
models is independent of the virtualization
architecture; for that reason the code is easily
portable for most systems. In addition, with little
lines of glue code it can be smartly tested on any
software and hardware architecture, for example on
a single laptop with a Linux operating system and
gcc compiler, to prove some concepts or to integrate
it into other projects without safety constraints, for
instance to develop a flight equipment
demonstrator.

 7

Figure 4 Tool chain “R” used for SNG Router

Other source codes already written (and
certified) from predecessor software (in C or other
languages) can be reused in the projects developed
with the methodology. These codes can be integrated
into one (or some) dedicated partition(s) which will
communicate with other “legacy” partitions
developed from the models.

The secure virtualization infrastructure enforces
the segregation between partitions and the control of
all intercommunications, involving the safety and the
security of the execution of the whole system and
reducing the vulnerabilities.

A last but not least advantage of the
methodology is the “strong” resource partitioning: S-
IPC capabilities are enough restricted to plan to
replace an entire software partition by some
dedicated hardware solution, reducing CPU
consumption and then the constraints related to time
scheduling.

Methodology instantiation with existing tools
The previous section presented the main lines of

the methodology. Next table 2 resumes a set of tools
applicable during the different steps of the
methodology.

Table 2 Available tools for the methodology

Step Usage Tools
2 Modeling/

Design
Simulink only (graphical)
Simulink+Stateflow (graphical)
Scicos (graphical)
B (textual) [16]

3 Transform Gene-Auto
SCADE
ComenC [17]

5 Compile Gnatmake (Ada)
Cc (C)
Ocaml (CaML) [18]

6 Separation
kernel

Sysgo PikeOS
WindRiver VxWorks 653
WindRiver VxWorks MILS

7 Target VirtualBox [19]
qemu-x86 [20]
(any embedded product)

The partitioning step (1) must be done manually
by the development team, but most separation kernels
are sold with an integrated development environment
(IDE) easing the integrating step (6). The modeler
tools available for the design step (2) and presented
in table 2 are detailed in section “Some qualified

 8

code-based-model generators”. The transformers of
this table enable the developers to pass the
transforming step (3) and are explained in the same
section. Until now, no qualified tool exists to
automate the glueing step (4) because of the
dependence on the transformer and on the separation
kernel, so the glue code must be written and checked
manually. The different compilers of the table 2
support the compiling step (5). The running step (7)
may be done on a real embeddable target or any
virtualization tool able to emulate different targets.

Before applying the methodology, the
developers must choose a specific subset of the tools
presented in the table 2; this subset will be called a
“tool chain” in the rest of this paper, because the
tools have to be applied the one after the others. For
instance, to develop our router case study, we have
chosen to employ a tool chain named “tool chain R”
(“R” like the first letter of Router) and presented in
figure 4. In such a chain, models are drawn with
Simulink and Stateflow graphical modelers, the
transformer used is GeneAuto, the compiler is a
qualified C compiler “cc”, the separation kernel is
PikeOS and the development target is qemu-x862.
The PikeOS micro-kernel is provided with its IDE
“CODEO” [21] (a plug-in for Eclipse) which
facilitates partitioning (1), compiling (5), integration
(6) and running (7) steps.

With our tool chain, there is no qualified glue
code generator to link the GeneAuto generated code
with the PikeOS separation kernel. So the glue code
may be written manually but in fact we developed
small unqualified programs to automate this step (for
certification requirements, the tool must be qualified
or the resulting source code must be checked by
developers with usual methods such as code
auditing). Two usages are possible for the glue code.
In “regular” usage, the glue code algorithm is the
easy “read-compute-write” algorithm: all inputs of
the partition class are read, then the generated library
function is called with the appropriate parameters,
then all outputs of the partition are written, and these
three actions are repeated in an infinite loop. In
addition, the glue code enables the model to exploit
the “triggered” usage: the model can invoke
explicitly the input reading or the output writing

2 Qemu-x86 is an emulator of a Intel x86 processor compatible
hardware

functions at any time, for example to refresh data or
to emit several output messages for one incoming
message. Figure 5 illustrates the algorithm of a
partition where the regular mode is completed by a
triggered call to output something. The regular usage
is mandatory for all partition classes whereas the
triggered usage is optional, for specific requirements.

Figure 5 Glue code regular and triggered usages

Advantages of this specific tool chain
 This specific tool chain “R” has the following

advantages. For the safety evaluation process, usage
of a qualified transformer (Gene-Auto) plus a
qualified compiler (cc) reduces the load of
certification: the source code is automatically
developed; Gene-Auto ensures the code to comply
with low-level requirements and software
architecture, to be verifiable, conform to standards,
traceable to low-level requirements, accurate and
consistent. Moreover, the qualification of the
compiler implies the executable object code to
comply and to be robust with low-level requirements.
Some test activities are reduced: the qualification
ensures that test procedures and test results are
correct. They cover all software requirements, and
cover the entire code structure while easing the
explanation of discrepancies. To summarize, the
benefits affect 16 over the 66 evaluation tasks
required for DO-178B DAL-A certification! They are
resumed in the table 3 below. Thus, the time and
money costs of the qualification of the tools are
probably a small overload largely counterbalanced by
the gain on the costs of classical certification tasks.

 9

Table 3 Tool chain R contribution to certification

Task Description
A.2.6 The source code is developed
A.2.7 The Executable Object Code is

produced
A.5.1 The source code complies with low-

level req.
A.5.2 …complies with software architecture
A.5.3 …is verifiable
A.5.4 …conforms to standards
A.5.5 …is traceable to low-level req.
A.5.6 …is accurate and consistent
A.6.3 Executable Object Code complies with

low-level req.
A.6.4 …is robust with low-level req.
A.7.1 Test procedures are correct (partly)
A.7.2 Test results are correct, discrepancies

explained (partly)
A.7.4 Test coverage of low-level req. is

achieved
A.7.5-7 …of software structure is achieved

Whereas the methodology does not explicitly
require any security evaluation, usage of an evaluated
MILS separation micro-kernel provides some
assurances to ease the evaluation of the whole
product: PikeOS is already evaluated at the level
EAL3+ of the CC (and would be soon at EAL5+).
This separation kernel is an important step to build an
entire secure product and to evaluate it easier than
classical monolithic software. Nonetheless a system
cannot be completely secure with just one item;
security must be enforced by a set of requirements
applied at different steps of the development process.
Indeed a separation micro-kernel is not sufficient to
ensure the security of the whole system.

Different tool chain proposals for the
methodology

The adaptability of the methodology with
different tool chains enables the engineer to diversify
versions of the product for a better safety assurance.
For instance, a producer may use concurrently the
two next tool chains to develop its product:

• Tool chain C (Commercial): the
graphical models are designed with
Simulink(r) and converted into C source
code by SCADE software suite, and

then the cc compiler generates the
binary to run in VxWorks(r) 653
operating system.

• Tool chain F (Free): graphical models
are designed with Scicos and
transformed by GeneAuto into Ada
source code, then the gnatmake
compiler produce the binary code to run
on PikeOS3(r).

Tool chain C and tool chain F are clearly
dissimilar, but both are “similar” to develop: the
methodology imposes such chaining of tools and both
tool chains have the same safety evaluation benefits.

However, the tool chain F has the following
advantages: almost all tools are free and open-source.
This tool chain eases the appropriation of the code for
new programmers in existing projects, it improves
the deployment for new customers (they can find
themselves the responses to their questions without
spending time for asking and waiting support), it
improves the adaptability (correction of small
deviations needs less time), it increases the re-
usability of the code and the long-term
maintainability (source codes of the tools are open-
source, then the users can copy and archive them or
branch them to extend the tools), it reduces the cost
for buying and managing the tools licenses and avoid
the cases of developer unable to work because there
is no token available anymore for the development
software use.

Illustration of the methodology: the
SNG Router

Product description
Since September 2010, the French Civil

Aviation University (ENAC) has conducted a thesis
in cooperation with industrial Thales Avionics
Toulouse in the field of future aeronautical networks,
especially in direction of safety and security
considerations. The proof of concept of a safe Secure
Next Generation IP Router completes the thesis.
Objectives of this product are firstly the routing of
Ipv4 and Ipv6 packets between different networks
with different levels of criticality and secondly the

3 PikeOS is not free. All other tools of the tool chain F are free.

 10

multiplexing and the securing of the packet
transmissions into shared links. For instance, a single
SatCom data link may transmit both ATC and APC
data. For our study case, we will produce a router
with a classical Ethernet interface, a secure one and
an administration one. Figure 6 presents such a
configuration.

Figure 6 A SNG Router example configuration

To develop our SNG Router, we decided to use
the tool chain R: Simulink and Stateflow are the
modelers, GeneAuto is the transformer, cc is the C
compiler, Sysgo PikeOS is the separation micro-
kernel and qemu-x86 emulates the target. In this
section, we will apply step by step the methodology
in order to develop the embedded software and byte-
code of the SNG Router.

Partitioning stage
The first step of the methodology consists to

divide into parts the functionalities we want for the
product: the SNG Router will run several partitions
for routing and filtering IPv4 and IPv6 packets plus
some partitions to interface the hardware network
interfaces with the software routing and filtering
partitions. Moreover, some network links need secure
communications, so we introduce some security
enforcement partitions. In addition, we will need an
additional partition for the administration of the
router, the statistics management and some
miscellaneous tasks.

Therefore, the decomposition of the
functionalities presented in figure 7 gives:

• a partition class Piface to interface the
software with the hardware network
device,

• a partition class Pfr, declined in two
subclasses, Pfr4 for filtering and routing
IPv4 packets and Pfr6 for IPv6 packets,

• a partition class Pse to secure some
dedicated links,

• a partition class Padmin.

Figure 7 SNG Router partition classes

For demonstration purposes, the SNG Router
will be in the following configuration: two network
interfaces can only communicate in IPv4 and one of
them needs some security features. The separation
micro-kernel will thus run 5 partition instances: 2
instances of Piface, 1 of Pse, 1 of Pfr4 and 1 of
Padmin. Note the Piface class is instantiated twice
(one per network device) but will be designed only
once. We do not need the Pfr6 partition class for this
configuration. The object diagram in figure 8 sums
up the different partition instances with their
associated classes and their interconnections.

Figure 8 SNG Router partition instances

At the end of this step, the SNG Router
development project is composed of a sub-project for
each partition class and one sub-project to integrate

 11

together the partitions into one standalone target. In
the following step we focus around the Pfr4 partition
class.

Design stage
In this part of the process, the designers have to

implement the partition classes with Simulink and
Stateflow models. Figure 9 shows partially the Pfr4
implemented in Simulink with different Stateflow
chart sub-models and calling an external C function.
Two implementations exist for this function: the first
one writes the outputs to a file, enabling the designer
to verify and debug the triggered outputs of
Simulink; the second one is generated by the glue
maker, connects the outputs of the GeneAuto library
code with the outputs of the PikeOS partition and is
thus an essential part of the final software.

Figure 9 Modeling of the Pfr4 partition class

Transforming stage
After designing all the models for the different

classes of partition, GeneAuto converts each model
into C language code, resulting in a few minutes in
thousand lines of codes in .c and .h files. For
instance, figure 10 presents the conversion of a
Stateflow sub-model.

Figure 10 Generating the library code for Pfr4

The generated code is readable by a human but
is not really interesting when you have the source
graphical models.

Glueing stage
The generated code is some “library code”, that

means there is no a single entry point a compiler
requires for building applications. Then, we must
apply the glue maker to generate some C lines of
code in order to create the partition’s application, as
illustrated in figure 11: it calls the function written by
GeneAuto with the inputs and outputs of the partition
class (this is the glue code regular usage illustrated in
figure 5). In addition, the inputs reader and the
outputs writer functions can be called at any time
from the model: this is the optional triggered usage.

 12

Figure 11 Generating the glue code for Pfr4

Compiling stage
After having generated the source code for the

partition classes, the next step consists of compiling it
and generating the associated binary executable file.
Then, this binary file shall be inserted and linked
with the integration PikeOS project.

The CODEO plug-in eases this step: the
developer creates one PikeOS-development project
per partition, and then he includes the source files
and completes some information such as the target
architecture and processor and eventually the
integration project. Then, PikeOS helper software
generates an appropriate Makefile to compile the
partition files.

The design, transforming, glueing and compiling
steps must be done for each partition class before
concluding the next integrating step. Figure 12 sums
up these steps.

Figure 12 Transforming, glueing and compiling

steps

Integrating stage
At this part of the process, we have the binaries

for each partition class. So we quit the Pfr4 focus to
refocus on the global view of the SNG Router. The
integration project described in figure 13 needs to
know where are the binaries for each class of
partition, how many instances of each class the target
will run, how they are scheduled, how they are
prioritized... In addition, the architect must specify all
communications allowed between the different
instances, all shared memories and their access
control lists, and how memory space is assigned to
each instance… In fact, this PikeOS configuration
step must be done by the architect after the first
partitioning step and before the running step, it is not
mandatory to have the partition binaries to complete
the PikeOS integration project configuration. The
CODEO plug-in is very helpful for the programmer
for this task, because it writes directly the XML
description file which may be a very long task if done
manually.

 13

Figure 13 SNG Router integration with CODEO

After completing the PikeOS integration project
configuration and inserting all the binaries, the final
binary ROM image can be generated.

Running stage
Now the final binary file can be downloaded

onto the target and run for additional tests or
production usage. An emulator such as qemu can be
used to check the software product or to instrument
its execution: for instance with the help of the “Trace
tool for PikeOS” and the CODEO monitor, the
developer can control completely the execution of all
parts of the Router, stop or restart some partitions.
The snapshot of the Figure 14 illustrates this
scenario.

Figure 14 Snapshot of the final binary execution

Conclusion and future perspectives
Safe and secure software product development

with high levels of assurance (DAL-A, EAL5) can be
improved by the methodology we presented in this
paper. The continuous enhancements in computer
science make it possible now to unify model driven
development techniques with virtualization
infrastructures. It enables us to reduce development,
certification and evaluation processes and
simultaneously improve the safety and the security
levels of the final product. The IP based Secure Next
Generation Router case study we are conducting
supports the methodology adjustments and provides a
concrete application to extend the aeronautical
network capabilities, such as data multiplexing
through a single network link. The Open Source
world provides some powerful tools such as
GeneAuto, with the benefits we discussed previously
for the industry.

To complete our SNG Router case study, we are
working on network security requirements. A
dedicated partition named Pse is already included in
the design of our router and can be supplied with
different functionalities we are elaborating.

However we have to conduct further research to
extend the methodology with new tool chains. For
instance, the formal research community provides
some development tools for the B-Method. A tool
chain “B” based on these tools should help the user
with advanced safety and security assurance levels.
In addition, DO-178C should soon clarify officially
the certification of software with formal tools.

 14

Another point we are working on concerns the
overlap between evaluation and certification
processes: the safety and the security assurances are
conducted concurrently, based on independent
standards. As a consequence some quite similar tasks
must be conducted twice although the objectives and
the methods are almost the same. Indeed, in the near
future, we plan to propose some improvements to our
methodology to reduce this overlap.

References
[1] RTCA SC-167, EUROCAE WG-12, 1992, DO-
178B Software Considerations in Airborne Systems
and Equipment Certification, Washington, DC,
RTCA, Inc.

[2] July 2009, Common Criteria for Information
Technology Security Evaluation, version 3.1,
ISO/IEC 15408, http://www.niap-ccevs.org/cc-
scheme/cc_docs/

[3] Huyck, Patrick, 2010, SKPP Conformance -
Activities and Considerations to Achieve
Certification, Salt Lake City, UT, 29th Digital
Avionics Systems Conference, 4.A.6.1-8

[4] January 2007, ARINC 653 Avionics Application
Standard Software Interface, Annapolis, MA,
Aeronautical Radio, Incorporated

[5] Simulink, The MathWorks Inc.,
http://www.mathworks.com/products/simulink/

[6] Scicos, Metalau team of INRIA,
http://www.scicos.org/

[7] Stateflow, The MathWorks Inc.,
http://www.mathworks.com/products/stateflow

[8] Safety Critical Application Development
Environment (SCADE), Esterel Technologies,
http://www.esterel-technologies.com/products/scade-
suite/

[9] Toom, A., et al., 2008, Gene-Auto: an Automatic
Code Generator for a safe subset of
Simulink/Stateflow and Scicos, 4th European
Congress ERTS Embedded Real Time Software

[10] Rugina A., et al., 2008, Gene-Auto: Automatic
Software Code Generation for Real-Time Embedded
Systems, Data Systems in Aerospace (DASIA) 2008

[11] Toom, A., et al., 2010, Towards Reliable Code
Generation with an Open Tool: Evolutions of the

Gene-Auto toolset, 5th European Congress ERTS
Embedded Real Time Software

[12] Gaska, Thomas, and al., October 2010, Applying
virtualization to avionics systems – The integration
challenges, Salt Lake City, UT, 29th Digital Avionics
Systems Conference, 5.E.1.1-8

[13] PikeOS embedded Virtualization, SYSGO AG,
Germany, http://www.sysgo.com/products/pikeos-
rtos-and-virtualization/embedded-virtualization/

[14] The WindRiver website,
http://www.windriver.com/products/vxworks/

[15] Sysgo PikeOS, SYSGO AG,
http://www.sysgo.com/products/pikeos-rtos-and-
virtualization-concept/

[16] Atelier B website, http://www.atelierb.eu/

[17] The B0 Implementation Translation into C
language ComenC website, ClearSy System
Engineering, France, http://www.comenc.eu/

[18] The Caml language website,
http://caml.inria.fr/index.en.html

[19] Oracle VM VirtualBox, an x86 virtualization
software package, http://www.virtualbox.org/

[20] QEMU, a generic and open source machine
emulator and virtualizer, http://wiki.qemu.org/

[21] CODEO, Eclipse based IDE, SYSGO AG.,
http://www.sysgo.com/products/pikeos-rtos-and-
virtualization/eclipse-based-codeo/

Acknowledgements
We would like to thank Rupert Salmon and John

Kennedy for their help in editing this paper. We
express also our gratitude to the Gene-Auto team,
especially to Marc Pantel, for the answers on the
Gene-Auto forum.

Email Addresses
For further information, Antoine Varet can be

contacted at antoine.varet@recherche.enac.fr and
Nicolas Larrieu at nicolas.larrieu@enac.fr.

30th Digital Avionics Systems Conference
October 16-20, 2011

