
HAL Id: hal-01022259
https://enac.hal.science/hal-01022259

Submitted on 23 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A descriptive model of visual scanning
Stéphane Conversy, Christophe Hurter, Stéphane Chatty

To cite this version:
Stéphane Conversy, Christophe Hurter, Stéphane Chatty. A descriptive model of visual scanning.
BELIV 2010, Conference on BEyond time and errors novel evaLuation methods for Information Vi-
sualization, Apr 2010, Atlanta, United States. pp 35-42, �10.1145/2110192.2110198�. �hal-01022259�

https://enac.hal.science/hal-01022259
https://hal.archives-ouvertes.fr

A Descriptive Model of Visual Scanning
Stéphane Conversy
Université de Toulouse

ENAC & IRIT

Toulouse, France

+33 5 62 17 40 19

stephane.conversy@enac.fr

Christophe Hurter
Université de Toulouse

DGAC R/D & ENAC & IRIT

Toulouse, France

+33 5 62 25 95 76

christophe.hurter@aviation-

civile.gouv.fr

Stéphane Chatty
Université de Toulouse

ENAC

Toulouse, France

+33 5 62 17 42 21

chatty@enac.fr

ABSTRACT

When designing a representation, a designer implicitly formulates
a sequence of visual tasks required to understand and use the
representation effectively. This paper aims to make the sequence
of visual tasks explicit, in order to help designers eliciting their
design choices. In particular, we present a set of concepts to
systematically analyze what a user must theoretically do to
decipher representation. The analysis consists of a decomposition
of the activity of scanning into elementary visualization
operations. We show how the analysis applies to various existing
representations, and how expected benefits can be expressed in
terms of elementary operations. The set of elementary operations
form the basis of a shared, common language for representation
designers. The decomposition highlights the challenges
encountered by a user when deciphering a representation, and
helps designers to exhibit possible flaws in their design, justify
their choices, and compare designs.

Categories and Subject Descriptors

H.5.2 User Interfaces – Evaluation/methodology, Screen design.

General Terms

Design, Human Factors.

Keywords

Visualization, Infovis, Design Rationale, Visual design.

1. INTRODUCTION
Designing representation is often considered to be a craft. The
design activity requires multiple iterations that mix ad-hoc testing,
discussions with users, controlled experiments, and personal
preferences. These ways of designing are either costly (controlled
experiment), error-prone (ad-hoc testing) or lead to non-optimal
results (personal preference). Though a number of theoretical
works help to explain the strengths or weaknesses of
representation [2][3][4][7][11][26][28], no systematic method
exists that would help designers to assess their design in an a
priori manner, i.e., before user experiments. As suggested in [21],

such a method would help not only for formative purposes, but
also as a summative evaluation before actual user experiments.

When designing a representation, a designer implicitly formulates
a way to understand and use the representation effectively. For
example, reading a city map requires scanning it, finding
noteworthy locations (metro stations, connections...), devising a
path to go from one point to another, etc [27]. For a user, except
for very specialized graphics and narrow tasks, figuring out a
representation is like interacting using the eyes only: a user has to
figure out a solution to his task at hand by scanning the picture,
seeking graphics, memorizing things, etc. The succession of these
small visualization operations induces a cost that deserves to be
evaluated before acceptance of a final design.

In this paper we suggest that most design decisions can be
explained by the willingness of the designer to reduce the cost of
deciphering the representation. However, there is no common core
of concepts that allows designers to precisely express the rationale
behind a design decision. This hinders the design process because
it makes it hard for designers to explain to users and stakeholders
why a representation is suitable for their tasks (justification), and
how a new prototype is better than a previous one (comparison).
Furthermore, they cannot justify their choices in a design rationale
document, which makes the decisions susceptible to
disappearance in future evolutions of the system.

This paper presents a set of concepts and a method for analyzing
how a user deciphers a representation. It relies on and extends
previous works about visual scanning and design elicitation. The
goal of the paper is not to show better designs for a particular
problem. Rather, the goal of the paper is to present a method that
exhibits the steps required to figure out a particular representation,
and helps justify design choices and compare representations.

2. RELATED WORK
We based our work on previous studies that can be roughly
divided into three groups. The first group concerns eye gaze,
representation scanning, and models of visual perception; the
second concerns visual task taxonomies; and the third concerns
design formulation.

2.1 Eye gaze, scanning, visual perception
Eye tracking enables researchers to analyze what users look at
when solving a problem. However, a large part of the literature is
devoted to how to process tracking data in order to analyze it
[12][23][24]. Furthermore, the state of the art in this field still
experiments with very low-level designs and abstract graphics [6]
[27], far from the richness of today’s visualizations. A number of
findings are interesting and may help the design of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BELIV’10, April 10–11, 2010, Atlanta, GA, USA.
Copyright 2010 ACM 978-1-4503-0007-0…$5.00.

representations, but they are hard to generalize and use in a
prescriptive way [22].

The ACT-R model aims at providing tools that simulate human
perception and reasoning [3][4]. However, the tool is not targeted
towards designers, as its purpose is to model human behavior so
as to anticipate real-world usage. It does not take into account
some arrangements such as ordered or quantitative layout, nor
does it support a description of how a representation is supposed
to be used. ACT-R has tentatively been used to carry out
autonomous navigation of graphical interface, together with the
SegMan perception/action substrate [25]. However the interfaces
used as testbeds are targeted toward WIMP applications, which do
not exhibit high-level properties available in rich visualization.

The semiology of graphics is a theory of abstract graphical
representation such as maps or bar charts [7]. It describes and
explains the perceptual phenomenon and properties underlying the
act of reading abstract graphics. In his book, Bertin defines three
levels of reading a representation: the elementary level, which
enables the reader to “unpack” visual variables of a single mark,
the middle level, which enables the reader to perceive a size-
limited pattern or regularity, and the global level, which enables
the reader to grasp the representation as a whole, and see at a
glance emergent visual information. Bertin ([7] p148) pointed out
the problem of scanning in what he terms “figuration” (i.e., bad
representation). He briefly depicts how the eye scans a graphic.
During scanning, the eye jumps from one mark to the next, while
experiencing perturbation by other marks. The eye then focuses
on particular marks to gather visual information.

2.2 Visual task taxonomies
Casner designed BOZ, a tool that automatically generates an
appropriate visualization for a particular task [10]. BOZ takes as
input a description of the task to support and relies on a set of
inference rules to generate a visualization that maximizes the use
of the human perceptual system. In the following, we use the set
of perceptual operators embedded in BOZ, such as “search (an
object with a given graphical property)”, “lookup (a property
given an object)”, and “verify (given a property and an object, that
this object has the property)”.

Zhou and Feiner designed IMPROVISE, another automatic tool to
design representations [1]. Zhou and Feiner have refined the
visual analysis into multiple levels: visual intents, visual tasks,
and visual techniques. Visual tasks include emphasize, reveal,
correlate, etc. A visual task may accomplish a set of visual
intents, such as search, verify, sum or differentiate. In turn, a
visual intent can be accomplished by a set of visual tasks. A visual
task implies a set of visual techniques, such as spatial proximity,
visual structure (tables, networks), use of color, etc.

2.3 Design formulation
The GOMS Keystroke-Level Model (KLM) helps to compute the
time needed to perform an interaction [9]. The Complexity of
Interaction Sequences (CIS) model takes into account the context
in which the interaction takes place [5]. Both KLM and CIS are
based on descriptive models of interaction, which decompose it
into elementary operations. They are also predictive models, i.e.,
they can help compute a measurement of expected effectiveness
and enable quantitative comparisons between interaction
techniques. These tools have proved to be accurate and efficient
when designing new interfaces [5][9].

Green identified cognitive dimensions of notation, which help
designers share a common language when discussing design [16].
The dimensions help make explicit what a notation is supposed to
improve, or fail to support. Cognitive dimensions are based on
activities typical of the use of interactive systems such as
incrementation or transcription. However, they are high-level
descriptions and do not detail visualization tasks. Our work has
the same means and goals (description and production of a shared
language) as cognitive dimensions, but specialized to
visualization.

3. IDEALIZED SCANNING OF

REPRESENTATION
As previously stated, when designing a representation, a designer
implicitly formulates a method required to understand and use the
representation effectively. The work presented here is an analysis
of this method that provides a way to make it explicit.

When trying to solve a problem using a representation, a user
completes a visualization task by performing a set of visual and
memory operations. A visualization task can be decomposed into
a sequence of steps pertaining to the problem at hand (e.g., “find a
bus line”). Each step requires that a sequence of elementary
visualization operations be accomplished. Operations include
entering the representation, memorizing information, seeking a
subset of marks, unpacking a mark and verifying a predicate,
seeking and navigating among a subset of marks, and entering
and exiting from the representation. As we will see below,
operations are facilitated by the use of (possibly) adequate visual
cues, such as Bertin’s selection with color, size or alignment [7].
In terms of the model proposed in [21], we target the
encoding/interaction technique design box.

In the following, we analyze idealized scanning of
representations.. We use “idealized” in the sense that the user
knows exactly what she is looking for, knows how to use the
representation so as to step through with the minimum necessary
steps, and uses only the available information in the representation
otherwise stated. Thus, we do not take into account other
phenomena such as learning, understanding, error, chance, or
personal perceptual disabilities (like color blindness). This is
similar to the approach taken with the KLM: when applying a
decomposition, the designer analyzes an idealized interaction.

In fact, the model enables either comparing multiple scanning
strategies for a given task and a given representation, or
comparing multiple representations for a given task and the most
efficient scanning. In the following, we focus on representation
comparison, and we assume that we have found the most efficient
scanning for each representation. The next section uses an
example to illustrate how to perform an analysis of representation
scanning. Based on this, we further detail the steps and operations
required, and what factors affect users’ efficiency at achieving
them.

4. A FIRST GLIMPSE: A TABULAR BUS

SCHEDULE REPRESENTATION
There is no such thing as an absolutely effective representation; to
be effective, a representation must minimize the amount of work
required to fulfill a task [10]. In the following example, the
problem to be solved by a user is to answer the following
question: “I am at the IUT Rangueil station and it is 14:18. How

long will I have to wait for the next bus to the Université Paul

Sabatier station?” The user knows that two bus lines go to the
destination (#68 and #108). Figure 1 is an excerpt of a typical
representation of a bus schedule. The display is a physical panel at
the station booth, on which lay paper sheets, each with a table for
one bus line that displays the time of departure from each station.

The drawings overlaid on the representation show the idealized
visualization tasks a user must perform when trying to answer the
question. A circle depicts an eye reading, an arrow an eye
movement. Memory operations are depicted with a blue “M”. The
step numbers are in the form x.y.z, which means that step y is the
yth sub-step of step x, and step z, the zth sub-step of step y. A
check mark depicts the last operation of a substep, together with a
green circle. Figure 1 also shows two different scanning strategies
to answer two instances of an intermediate question (“when is the
next bus for line 68 (resp. 108)?”).

Figure 1. A bus schedule representation with the required

steps to find particular information

Step 0: the user should memorize the two compatible bus line
numbers and the current time.

Step 1.x: the user should find an appropriate bus line. The number
of the line is represented in large, boldface text at the top-right
corner of each paper sheet.

Step 1.2.1: the user should find his current location (“IUT
Rangueil”) among the list of stations. The list is a subset of marks
of kind “text”, aligned vertically, with no marks in-between. The
stations are ordered according to their location along the bus line.

Step 1.2.1.x: the user must find the next departure time. He has to
navigate through a row of texts that displays hour and minute for
each bus departure. As the X dimension is multiplexed (or “folded
on”) Y, the user may not find a compatible time in the first row
examined: in this case he has to start Step 1.2 over by moving to
the next row (Step 1.2.2). Finally, the user finds the next
departure when he identifies the first departure that is later than
the current time.

Step 1.3.3.2: the user finds that this row does not contain relevant
information, so he performs a back step to the previous row. This
requires memorization of a previous mark position.

Step 1.2.2.x, 1.3.2.x, green circle: the user finds a compatible bus
in each line and thus has to perform mental computation (a
difference between two times) to find the duration before the next
bus, and memorize it to compare with previous or following
findings.

5. ELEMENTARY OPERATIONS
This section details the various elementary operations required to
implement the steps. In defining the operations, we based our
analysis on existing literature when available, supplemented by
interviews with visualization designers. For each operation, we
detail it, and give elements that aid or hinder operation
achievement. We also compare our operations to the BOZ and
IMPROVISE taxonomies, and explain the differences, mainly in
terms of elements that may aid or hinder the operation.

5.1 Memorizing information
To solve problems, users have to know what information to seek.
They have to memorize this information, so as to compare it to the
information that arises from the representation. As we will see in
the examples, different representations require different numbers
of memory “cells”. For example, in the tabular bus scheduling
view, users need three cells of information at the beginning
(current time, 68 and 108), two cells for intermediary results, and
one cell for a previous location. Memory requirements are often
overlooked when comparing visualizations: the more cells
required, the harder it becomes to solve a problem. Memory fades
with time, so for long scanning tasks users may have forgotten
important information before the end of the scanning. Forgotten
information that is available on the representation can be
compensated for by additional seeking operations, or by adding
the equivalent of a selectable visual property (e.g., a hand-written
mark, or a pointing finger).

5.2 Entering and exiting representation
A representation is rarely used in isolation. Users are surrounded
by different representation from various systems. For example,
Air Traffic controllers employ radar views, various lists of flights,
paper strips, etc. When they solve a problem, users may have to
switch representations. This may require translating the input of a
representation into the visual language of another representation
and translating the information found back into the problem.

In the bus schedule example, users may have to translate the
representation of a time seen on a watch into numbers in the form
hh:mm so as to comply with the ordered-by-time menu-like
vertical representation (entering). They also have to get the
correct bus line somewhere (i.e. a map representing the public
transportation network), and translate the information (a textual
number or a color) into the visual language of the representation
(entering). The information to find is the waiting time for the next
bus. The tabular representation does not give this information
directly, and thus requires a mental computation (exiting). In the
city map example, translating map direction to real-world
direction and recognizing street layout is easier if the map is
oriented to the terrain (i.e., north of map matching the actual north
direction). Taking into account this step is important when a
switch of representation does not require translation, since this
makes the second representation easier to understand.

5.3 Seeking a subset of marks
When users search for bus line information, they have to search
for a subset of the marks in the representation. In order to find the
correct line, the user has to navigate from line number to line
number.

Perceiving a subset is made easier with selective (in the sense of
the semiology of graphics [7]) visual variables: marks can be
extracted from the soup of all marks at one glance, which narrows
down the number of marks to consider. For example, the number
of the bus line is represented in text, with a large font size and
boldface, placed at the top-right corner of the sheet. The size and
position of bus line number make the marks selectable.
Furthermore, when elements in a subset are close enough
together, no other in-between element perturbs the navigation
from mark to mark. The list is even easier to navigate in, since the
marks are aligned horizontally and vertically (or in other words,
marks differ by only one dimension (X or Y)).

Conversely, perceiving a subset can be harder in presence of
similar marks that do not belong to the considered subset. In the
tabular schedule example, all time information has similar visual
properties except for the start time of each bus, which is set in
bold. If the start time were set in regular, it would be harder to
find at a glance. Seeking a subset corresponds to the search-

object-* perceptual operator in BOZ [10].

5.4 Unpacking a mark and verifying a

predicate
When the user sees a candidate mark, she has to assess it against a
predicate. In the tabular bus schedule example, the user has to find
a line number that matches one of the correct buses. Assessing a
predicate may require extracting (or unpacking [1]) visual
dimensions from a mark. This is what Bertin calls “elementary
reading” [7]. This operation also corresponds to the lookup-* and
computation perceptual operator class in BOZ [10]. However,
assessing a predicate may also require cognitive comparison to
memorized information (is the bus number I’m looking at one of

the memorized ones?), or visual comparison with another mark
(example in the following). In BOZ the difficulty of
accomplishing the operation depends on the visual variable used,
but not on other considerations such as memory or visual
comparison.

5.5 Seeking and navigating among a subset of

marks
Within an identified subset, a user may search for a particular
mark. If marks are displayed in random positions, finding a mark
requires a linear, one-by-one scanning of marks, with a predicate
verification for each. The time needed is O(n). If marks are
ordered (as in the ordered-by-time schedule), a user can benefit
from this regularity to speed up navigation, for example by using
a binary search approach, which leads to a time needed of
O(log(n)). If marks are displayed at quantitative positions, we can
hope to achieve O(1). However, this may require secondary marks
such as a scale ticks and legends. In this case, scanning is split
into two phases: navigating into the scale first, then into primary
marks.

Navigating inside a list of texts is equivalent to reading a menu,
for which performance may be predicted quite accurately [1].
However, some graphical elements may hinder navigation. For
example, navigating in a row surrounded by other rows, as in a

table, is difficult. This is the equivalent of a visual steering task
[1]: it requires that the eye be able to stay in a tunnel. Some
representations are supposed to aid this (e.g., think of an Excel
sheet where every other row is colored). Performance depends on
the width and the length of the tunnel. Navigating inside a vertical
list of text is easier than navigating in a horizontal one, since a
horizontal row is as narrow as the height of a glyph. Furthermore,
in particular cases, navigating may require a step back to a
previous mark, which in turn requires memorizing a previous
location (see step 1.3.2.x in Figure 1).

No BOZ perceptual operator corresponds to this operation.
IMPROVISE generates scales for quantitative data, but no
mechanism facilitates ordered data. None of the taxonomies in
BOZ and IMPROVISE handle navigation or take visual steering
into consideration.

6. FORMULATING DESIGN RATIONALE
We argue that a designer implicitly designs a required sequence of
elementary operations when inventing a new representation. We
also suggest that most explanations given by designers can be
expressed in terms of elementary operations, and in particular in
how a particular design improves operation performance. In the
following, we present various designs for bus schedules and ATC
paper strips. We explain the expected gains of each design using
the concepts presented above. We balance the claims by our own
analysis, and possible loss of performance due to a lack of support
for overlooked operations.

6.1 Bus schedule

6.1.1 Ordered-by-time linear representation

Figure 2. An ordered-by-time bus schedule

One bus company proposes the representation in Figure 2 on its
web site. This displays an ordered list of time of departure at the
chosen station along the X dimension, with the corresponding bus
line indicated by a cell containing a background color and white
text. The required steps are:

Step 0: memorize the current time and appropriate bus lines
(entering and memorizing), possibly translating time from an
‘analog’ watch to a text in the form hh:mm (entering).

Step 1: find the ordered list of time (seeking), and the first time
later than the current time (navigating and predicate).

Step 2: find the next appropriate bus (predicate, or seeking a mark
if using bus color).

Step 3: find the associated time (seeking a mark).

Step 4: compute the waiting time before the departure (exiting).

Compared to the tabular representation, the following operations
may be aided…:

seeking and navigating among a subset of marks: times of
departure are displayed in a ordered manner which may ease
navigation.

seeking a subset of marks: the user can easily select elements to
the right of the element found in step 2 (later times, using
selection based on location).

memorizing: there are less information to memorize (2 vs 6
chunks).

…and there are no apparent drawback.

6.1.2 Spiral representation
SpiraClock is an interactive tool that displays nearby events inside
a spiral (instead of a circle like with a regular clock) [13]. Time of
event is mapped to angle, and thanks to the multiplexing of the
angle over the radius, other information emerge (periodicity,
closeness through radius) (Figure 3). The clock also displays the
current time, and adapts the event occurrences accordingly. The
occurrence of an event is actually depicted by the “most recent”
limit of a “slice”. Duration is a relative angle, or a curvilinear
distance, which is quantitative representation, more precise on the
exterior of the spiral (i.e. for close events) than in the interior.
There is also a scale depicted with black squares along the circle.
SpiraClock’s designers argued that adding textual information
about hours would be useless, since the design uses a well-known
reference (a watch) and since the visualization is focused on
current time. If we represent the bus timetable on SpiraClock (as
in Figure 3), the steps required to answer the question are:

Step 0: memorize two bus colors (entering and memorizing)

Step 1: find the end of minute hand (seeking a mark)

Step 2: find the next matching colored mark (i.e. corresponding to
line 68 or 108) (seeking a mark)

Step 3: evaluate the distance between the matching mark and the
minute hand, and estimate the waiting time (unpack and exiting)

Compared to the ordered linear representation, the following
operations may be aided…:

entering: the current time is directly visible thanks to the hands.

navigating: since the time is visible, navigating to the next correct
bus is shorter

exiting: with SpiraClock, a rough idea of the waiting time is
directly visible (no computation needed), since it is proportional
to distance and the design uses a culturally-known scale.

… and there are no apparent drawback.

Figure 3. SpiraClock. Left: visual scanning. Right: a

configuration that displays more information

6.1.3 Quantitative linear representation
Figure 4 shows a representation based on a linear quantitative
scale. Each colored rectangle represents the departure of a bus at
the chosen station. The horizontal position of a rectangle
corresponds to the time of departure and is multiplexed along the
vertical dimension. To aid navigation, a linear scale is provided,
with textual information about hours, and small ticks to mark
quarters between hours.

Step 0: memorize two bus colors (memorizing), possibly translate
time from a watch to a text for hour, and then to a position among
ticks for minutes (entering)

Step 1: find the hour (seeking a mark).

Step 2: find the correct quarter-hour among the ticks (seeking a

mark).

Step 3: find the next compatible bus (i.e., corresponding to line 68
or 108) (seeking a mark).

Step 4: evaluate the distance between the matching mark and the
minute hand, and estimate the waiting time (no computation is
needed) (unpack and exiting).

Compared to SpiraClock, the following operation may be
aided…:

navigating: thanks to the linear layout and the supplemental space
between rows, the steering task is easier to perform (especially
compared the narrow tunnel configuration of Figure 3, left).

… at the expense of the entering operation (there is no current
time visible, since the representation is not dynamic).

Figure 4. A linear, quantitative bus schedule representation

6.2 ATC strips
The activity of Air Traffic Controllers (ATCos) includes
maintaining a safe distance between aircraft by giving clearances
to pilots—heading, speed, and level (altitude) orders. ATCos must
detect potential conflicts in advance. To do this they use various
tools, including a radar view and flight strips [16]. A flight strip is
a paper strip that shows the route followed by an airplane when
flying in a sector (Figure 5).

Figure 5. An ATC paper strip

The route is presented as an ordered sequence of cells, each cell
corresponding to a beacon, with its name, and its time of passage.
Controllers lay paper strips on a strip board, usually by organizing
them in columns. The layout of strips on a board, though physical,
can be considered as a representation. Some planned systems aim

to replace paper strips with entirely digital systems, so as to
capture clearances in the database (currently the system is not
aware of clearances from the controllers to the pilots). These
systems partly replicate the existing representation, and we show
in subsequent sections how they compare with respect to
representation scanning.

Figure 6. Scanning on regular ATC paper strip

6.2.1 Regular strip board
One of the activities of a controller is to integrate the arrival of a
flight into the current traffic. To do this safely, the controller must
check that for each beacon crossed by the new flight, no other
flights cross that beacon at the same time at the same level. Figure
6 shows the required idealized scanning, with typical paper strips
organized in a column. The steps are:

Step 1: find the flight level and memorize it (seeking and
memorizing).

Step 2.1: find the beacon text on the arrival strip (seeking), and for
each beacon (horizontal text list scanning, with no perturbation),
do the following steps (navigating).

Step 2.2: memorize the beacon text, find the minute information
(hour is usually not important) (seeking), and memorize it
(memorizing).

Step 2.3: for each other strip (vertical rectangular shape list
scanning), do the following steps (seeking and navigating).

Step 2.4.1: find the beacon text, and for each beacon (horizontal
text list scanning, with no perturbation), do the following steps
(seeking and navigating).

Step 2.4.2: compare the beacon text to the one memorized in step
2.2 (predicate).

Step 2.4.3.1: if it is the same, find the minute text, and compare it
to the one memorized in step 1.2 (+-5 min) (predicate).

Step 2.4.3.2: if the number is about the same, find flight level,
check it and compare it with the memorized level (predicate).

Step 2.5.1.2: if it is the same, do something to avoid a conflict
(predicate and exiting).

6.2.2 Strips in colored holders
The strip look and layout in the previous section is specific to the
En-Route Control Centre at Bordeaux, France. In other En-Route
Control Centers, people use rigid, colored holders for each paper
strip. The look of strips is different, since the colored frame of the

holder surrounds each strip. Figure 7 shows an idealized scanning
with colored strip holders: here red is for north-south flights (odd
flight level), while green is for south-north flights (even flight
level). Because of the different level assignments, controllers can
be sure that red and green flights will never enter into conflict.
Red holders can quickly be extracted from green ones (selection
based on color). Hence, colored strip holders enable controllers to
narrow the set of flights to compare with a new one, and reduce
the number of required steps accordingly (step 2.x, with x>=3,
seeking and navigating). Holder colors can also ease predicate

verification: holder color of the arriving strip can be matched
easily to holder color of other strips, without requiring the
controller to determine if the strip is a north-south or a south-north
flight.

Figure 7. Scanning with paper strips in colored holders

Figure 8. A pen-based digital stripping system that enables

highlighting of information.

6.2.3 Pen-based digital stripping system
Figure 8 shows a digital, pen-based system that adds an
interaction allowing the controller to press a beacon cell, so as to
highlight in red the time of passage over that beacon on other
strips (the system cannot automatically detect conflict because the
data on the strips is not always current). This facilitates seeking

and navigating in step 2.x, as it reduces the subset of marks to
consider when comparing times, and memorizing (1 vs 3 cells).

6.2.4 Dynastrip
Dynastrip displays beacons in a quantitative way, mapping time to
the horizontal dimension (Figure 9) [15]. All time scales are

aligned across strips. The main goal of Dynastrip is to display
position relative to planned route in the strip, which adds
information. Dynastrip designers also hoped that this
representation would assist controllers to identify conflicts: if
beacons with the same text are vertically aligned, it means that
multiple flights pass over the same beacon at the same time.

Figure 9. Dynastrip, overlaid with the steering tunnel

Step 1: find the flight level (seeking), and memorize it
(memorizing).

Step 2.1: find the beacon texts on the arrival strip, and for each
beacon (horizontal text list scanning (seeking and navigating), do
the following steps.

Step 2.2: memorize the beacon (memorizing), steer visually
through a tunnel (+-5min) (symbolized in gray on Figure 9 but not
shown on the actual interface) (seeking and navigating), and
compare each beacon found with the memorized one (predicate).

Step 2.2.1: find the flight level, check it and compare it with the
memorized level (predicate).

Compared to the regular strip boards, this design may aid…:

Seeking and navigating: thanks to a steering task, beacon search is
facilitated.

Verifying a predicate: the time limit is directly visible.

… at the expense of a supplemental interaction to reach beacons
not yet visible on the time scale.

7. VALIDITY AND LIMITATIONS
Idealized scanning is only theoretical. We have not verified
experimentally the degree to which actual scanning corresponds to
our model, which raises questions about the validity of the work
presented here. However, we suggest that designers implicitly rely
on theoretical scanning, though their expectations do not always
stand against reality [15]. A deeper understanding of the
phenomena is thus necessary, to make explicit design choices and
expected benefits, and to get a reasonable confidence in the
design.

Bertin’s semiology of graphics and Furnas’ Effective View
Navigation [14] have not been fully validated experimentally.
Nevertheless, their concepts permeate a large number of
visualization designs. These approaches allow identification of
relevant concepts and dimensions when analyzing or designing
new visualizations. We think that the elementary operations we
identify in this paper will serve as a similar framework for
representation rationale. In the same way, we have not verified

experimentally whether navigation in an ordered set is easier than
in a random set, and whether navigation in a quantitative set is
easier than in an ordered set. Again, a number of visualizations
rely on these assumptions: making the assumptions explicit helps
designers think about the effectiveness of their designs.

The absence of a distinction between “beginners” and “experts” in
our analysis seems problematic as well. This is clearly the case in
the ATC example: we know from previous observation that ATC
controllers do not scan the strips the way we described the process
above. Instead, they rely heavily on their knowledge of the sector,
recurrent problems and recurrent aircraft to detect conflicts.
Again, our description aimed at eliciting what the visualization
enables for a reader that only uses information extracted from the
representation. However, during normal operations, ATC
controllers regularly do what they call a “tour of the radar image”
or a “tour of the strip board”, in order to check “everything”. In
this case, they are supposed to heavily scan both representations
and may exhibit some of the theorized behavior. Furthermore, we
observed that ATC controllers make more errors when training on
a new sector, at least partly because of representation flaws. These
flaws are compensated for by expertise, which is somewhat
related to knowledge in the head and memory (in some cases, an
ATC controller is considered as expert on a sector only after 2
years of training). However, in high-load situations, with lots of
aircraft, or with particular problematic conditions such as
unexpected storms, the representation becomes more important
and controllers seem more likely to exhibit the theorized behavior.

8. CONCLUSION
In this paper, we presented a method to analyze theoretical
scanning of graphical representations. The method relies on a set
of elementary operations, which includes operations from
previous taxonomies and new ones (entering, exiting,
memorizing) together with new considerations (back steps, visual
steering, and the use of ordered or quantitative arrangement). We
argue that rationale for design can be expressed in terms of these
elementary operations. We showed in various examples how such
an analysis can be achieved and how gains and losses can be
explained with elementary operations. The set of elementary
operations forms the basis of a shared, common language that
helps designers justify and compare their choices.

In its current form, the method is descriptive, not predictive. We
believe that we are still far from a fully predictive model of
human performance in representation use. In the meantime, we
argue that a descriptive method is useful for designers, since the
decomposition highlights the challenges encountered by a user
when deciphering a representation. The benefit is equivalent to
one of the two benefits of KML: in addition to predicting
completion times, KLM helps designers to understand what a user
must do to accomplish an interaction task.

In addition to the examples presented here, we have successfully
applied our analysis method presented to other representations,
such as calendars (month, week and day view), item rating by
customers in online stores, widgets, and radar images. Work is
certainly needed to expand the set of operations and the elements
that aid or affect their realization. For example, we do not yet take
into account the fact that tasks can be aided when externalizing
constraints into the real world [30], nor did we take into account
representations that ease mental computation [29]. Furthermore,
different acts of mental computation and memorization may
exhibit very different costs. In addition, while we tackled the

“what to do” question in this paper, we did not tackle the question
of “how to do it”. Eventually, we need to propose a systematic
method that will help designers find for themselves the steps and
considerations to take into account when evaluating the
effectiveness of a particular representation.

9. ACKNOWLEDGEMENTS
The authors wish to thank the reviewers for their very relevant
suggestions. We also thank N. Roussel and W.G. Philips for their
helpful comments.

10. REFERENCES
[1] Accot, J. and Zhai, S. 1997. Beyond Fitts' law: models for

trajectory-based HCI tasks. In Proc. of the SIGCHI

Conference on Human Factors in Computing Systems. CHI
'97. ACM, New York, NY, 295-302.

[2] Amar, R., Stasko, J., A Knowledge Task-Based Framework
for Design and Evaluation of Information Visualizations,
Proc. of IEEE InfoVis '04, 2004, pp. 143-149.

[3] Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R:
A theory of higher level cognition and its relation to visual
attention. Human Computer Interaction, 12(4), 439-462.

[4] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y . (2004). An integrated theory of the
mind. Psychological Review 111, (4). 1036-1060.

[5] Appert, C., Beaudouin-Lafon, M., Mackay, W. (2004)
Context Matters: Evaluating Interaction Techniques with the
CIS Model. In Proceedings of HCI 2004, Leeds, UK.
Springer Verlag, pages 279-295.

[6] Atkins, M. S., Moise, A., and Rohling, R. 2006. An
application of eyegaze tracking for designing radiologists'
workstations: Insights for comparative visual search tasks.
ACM Trans. Appl. Percept. 3, 2 (Apr. 2006), 136-151.

[7] Bertin, J. (1967) Sémiologie Graphique - Les diagrammes -
les réseaux - les cartes. Gauthier-Villars et Mouton & Cie,
Paris. Réédition de 1997, EHESS.

[8] Card, S.K., Mackinlay, J.D., Shneiderman, B., Readings in
Information Visualization: Using Vision to Think. San
Francisco, California: Morgan-Kaufmann, (1999)

[9] Card, S. K., Moran, T. P., and Newell, A. 1980. The
Keystroke-Level Model for user performance time with
interactive systems. CACM 23, 7 (Jul. 1980), 396-410.

[10] Casner, S. M. 1991. Task-analytic approach to the automated
design of graphic presentations. ACM Trans. Graph. 10, 2
(Apr. 1991), 111-151.

[11] Cleveland, W., McGill, R., Graphical Perception: Theory,
Experimentation, and Application to the Development of
Graphical Methods. Journal of the American Statistical

Association 79, (1984)

[12] Crowe, E. C. and Narayanan, N. H. 2000. Comparing
interfaces based on what users watch and do. In Proceedings

of the 2000 Symposium on Eye Tracking Research &

Applications. ETRA '00. ACM, New York, NY, 29-36.

[13] Dragicevic, P. and Huot, S. 2002. SpiraClock: a continuous
and non-intrusive display for upcoming events. In Extended

Abstracts of CHI '02. ACM, 604-605.

[14] Furnas, G. W. 1997. Effective view navigation. In Proc. of

CHI '97. ACM, New York, NY, 367-374.

[15] Grau, J.Y.; Nobel, J.; Guichard, L.; Gawinoski, G.
"Dynastrip": a time-line approach for improving the air
traffic picture of ATCOS. Digital Avionics Systems

Conference, 2003. DASC’03. 22(1), pp 5.E.1 - 51-11, IEEE.

[16] Green, T.R.G (1989). Cognitive dimensions of notation. In
People and computers V, Cambridge University Press, pp
443-460.

[17] Johansen, S. A. and Hansen, J. P. 2006. Do we need eye
trackers to tell where people look? In CHI '06 Extended

Abstracts on Human Factors in Computing Systems) CHI
'06. ACM, 923-928.

[18] MacKay, W. E. 1999. Is paper safer? The role of paper flight
strips in air traffic control. ACM Trans. Comput.-Hum.

Interact. 6, 4 (Dec. 1999), 311-340.

[19] Mackinlay, J. 1999. Automating the design of graphical
presentations of relational information. In Readings in

information Visualization: Using Vision To Think, Morgan
Kaufmann Publishers, San Francisco, CA, 66-82.

[20] Mackinlay, J., Hanrahan, P., and Stolte, C. 2007. Show Me:
Automatic Presentation for Visual Analysis. IEEE Trans. on

Visualization and Computer Graphics 13, 6 , 1137-1144.

[21] Munzner, T. A Nested Process Model for Visualization
Design and Validation. In IEEE Trans. on Visualization and

Computer Graphics, vol. 15, no. 6, pp. 921-928, 2009.

[22] Rayner, K. Eye Movements in Reading and Information
Processing: 20 Years of Research. Psychological Bulletin,
1998, Vol. 124, No. 3, 372-422.

[23] Riedl, M. O. and St. Amant, R. 2002. Toward automated
exploration of interactive systems. In Proc of IUI '02. ACM,
135-142.

[24] Salvucci, D. D. and Anderson, J. R. 2001. Automated eye-
movement protocol analysis. Hum.-Comput. Interact. 16, 1
(Mar. 2001), 39-86.

[25] St. Amant, R. & Riedl, M.O. A perception/action substrate
for cognitive modeling in HCI. International Journal of

Human-Computer Studies, 55, 1 (2001), 15-39.

[26] Tufte, E. R. The Visual Display of Quantitative Information,
Graphics Press, Cheshire, CT, 2nd ed., 2001.

[27] Ware, C. Visual Thinking for Design. Morgan Kaufmann,
2008.

[28] Wilkinson, L., The Grammar of Graphics. New York:
Springer Verlag (1999).

[29] Zhang, J., Norman, D. 1995. A Representational Analysis of
Numeration Systems. In Cognition, 57. 271-295.

[30] Zhang, J. 1997. The Nature of External Representations in
Problem Solving. In Cognitive science, 21(2), 179-217.

[31] Zhou, M. X. and Feiner, S. Visual task characterization for
automated visual discourse synthesis, Proc of CHI’98, p.392-
399, ACM, 1998

