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Abstract

The consequences of environmental taxation on the supply of air-
transportation services by a profit-maximizing monopolist are examined.
We consider both a passenger related tax and an aircraft related tax,
highlight their respective impact on prices and frequency and derive their
optimal combination. It is shown that there is a trade-off between the re-
covery of environmental damages and the distortions created by the tax.
If tax can be negative. i.e. if the air transportation industry can be sub-
sidized, it is possible to decentralize the optimal situation. We establish
the optimal taxation system in a more realistic setting where tax are to
be positive and the ATM costs have to be recouped. To conclude we ques-
tion the opportunity and the ability of (direct) regulatory mechanisms to
address these issues in substitution and/or in addition to (the indirect
action of) a fuel tax.
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1 Long summary

Air-transportation markets have known a huge growth over the last decades.
There is an increasing concern that this positive traffic growth may conflict with
environmental objectives in general and the Kyoto agreements in particular. In
this paper, we study how air-transportation services are to be structured to
minimize their environmental costs or conversely, how environmental objectives
are to be embodied in the design of airport charges and fuel taxes as to minimize
their negative impact on the profitability of the industry.

Our study is oriented to the European market, where, despite deregulation,
many connections are still operated by a single operator. We thus examine
the consequences of environmental taxation on the supply of air-transportation
services in a setting where these services are supplied by a (profit-maximizing)
monopolist.
Both the passenger related tax and the aircraft related tax are considered. We
highlight their respective impact on prices and frequency and derive their op-
timal combination. It is shown that there is a trade-off between the recovery
of environmental damages and the distortions created by the tax. As a result,
environmental taxes should not be “too high”. In particular zero-tolerance for
emissions is never optimal.
It is well known that a profit-maximizing monopolist produces below the so-
cially optimal level. In other words, if no environmental damages were to be
deplored, it would be optimal for government to subsidize the industry as to
allow a greater number of travellers to benefit from air-transportation services.
This optimal support (subsidy) decreases when the negative externalities of air-
transportation are accounted for and can be negative (a tax) if environmental
damages are “too high”. We show that, if taxes can take any value (positive or
negative), it is always possible to decentralize the optimal situation. We then
shift to a more realistic setting where tax are to be positive and the ATM costs
have to be recouped. We exhibit in this context the optimal structure of airport
charges.

To conclude we question the opportunity and the ability of airport charges to
address environmental issues in substitution and/or in addition to fuel taxation.
Fuel taxes impact indirectly (through operational costs) on both the frequency
of flights and the ticket prices. Thus previous considerations are modified when
this additional instrument is taken into account. We adopt the same structure
for the analysis and examine successively the optimal combination of passenger-
versus aircraft- related airport charges, the optimal level of emissions and the
best way to recoup for ATM costs.
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Introduction

Air-transportation markets have known a huge growth over the last decades.
There is an increasing concern that this positive traffic growth may conflict with
environmental objectives in general and the Kyoto agreements in particular. As
air transport now stands for about 4 % of the world’s total energy consumption,
and given that airport pricing schemes and ATC operators scarcely take exter-
nalities into account, there is much to gain from deriving socially optimum taxes.
Accordingly, our aim in this paper is to understand how air-transportation ser-
vices are to be structured to minimize their environmental costs or conversely,
how environmental objectives are to be embodied in the design of airport charges
and fuel taxes as to minimize their negative impact on the profitability of the
industry.

Our study is oriented to the European market, where, despite deregulation,
many connections are still operated by a single operator. We thus examine the
consequences of environmental taxation on the supply of air-transportation ser-
vices in a setting where these services are supplied by a (profit-maximizing) mo-
nopolist. We however depart from generic works on the taxation of a monopoly
(e.g. Barnet (1980)) by endogeneizing the frequency of flights, hence capturing
a major specificity of the air-transportation market.

Environmental taxes in the field of air-transportation are considered by Nero
and Black (1998). A single compagny is allowed to choose the price as well as
the number of flights, but the main parameter under interest is the network
structure. The environmental externality is not explicitely modelled, its effects
being described by the concept of ”footprints of pollution”, but not fully cap-
tured1. Accordingly, the effect of taxes is studied on the price and frequency
choices, the network structure and the profit of the firm, while welfare consid-
erations are not performed. Carlsson (2002) build on this article and integrates
explicitely the environmental externality in the expression of the welfare. He
computes the optimal ”frequency-related” tax in the monopoly case as well as
in the duopoly case. Though these recent studies on environmental externali-
ties have focussed on the specific impact of hubbing, we consider here a single
leg and rule out competition to specifically address the question of the optimal
combination of a ”passenger-related” and a ”frequency-related” tax. We believe
that such schemes may allow to gain some insight into the implementation of
Ramsey pricing schemes, as derived in the work of Dissler (1993), Zhang and
Zhang (1997 and 2001), Carrlson (2003), Pels and Verhoef (2003) and others.

The model

General setting

Our study is oriented to the European market, where, despite deregulation,
many connections are still operated by a single operator. In this paper, we
thus consider single city-pair operated by a monopolist. The supply of air-

1However, its is true that estimating the marginal environmental costs is an hard task :
part of the pollutants is emitted in altitude, and is thus not taken into account in studies
related to urban pollution, though contributing to some extent to global warming and acid
rains...
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transportation services is characterised by the ticket price p and the flight fre-
quency f . It induces a demand2 of journey X (p, f).

As in Billette de Villemeur (2004), from which we borrow the notations, the
firms has to bear fixed costs F and operational costs. The latter are directly
related to the frequency of connections and the size of the aircrafts. A one-way
flight with an aircraft of capacity K translates into operational costs C (K) on
the route under scrutiny. Since operational costs are supposed to be proportional
to the number of flights, their total amount is thus f C (K). Observe that, if
the company adjust in the long run the capacity K of the aircraft to the total
traffic observed X, the relation K = X/f holds. As a result operational costs
may rewrite f C (X/f) .We shall assume this is the case all along the paper.
The framework may however easily be adapted to situation in which aircrafts
are not used at full capacity.

Following the structural form of the operational costs of the airline, we as-
sume that the environmental costs are roughly proportional to the number of
flights and writes f E (K) , where K is the capacity of the operated aircraft.
Similarily the other costs, namely the costs for the airports and the air traffic
control costs are denoted f G (K) .

The airline is subject to tax payments. These taxes denoted by τx and τf

bears on the number X of passengers and on the number of flights f respectively.
Since we essentially address a normative issue, namely the optimal structure of
taxation, all coordination problems are washed away by assuming that a single
regulator sets these taxes. When considering policy issues, it should taken into
account that, in practice, part of these taxes are decided at the airport level.
Recall that, on top of these taxes that bears directly on transportation services,
part of the operational costs are due to fuel taxation which is not modelled
explicitely here.

First best allocation

Before to address the tax issues and in order to obtain a reference point, we now
consider the problem of a planer that aims at maximizing the social welfare. The
latter writes

W (X, f) = S(X, f) − fC(K) − fE(K) − fG (K) , (1)

where S (X, f) stands for the consumer aggregate (gross) surplus. Typically, it
might be convenient to decompose S (X, f) as the difference between the gross
utility U (X) and the time-costs X νT (f) of the X journeys, where ν denotes
the “value of time” and T (f) the travel time. However, unless usefull for the
interpretation we will stack to the general form as to allow the comparison with
other results from the litterature that are not compatible with this decomposi-
tion. Remark also that the emissions E, although being part of social welfare, do

2This demand can be derived in many different ways. If U (X) denotes the gross utility
derived by the representative agent from X journeys and ν denotes its value of time, it writes

X (p, f) = arg max
X

{
S (X) −

(
p +

ν

2f

)
X

}
,

where 1/ (2f) stands for the average waiting-time of the representative consumer. This rep-
resentation however abstract from the fact that the utility U (X) derived from a journey is
usually related to the value of time of the agent. Our model is however more general than
that and we shall use these specification for illustrative purpose only.
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not enter as an argument of the function S (., .) . This is so because we assume
that, despite consumers value environmental quality, they do not take it into
account in their travelling decisions.

Assuming quasi-concavity of the objective function, the optimality condi-
tions of the problem are given by :

∂XS(X, f) = C ′(K) + E′(K) + G′ (K) , (2)

and

∂fS(X, f) = (C(K) − KC ′(K)) + (E(K) − KE′(K))

+ (G (K) − KG′ (K)) . (3)

The demand for services X (p, f) is directly related to the consumers’ net
surplus. More precisely,

X (p, f) = arg max {S(X, f) − pX} . (4)

It follows that, at equilibrium, the price exactly equates the marginal benefit of
a trip for the marginal consumer:

p = ∂XS(X, f). (5)

Consequently, equation (2) rewrites

p = C ′(K) + E′(K) + G′ (K) . (6)

In other words, the ticket price should equate its total marginal cost, namely
the sum of the marginal operational cost, the marginal environmental costs and
the marginal cost for the airport and the traffic control authority.

Observe that, although not explicit in the displayed equation (6) , the fre-
quency f plays an important role in the determination of the equilibrium de-
mand and price. To see that, consider the decomposition S (X, f) = U (X) −
νXT (f) introduced above. Equation (5) rewrites

p̃ = p + νT (f) = U ′ (X) .

In other words, for any pair (p, f) , the demand X is such that the marginal
utility of a journey is exactly equal to the generalised price p̃ beared by the
users i.e. the sum of the ticket-price p and the time-costs νT (f) expressed
in monetary units. More generally, an increase of f can be shown to have a
twofold impact on consumers. First, it increases their gross benefits as a higher
frequency is nothing but a higher quality of services. Second, if this increase
in frequency does not induce congestion hence further delays, it also decreases
their travel time T (f) , reinforcing further the induced benefits.

The marginal impact of f on the different costs is also twofold, with two
opposite effects. On the one hand, it increases the costs since all of them are
proportional to the number of flights. On the other hand, however, this first
and obviously dominant effect is mitigated by the induced (long-term) decrease
of the capacity K = X/f. It follows that the equation (3) can be rewritten as:

f
∂

∂f

[
S(X, f)

X

]
=

(
C(K)

K
− C ′(K)

)
+

(
E(K)

K
− E′(K)

)

+

(
G (K)

K
− G′ (K)

)
. (7)
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In other words, the marginal benefit of an increase in frequency as computed
on a per-passenger basis, namely ∂f [S(X, f)/X] , is directly proportional to the
difference between average and marginal costs, for all sources of costs.

The optimal allocation as characterised by equations (6) and (7) does not ap-
pear to be a realistic situation since it does not require the consumers to pay for
all the costs induced by the transportation system. If there are increasing returns
to scale in the various dimensions of the transportation system3, which appear
to be a reasonable assumption, a marginal pricing scheme charges passengers
below the average costs inflicted to society. The implementation of the first-best
allocation builds necessarily on (possibly implicit) tranfers.4 Increasing returns
to scale in the environmental dimension means that, on a per-passenger basis,
bigger aircrafts pollute less than (relativly) smaller aircrafts. A consequence is
that E′ (K) < E (K) /K; Hence at the first-best passengers are not required to
compensate for the whole environmental externality they generate.
Remark also that the implementation of the first-best allocation may rely on
the existence of subsidies since the price may not be sufficient to cover the costs
of the firm, the airport and the ATC services. Indeed, the overall profit of the
industry is expressed as

πT = −f [(C(K) − KC ′(K)) + (G(K) − KG′(K))] − F + E′(K) . (8)

Interestingly enough, the higher the magnitude of the environmental exernalities
as measured by E′ (K), the higher the price p hence the lower the necessary
subsidies (if any) for the industry to financially break-even.
Finally, note also that, whenever necessary, these subsidies are not necessarily
directed to the firm. If transportation services are charged according to the
first-best rule (6), whether the price p will allow the firm to break-even depends
on the magnitude of both environmental, airport and ATC costs. Again, the
higher these marginal costs, the higher the prices hence the more likely the firm
will recoup operational costs C (k) and fixed costs F . Airport and ATC services
would however run a deficit.

Previous considerations are made by considering the case of a social planner
that is able to control the whole industry and get access to subsidies whenever
it appears to be desirable. We now shift to a more realistic situation where
(i) the air transportation firm is a for profit compagny, (ii) airport and ATC
services are independant from independant from the firm and (iii) the industry
as a whole may not be subsidized. Airport and ATC services are charged to
the firm by the means of two fees, τx that is a per-passenger tax and τf that is
a per-aircraft tax. We assume that Airport and ATC services are state owned
bodies so that taxes are set as to maximize the social welfare.

Implementing the first-best with a profit-maximising firm

Before we address the second-best problem mentioned above, we uncover the
behaviour of a profit-maximizing firm in this environment. Given τx and τf ,

3The operational, the environmental and the airport and control dimensions.
4Transfers are implicit if the only costs that are not covered by the ticket are the envi-

ronmental costs. Despite there are no monetary transfers, the whole society has to bear the
negative externalities caused by the sole users of the air-transportation services. Transfers are
explicit if the firm, the airports or the ATM services receive subsidies.
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the profit of the firm writes

π(p, f) = (p − τx) X (p, f) − f (C (K) + τf ) − F, (9)

where K stands for the capacity of the operated aircraft that is assumed to
ajust in the long term5 to write K = X/f . Assuming the problem to be convex,
the profit-maximising pair (p, f) is fully characterised by the system of F.O.C:

X (p, f) + [p − C ′ (K) − τx]
∂X

∂p
= 0, (10)

[p − C ′ (K) − τx]
∂X

∂f
− (C (K) + τf ) +

X

f
C ′ (K) = 0. (11)

After some manipulations, the system can be rewriten as:

p − C ′(K) − τx

p
=

1

ǫXp

, (12)

−X

(
∂X

∂f
/
∂X

∂p

)
= C (K) + τf − KC ′ (K) , (13)

where

ǫXp
=

p

X (p, f)

(
−∂X

∂p

)

is the (absolute value of the) price-elasticity of demand.
Both equations deserve a few comments. Equation (12) comes out as the

“standard” profit-maximising markup in presence of taxation. Given the fre-
quency f and the consequent long-term capacity K = X/f, the marginal cost
for the firm of offering services to one additional passenger is C ′ (K) + τx. The
per-passenger earning are thus p − C ′ (K) − τx and the benefits of a price in-
crease have to be balanced with the resulting loss of passengers. Interestingly
enough, this rule is not altered by the possibly complex interaction of frequency
and demand.
In order to interpret equation (13) , it is usefull to consider the implications of
the consummer program as displayed in equation (4) . By differentiating equa-
tion (5) with respect to p and to f, and combining both expressions, one may
indeed establish that:

−

(
∂X

∂f
/
∂X

∂p

)
=

∂

∂f
[∂XS(X, f)] =

∂p

∂f
.

In other word, the ratio measures the marginal impact of frequency on the
equilibrium price. As a result equation (13) establishes that the frequency is
thus set in such a way that the marginal benefits of an increase in the number
of flights exactly equates the resulting net cost increase, namely the total cost
of operating an aircraft C (K) + τf minus the downshift due to the capacity
adjustment effect KC ′ (K) . In order to make the link with the standard “value
of time” concept, one can somewhat specify further the model to write the
surplus S(X, f) as the difference between the gross utility U (X) and the time
costs X νT (f) . In this specific case equation (13) rewrites

νT ′ (f) =
1

X
[C (K) + τf − KC ′ (K)]

5Nero and Black [6] suggest this may even be achieved in the short term thanks to an
”active and competitive rental service”.
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which makes plain the just invoqued argument.
Of interest is the fact that the profit-maximizing goal of the firm does not

a priori forbid the government to reach the first-best allocation exhibited in
the previous section. This can be done by setting the taxes τx and τf at the
respective level:

τx = E′ (K) + G′ (K) −
C ′(K) + E′ (K) + G′ (K)

ǫXp

(14)

τf = (r − 1) [C(K) − KC ′(K)]

+r [E(K) − KE′(K) + G (K) − KG′ (K)] (15)

where

r =
∂

∂f

[
∂S(X, f)

∂X

]
/

∂

∂f

[
S(X, f)

X

]

is the ratio of the marginal value of an increase in frequency for the marginal
consumer over the marginal value of an increase in frequency for the average
consumer.

Again, equations (14) and (15) merits some comments. Equation (14) high-
lights the existence of two origins of divergence between the price set by the
firm and the price displayed in equation (6) that would implement the first-best
allocation. First, the firm bears neither the environmental costs nor the airport
and ATC costs. This explains the first two components of the tax that aim
to induce the firm to internalize both cost sources. Second, since the firm is
profit-maximising, it makes a positive markup while marginal pricing would be
socially optimal. This explains the last term on the right handside of equation
(14) . Notice that the tax τx can be negative or positive. In order to reduce
environmental damages and if the firms is required to pay for the airport and
ATC services, the firm should obviously be taxed. This is the first effect. How-
ever, since a monopoly makes use of its market power to produce less than the
socially desired quantity, implementing the first-best requires the firm to be
subsidized. This is the second effect, a classical result in optimal tax theory.
The magnitude of the tax (or subsidy) will depend on the intensity of both
effects. However, if ǫXp

≥ 1, which has to be the case for the monopoly pricing
formula (12) to make sense, it is clear that taking into account environmental
externalities, as well as airport and ATC services tends to decrease the extend
to which air-transportation firms should be otherwise subsidized.

In order to interpret equation (15), two points have to be kept in mind. First,
as already stated by Spence (1975), there is a “divergence between private and
social benefits”. Indeed firms’decisions are based upon marginal values whereas
socially optimum decisions are based on the average one. This explains the
introduction of the factor r in the formula. Second, as already stated above, the
firm ignores the impact of its decisions on environment and the burden it imposes
on airport and ATC facilities. As a result, although part of the repercussion
of frequency on consumers’welfare is taken into account by the firm (because it
impacts on its profits), it should be given the correct incentives to take these
costs into account.
A reasonable assumption on r is that this factor is smaller than one6. That is,
the marginal consumer can be expected to be the one with the lowest value of

6This is indeed the case if a CES utility function is used (e.g. in [2] and [6]).
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time, or at least with a value below the average one. By focusing on the marginal
consumer, the firm under-estimates the value of frequency for travellers. In other
words, the firm tends to over-estimate the costs of an increase in frequency. As
a result, the tax τf should be smaller than the social cost of a marginal increase
in frequency. Whether it should be positive or negative depends again on the
relative magnitude of the costs. If transportations services were inducing no
costs but the operational costs beared by the firms, the firm should be subsidized
in order to contemplate the observation of the socially optimum frequencies.
However, if environmental costs as well as airport and ATC costs are taken into
account, the socially optimal level of frequency comes out lower and the amount
of subsidies becomes lower up to the point were it becomes positive, hence a
tax.

Second best

They are several reasons for not implementing the first best. First, it may be
politically difficult to justify the subsidization of the airline. Hence, a possible
problem to consider could be the setting of optimal levels of taxes under non-
negativity constraints, either for both taxes, or globally. But the main reason is
that the implementation of the optimal taxes, even in the ”good” case of strong
environmental externalities, may not allow the operator to cover its costs. The
problem of the cost recovery is indeed the good one, as air navigation service
providers (as well as many airports) are precisely constrainded to balance their
budget in european countries. Practically, air traffic control operators set their
tarifs proportionally to a unit rate which is computed in order to balance their
budget.

The second-best problem then consists in the maximization of

W (X, f) = S(X, f) − fCt(K) − fE(K) ,

s.t.

{
i) the airline maximises its profit,
ii) the operator balances its budget.

(16)

Condition i) is precisely described by the first-order optimality conditions of the
airline (10) and (11), while condition ii) writes

τxX + τff ≥ Fc + fCc(K) . (17)

Notice that the budget balance constraint (17) is writen in such a way that
positive profit is allowed for the regulator. Indeed, it would be questionnable to
impose the equality constraint if the first best achieves the full recovery of the
ATC costs. In this case, depollution operations (...) could be financed.

We may now express the problem faced by the air control operator. The
Lagrangian writes as follows

L(X, f, τx, τf , λ1, λ2, β) = W (X, f) + λ1X [p + X ∂Xp − C ′

m(K) − τx]
+ λ2f [X ∂fp − (Cm(K) − KC ′

m(K)) − τf ]
+ β [τxX + τff − Fc − fCc(K)] ,

(18)
where the λi’s are the Lagrangian multipliers related to the airline profit max-
imization conditions, while β is associated with the budget constraint of the
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ANSP. Notice that constraints are expressed in such a way that Lagrangian
multipliers are homogeneous to each other. The optimality equations with re-
spect to the taxes give

(−λ1 + β)X = 0 , (19)

(−λ2 + β)f = 0 (20)

Assuming that operating the line is profitable, and hence that X 6= 0 and f 6= 0,
we get λ1 = λ2 = β. The optimality equations in X and f then writes

ǫ + β(ǫ − 3)

ǫ
p + βf

∂p

∂f
+ β

[
X2

∂2p

∂X2
+ fX

∂2p

∂X∂f

]
= E′(K) + (1 + β)C ′

t(K) ,

(21)

(r + 2β)X
∂p

∂f
+ β

[
X2

∂2p

∂X∂f
+ fX

∂2p

∂f2

]
= (1 + β) [Ct(K) − KC ′

t(K)]

+ [E(K) − KE′(K)] .
(22)

Further computations using the first order conditions yield the expression of the
taxes variations around the first best taxes τ∗

x and τ∗

f (though these ones have
to be evaluated for the second best quantities f and X). We get

r + 2β

β

(
τf − τ∗

f

)
=

1

r
[(r − 2)∂2(Ct(K) + E(K)) − r∂2E(K)]

−
(
X2∂2

Xfp + fX∂2

ffp
)

,

(23)

ǫ + β(ǫ − 3)

β(ǫ − 1)
(τx − τ∗

x ) =
1

ǫ
[3∂1(Ct(K) + E(K)) − ǫ∂1E(K)]

−
1

K

(
∂2(Ct(K) + E(K))

r
+

[
τf − τ∗

f

])

−
(
X2∂2

XXp + fX∂2

fXp
)

,

(24)

where, by commodity, the following notations are adopted

{
∂1C = C ′(K) ,
∂2C = C(K) − KC ′(K) .

(25)

Given the sign of the budget constraint, the Kuhn and Tucker optimality con-
ditions ensure that β is non-negative. If β is null, then we recover the first best
taxes, an obvious result since this condition reflects the fact that the budget
constraint is satisfied at the social optimum. If β is strictly positive, then we
observe that none of the taxes will in general maintain its first-best value. Tak-
ing appart the second derivatives of the price appearing in these equations, we
observe that the ”frequency-related” tax is likely (say for r small enough and
keeping in mind that the tax τ∗

f in (23) has to be computed on the second best
values of (X, f)) to be smaller than the first best one.
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