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Abstract— Finite-difference techniques are very popular and
versatile numerical tools in computational electromagnetics.
In this paper, we propose a preconditioned finite-difference
frequency-domain method (FDFD) to model periodic structures
in 2D and 3D. The preconditioner follows from a modal decou-
pling approximation. Its use involves discrete Fourier transforms
(via FFTs). We have set FDFD against an FDTD package
for a typical test case, with identical spatial grids. We have
observed that computation times for a full frequency sweep are
comparable, while the accuracy is slightly better with FDFD.

I. INTRODUCTION

Finite-difference methods are well-known numerical tools
in computational electromagnetics. Among them, the finite-
difference time-domain (FDTD) method comprises an ex-
plicit time-stepping numerical scheme (Yee’s scheme) that
is very popular and simple to implement [1], [2]. Neverthe-
less, to model infinite periodic structures, difficulties arise in
time domain methods from the implementation of periodic
boundary conditions under oblique incidence (Bloch-wave
boundary conditions). Harms et al., have proposed the sine-
cosine method to deal with this problem [3]. Further, time
domain approaches are not immediately suitable (if at all) for
dispersive objects, for dispersive environments, or for appli-
cations where the interest is in the time-harmonic response of
a system. In such configurations, one would instead prefer
a frequency-domain approach, such as the finite-difference
frequency-domain (FDFD). However, for FDFD it is required
to solve a large complex linear system. Krylov-subspace iter-
ative methods are generally employed as solvers. To achieve
acceptable convergence rates, they have to be accompanied by
a preconditioner. In the context of 2D [4] and 3D [5] metallic
waveguides, we have developed preconditioners based on fast
trigonometric transforms.

In this article, we present the principles of fast-transform

preconditioned FDFD for application to 2D and 3D periodic
structures. Then, a numerical analysis is performed in order
to compare the performance of the preconditioned-FDFD
technique with FDTD.

II. PRECONDITIONED-FDFD FOR 2D DIELECTRIC

PERIODIC STRUCTURES

A. Configuration

Fig. 1. 2D configuration.

In a two dimensional configuration, we consider a structure
containing dielectric scatterers that is periodic with respect to
x (Fig. 1),

εr(x + qX, y) = εr(x + qX, y), ∀q integer. (1)

We assume that the structure is excited by an incident TE
plane wave, i.e., E is oriented along uz , the unit vector in the
z-direction. Alternatively, we may consider excitation by an
electric current source such that

Jz(x + qX, y) = Jz(x, y)e−jqkxiX , ∀q integer, (2)
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where kxi is the incident wavevector along the x-direction.
The problem then corresponds to the inhomogeneous time-
harmonic Helmholtz equation

∂2
xEz + ∂2

yEz + k2
0εrEz = jk0Jz, (3)

where k0 stands for the free-space wavenumber.

B. Discretization

On an uniform grid (mΔx, nΔy), the discretization is
performed using the finite-difference approximation for the
spatial derivatives. This leads to

d2
xEz[m,n] + d2

yEz[m,n]

+k2
0εr[m,n]Ez[m,n] = jk0Jz[m,n],

(4)

where d2
x and d2

y represent the finite-difference approximations
of ∂2

x and ∂2
y , respectively.

C. Boundary conditions

In the x-direction, the domain can naturally be restricted to
one cell of the structure (0 ≤ x ≤ X). On the boundaries at
x = 0 and x = X (corresponding to m = 0 and m = M ), the
following Bloch-wave boundary conditions must be imposed

Ez(X, y) = Ez(0, y)e−jkxiX . (5)

In the y-direction, the physical domain is unbounded. How-
ever, to end up with a linear system of finite size, the extent
of the computational domain has to be limited to the section
where the sources and scatterers are located by placing two
artificial boundaries at y = 0 and y = Y (i.e. n = 0 and
n = N ) on which absorbing boundary conditions are required.
This could be realised by adding PML layers [6], but as in [4]
and [5], a computationally-efficient and yet exact approach can
be employed.
For each n, we first note that the transverse electric field
Ez[m,n] can be represented as a linear combination of discrete
modal voltages V [p, n], where p stands for the modal order.
The transformation UH

v : Ez → V may be expressed as

UH
v = FΛi, (6)

in which F is the discrete Fourier transform of size M , and
Λi introduces phase shifts for non-zero kxi. If no scatterers or
sources are present near the boundaries y = 0 and y = Y ,
exact discrete absorbing boundary conditions are obtained
by imposing that each modal voltage should propagate or
attenuate away from the computational domain. This can be
formulated as

Ez|n=0 = UvΓUH
v Ez|n=1,

Ez|n=N = UvΓUH
v Ez|n=N−1,

(7)

where Γ is a diagonal operator containing the propagation or
attenuation of modes that have travelled a distance Δy.

D. Linear system

From (4), (5) and (7), a linear system Au = b is obtained.
The unknown u and the right-hand-side b are vectors contain-
ing the Ez field and the source term, respectively. Within the
Krylov-subspace iterative solver, one iteration mainly requires
the computation of a few matrix-vector products. Thus, if FFTs
are used for the Uv transforms in (7), the cost of one iteration
will be of order O(MN + M log M), which is very efficient.

E. Fast-transform based preconditioner

The preconditioner A0 is obtained from a physical approx-
imation of the original linear operator A. As in [4] and [5],
it is constructed so that all the modal voltages are decoupled.
This yields an approximation of the actual configuration only
in the inhomogeneous regions where the scatterers are located.
Mathematically, it is defined as the optimal approximation of
A with respect to the Frobenius norm such that the modal
voltages are decoupled. The decoupling replaces the initial
2D problem by N − 1 single-mode uncoupled 1D problems
that can be associated with tri-diagonal systems of size M .
Computation time can be reduced by employing A0 as a
preconditioner only if A0w = d can be solved rapidly for
any vector d. Such a rapid solver exists, and consists of three
steps:

1) Compute the modal source term from d using UH
v ,

2) Solve the single-mode problems (tri-diagonal systems),
3) Compute the solution using Uv .

Thus the complexity of solving A0w = d is of order
MN(log M +log N) which is moderate compared to the cost
of the matrix-vector product Av.

III. EXTENSION TO 3D PERIODIC STRUCTURES

A similar approach can be developed for 3D dielectric struc-
tures that are periodic with respect to the x- and y-directions.
On a regular lattice, the finite-difference discretization of the
time-harmonic normalised Maxwell equations is given by [5]

[
jk0εr −d×
d̃× jk0

] [
e
h

]
= −

[
j
0

]
, (8)

in which d× and d̃× are finite-difference approximations
of the curl operator. Further, (e,h) and j are normalised
fields and electric sources, respectively. Each component u
of the fields must respect the following Bloch-wave boundary
conditions,

u(X, y) = u(0, y)e−jkxiX

u(x, Y ) = u(x,X)e−jkyiY ,
(9)

where (X,Y ) are the size of one cell, and (kxi, kyi) are
the transverse components of the incident wavevector. The
absorbing boundary conditions and the preconditioner are
defined in line with the principles explained above. Note that
the expression of the discrete modal representation now has to
include both discrete modal voltages and currents, as for the
3D metallic waveguide [5].
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IV. NUMERICAL COMPARISONS WITH FDTD

A. Test case

As a test case for comparisons with FDTD, we consider
a 2D electromagnetic band gap (EBG) material. Each cell of
the structure is of size 40 mm × 240 mm and contains 6
dielectric scatterers of relative permittivity εr = 6 (Fig. 2). We
examine the ability of both numerical methods to compute the
transmission coefficient of this material at normal incidence
and for 200 frequency points between 0 and 6 GHz.

Fig. 2. Test case configuration.

B. FDTD simulation

FDTD simulations are performed using the freely available
software package Meep [7]. In this software, PML layers [6]
must be inserted to model the absorbing boundaries at y = 0
and y = Y . The incident plane wave is generated by an electric
current source placed at y = y0 which expression is given by

Jz(x, t) = cos(2πf0t)e−t2/T 2
w . (10)

The parameters f0 and Tw are chosen so as to cover a wide
frequency range. The frequency response is computed from an
FFT of the time-domain field obtained at y = y1. The spatial
grid size is determined so that the grid steps along x and y
are the same. We choose N=6M=192 which corresponds to
having more than 16 points per local wavelength in all the
frequency range.

C. Preconditioned-FDFD simulation

To generate the incident plane wave in the frequency
domain, we place a constant electric current source at y = y0.
The Krylov-subspace iterative method we use is BiCGstab(2)
[8]. The stopping criterion is defined so that the norm of the
residual ri = b − Aui is reduced by a factor of 10−6 with
respect to the norm of b after the last iteration. To provide
a good initial guess to the iterative solver, at each frequency
step, we take into account the results corresponding to the
3 preceding frequencies via the “marching on in anything”
method [9].

D. Results and comparisons

In Fig. 3, we depict the amplitude of the transmission
coefficient of the material. We observe 3 band-gaps centred
at 2.5, 4.5 and 6 GHz. We note a good agreement between

both numerical methods. Nevertheless, if we look closer at
the values found for low and high frequencies, significant
differences appear (Fig. 4). In these regions, FDTD gives non-
physical results (the transmission coefficients exceed 0 dB).
At low frequencies, errors with FDTD may be explained by
the PML layers that are not thick enough to correctly absorb
waves impinging the boundaries. This source of errors does not
exist with the preconditioned-FDFD approach due to the exact
absorbing boundary conditions (5) that are employed. At high
frequencies, errors originate from the size of the grid. They
can be reduced by using a finer grid, which would however
yield longer computation times.
On a PC running at 2.4 GHz, results of Fig. 3 were obtained
in 18.6 s for FDTD and in 25.6 s for the preconditioned-
FDFD method, thus in comparable computation times. In Fig.
5, we show the evolution of computation times with respect
to the grid size. We note that the speed of FDTD and of
the preconditioned-FDFD method remains similar regardless
of the grid size, although the FDTD scheme is explicit
(and hence fast), whereas a linear system must be solved at
each frequency point with the preconditioned-FDFD method.
This demonstrates the efficiency of the preconditioner that
we propose. For narrower frequency bands the balance will
unequivocally tip in favour of FDFD.
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Fig. 3. Transmission coefficient (dB).

V. CONCLUSIONS

We have proposed a preconditioned-FDFD method to com-
pute the fields in the presence of dielectric scatterers arranged
periodically with respect to the transverse directions in 2D
and 3D. The modal representation of the solution has been
used to obtain exact discrete absorbing boundary conditions.
We have exposed the principles of a preconditioner based on
a physical approximation and involving FFTs. Comparisons
on a test case have shown that FDFD can compete with
FDTD when full frequency sweeps are required, indicating that
for narrow-band applications FDFD will outperform FDTD.
Moreover, general material dispersion can easily be handled
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Fig. 4. Transmission coefficient (dB) at low and high frequencies.
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Fig. 5. Computation time with respect to the grid size N (=6M).

in the FDFD formalism. Further, oblique incidence poses no
problems either.
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