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INTRODUCTION 
 
Receiver Autonomous Integrity Monitoring (RAIM) is a 
simple and efficient solution to check the integrity of 
GNSS in civil aviation applications such as Non 
Precision Approaches (NPA). In the next ten years, in a 
multi constellation context implying a large number of 
satellites and new signals, more demanding phases of 
flight such as Approach with Vertical guidance (APV) 
operations could be targeted using RAIM to check GNSS 
integrity. Considering those expectations, it is needed to 
precisely determine what are the vertically guided 
approaches that can be achieved. 
 
Globally, the improvement in the number and quality of 
measurements (dual frequency measurements, better 
clock and ephemeris information, better ranging signals) 
enhances position estimation and autonomous integrity 
monitoring performance. However, the benefit for 
position integrity needs to be quantified, as a larger 
number of available measurements also implies a larger 
number of potential faulty measurements for the receiver. 
Moreover, the targeted phases of flight are characterized 
by smaller horizontal and vertical tolerable position errors 
compared to NPA, and by lower acceptable probabilities 
for the corresponding alert limits to be exceeded. 
Therefore, the threatening range errors that need to be 
detected by the fault detection algorithm have to be 
reconsidered, since they could have smaller amplitude, 
and a probability of occurrence that is not clearly defined 
currently. 
 
The aim of this study is to evaluate the potential of 
GPS/Galileo RAIM for APV operations. This paper 
investigates the extent to which the augmentation of the 
number of satellites and the improvement of pseudorange 
measurements quality could enable the use of RAIM for 
both horizontal and vertical guidance. 
 
The paper is organized as follows. In a first part, every 
assumption that has been made for this study is reviewed. 
Thus target operational requirements are formulated and 
particularly the way these requirements are interpreted to 
obtain the probability of missed detection is detailed. The 
way RAIM performance is evaluated is also recalled, and 
a complete set of models and values are proposed. In 
particular, measurements quality parameters such as the 
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UERE are discussed. Then a second part recalls some 
RAIM techniques such as classical least square residual 
algorithm and solution separation method. The last part of 
the study is dedicated to GPS/Galileo RAIM simulations 
that have been conducted using a proposed pseudorange 
model of smoothed GPS L1/L5 and Galileo E1/E5b 
measurements. The different RAIM algorithms 
previously described are evaluated comparing their 
performance to achieve operations with vertical guidance. 
 
I- SET OF ASSUMPTIONS THAT HAVE BEEN 
ADOPTED 
 

I- 1 Expected performance bounds 
 
For those RAIM simulations, operations with vertical 
guidance are targeted and more particularly APV I 
operations which requirements are described in the 
following table. 
 
APV I 
Alert limits Integrity risk Maximum allowable 

false alert rate 
HAL=40 m 
VAL=50 m 

2 × 10��/150	 ≅ 1.33× 10�
per sample 

1.6 × 10��  
per sample 

 
But other inputs are necessary to monitor GNSS integrity 
with RAIM algorithms such as the targeted probability of 
missed detection that depends on the probability of 
satellite failure. This aspect refers to the threat model and 
particularly needs to be detailed. 
 
I-1-1-  Probability of satellite failure 
 
Two main types of probabilities are available to 
characterize GPS satellite failure probability: 
 

- the probability of occurrence of satellite failure 
larger than 30 m (Major Service Failure) which 
corresponds to 3events per year [1] 

 
- the probability of occurrence of satellite failure 

larger than 3.6 m which is �� = 4.3 × 10�� per approach 
per satellite [2], corresponding for an average of 17 
visible satellites to  ��,�� = 1.75 × 10� /ℎ 
 
First of all, we need to know the minimal amplitude of 
single pseudorange failure that leads to an unacceptable 
positioning error for APV I operations and thus the 
minimal bias amplitude that needs to be detected by 
RAIM algorithms. 
 
A fault γ  is considered as a horizontal positioning failure 

if its impact violates the integrity risk, that is to say if: 
 "1 − ��$�%"&'( − ')(& > +,-$ +���/"&'( − ')(& > +,-$ > �012 

 
A fault γ  is considered as a vertical positioning failure if 

its impact violates the integrity risk such as: 

"1 − ��$�%"3'4 − ')43 > 5,-$ +���/"3'4 − ')43 > 5,-$ > �012 
 

where  �� is the probability of failure of one satellite 
 �%corresponds to the fault free case 
 �/ corresponds to the faulty case 
 
Critical biases calculation is done for a given user 
position at a given moment by: 
 

- Computing the probability to exceed the alert 
limit in the fault free case �%"&'( − ')(& > +,-$ and �%"3'4 − ')43 > 5,-$ 

 
- For each available pseudorange measurement, 

computing the smallest additional bias 67 that lead to a 
probability �89"&'( − ')(& > +,-$ or �89"3'4 − ')43 >5,- such as: 

 "1 − ��$�%"&'( − ')(& > +,-$ +���89"&'( − ')(& > +,-$ = �012 
 "1 − ��$�%"3'4 − ')43 > 5,-$ +���89"3'4 − ')43 > 5,-$ = �012 
 
The computations of the probabilities �% and �89  are 
detailed in appendix and do not depend on any detection 
algorithm. But it can be seen that they depend on the 
failure probability of occurrence.  
 
Considering a double constellation GPS/Galileo and 
APVI requirements, critical biases have been computed 
for a probability of satellite failure occurrence of  2 × 10� /ℎ (corresponding to the category of small 
failures), the smallest obtained values are represented on 
the following figure: 
 

 
Figure 1- Smallest Critical Bias for APV 1 operations  ����,� = 2 × 10� /ℎ 
 
Therefore only considering the single failure case, it can 
be seen that the smallest single pseudorange failures that 
lead to an inacceptable positioning error for a probability 
of occurrence of 2 × 10� /ℎ are between 35 and 70 
meters. These critical biases systematically have an 
amplitude larger than 30 m and belong to the « Major 
Service Failure » category, that is to say a signal in space 
ranging error exceeding 30 meters. 
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This is why only Major Service Failure events are 
considered for this study and this assumption leads to the 
following process. 
 
Let’s us denote : the individual major satellite failure 
probability and N the number of satellite in view, then the 
probability of having k simultaneous failures among N 
satellites is: 
 �;<=>? @<ABCCDAB E<DCF?B,G,H = IJK:KL1 − :MJ�K 
 
According to the GPS signal specification 3 major 
failures are allowed per year and per constellation which 
correspond to 3.42 × 10�N major failure per hour for a 
constellation of 24 satellites such as: 
 �;<=>? @<ABCCDAB E<DCF?B,ON,� = 24 : = 3.42 × 10�N/h 
 : = 1.43 × 10��/ℎ 
 
It is assumed that a Galileo satellite will have the same 
probability of failure than a GPS satellite. 
 
For a dual constellation, if 20 satellites are in view, the 
probability of one satellite failure is: �;<=>? @<ABCCDAB E<DCF?B,O%,� = 2.85 × 10�N/ℎ 
 
For a dual constellation, if 17 satellites are in view, the 
probability of one satellite failure is: �;<=>? @<ABCCDAB E<DCF?B,��,� = 2.43 × 10�N/ℎ 
 
Considering this probability of satellite failure occurrence 
of 2.43 × 10�N/ℎ, critical biases have been computed 
again and the smallest obtained values are represented on 
the following figure: 
 

 
Figure 2- Smallest Critical Bias for APV 1 operations �E,��,� = 2.43 × 10�N/ℎ 
 
Thus it can be verified that the smallest single 
pseudorange failure that lead to an inacceptable 
positioning error for a probability of occurrence of 2.43 × 10�N/ℎ are between 40 and 75 meters and that 
they effectively belong to the « Major Service Failure » 
category. 
 
I-1-2-  Probability of missed detection 
 

Only considering the single failure case, the probability 
of missed detection �QR  shall be lower than the integrity 
risk requirement divided by the probability of failure of 
one satellite among the all satellites in view.  
 
For example if 17 satellites are in view: 
 

�QR = �712�;<=>? @<ABCCDAB E<DCF?B,��,� 

 
and finally: �QR = 0.0099 
 
For this study, the same probability is allocated for 
vertical and horizontal failure, the integrity risk that it is 
taken into account in this formula is 1 × 10��per 
approach for the vertical risk and  1 × 10��per approach 
for the horizontal one. 
 

I- 2 Performance evaluation 
 
Two types of RAIM algorithm have been tested: the 
classical LSR RAIM and the Solution Separation RAIM. 
The way they are implemented is detailed in section II. 
 
As it will be detailed in section II, RAIM tests are built to 
detect failures that are abnormally large above the 
assumed noise level. The smallest bias that the test can 
detect is then projected in the position domain to finally 
obtain the protection level. It has been decided for this 
study to also observe the test ability to detect dangerous 
biases and thus to measure the effective �QR . This is why 
RAIM availability has been observed through two 
methods: 
 

- Horizontal and Vertical Protection Level have 
been computed and compare to the corresponding Alert 
Limit  

- Critical biases of size presented in the lat section 
have been added to pseudo range measurements through 
Monte Carlo simulations and the capacity of RAIM 
algorithm to detect them has been measured 
 
Concerning the Monte Carlo simulations, for every user 
position at every epoch simulation period, critical biases 
have been successively added on each available 
measurement. Only one critical bias was added at the 
same time on the measurements. For each pseudorange, 
the number of simulation iterations has been designed to 
be significant with respect to required probability of 
missed detection such as: T72UV ≈ 10XYZ[\

 
 
In this way, the �QR  is estimated with a number of digits 
equal to the number of digits of th required �QR . 
 
RAIM function that has been tested was fault detection 
function. 
 
Simulations have been made for a user grid with a 
latitude step of 10° and a longitude step of 10°. For each 
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position of the user grid, a test has been made every 30 
minutes.  

 
Each Galileo satellite has an approximate period of 14 
hours and 25 minutes which corresponds to 5 revolutions 
in three days. Three days also correspond to 6 GPS 
satellites periods. Therefore the simulation time of three 
days has been chosen. 
 
This represents a total of 49248 different satellite-user 
geometries to compute protection levels and to test 
critical bias detection capability. 
 

I-3 Internal RAIM parameters 
 
I-3-1- Geometrical considerations, Position solution 

estimation 
 

Satellite Constellations that have been considered are an 
optimized 27 satellites Galileo constellation and an 
optimized 24 satellites GPS constellation. 
 
A 5 degree mask angle has been used for GPS satellites 
and a 10 degree mask angle has been used for the Galileo 
satellites. 
 
These assumptions lead to an average of 17 visible 
satellites on Earth (see figure 3). 

 
Figure 3-Average number of visible satellites 

 
Only 4 unknowns have been taken for the position 
solution computation, that is to say that the GPS/Galileo 
time difference is not considered as an unknown. 

 
I-3-2- Pseudo range measurement error 

 
The pseudo range measurement error variances from 
different sources are gathered in the User Equivalent 
Range Error UERE. The contributions that have to be 
considered are: orbit determination and synchronisation 
error, troposphere residual error, ionosphere residual 
error, multipath residual error and receiver noise residual 
error.  
 

• Receiver noise residual error 
 
Computation of error variance of a code-tracking loop 
 
The error variance of the code-tracking loop will depend 
on the choice of the discriminator. Assuming that 

interference can be assimilated to white noise and for 
Early Minus Late Power discriminator (for example) [4]: 
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, where 

 
 LB L+]M  the one sided bandwidth of the 

equivalent loop filter 
 ^ the data period 
 _ the power spectrum density of the signal 
 I %̀ ⁄ the signal to noise ratio 
 Ib the chip spacing 
 c the two sided bandwidth of the front end filter 
 
Without considering the temporal repetition period of the 
PN sequence, the power spectrum density expression of 
the BPSK signal is: 

_LdM = ê fsin id ĵid ĵ kO
 

 
with ĵ the code period.  
 
This expression is used for GPS L1, GPS L5 and 
GALILEO E5b code tracking loop error variance. For 
Galileo E1, the normalized power spectrum density of the 
BOC(1,1) is equal to: 

_LdM = ê f1 − cos id ĵid ĵ kO
 

 
The error variance of the code tracking loop, error due to 
noise, can be thus computed for different kind of signals. 
 
For those simulations, the following values have been 
used: 
 GPS L1 GPS L5 GalileoE1 GalileoE5b Co 0.25 0.25 0.25 0.25 Bq 1 1 1 1 B 16× 10�Hz 

20× 10�Hz 
20× 10�Hz 

14× 10�Hz C N%u  35 dBHz 29 dBHz  36.5 dBHz 29.7 dBHz 
T 0.02 s 0.02 s 0.1 s 0.1 s 

 
Note that worst case  C N%u  are considered and not typical 

values. 
 
Iono free measurements 
 
In nominal mode, the pseudorange measurements that are 
available to the aircraft receiver are the GPS L1, GPS L5, 
GALILEO E1, GALILEO E5a, GALILEO E5b code and 
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phase measurements. But for future civil aviation GNSS 
receivers complying with EUROCAE requirements, dual 
frequency measurements will be combined into a single 
composite measurement called the iono-free 
measurement, corrected for ionospheric error. 
 
Therefore, from GPS L1 – L5, and from GALILEO E1 – 
E5b, two distinct iono-free measurements are built. 

Denoting xLyMthe measurement at the instant k 
(representing �LyM the code measurement or zLyM the 
phase measurement): 

x���LyM = d�O
d�O − d�O x�LyM + d�Od�O − d�O x�LyM 

and 
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No significant correlation factor can be expected for the 
noise and multipath error affecting the different 
measurements made on the four carrier frequencies. This 
is why the standard deviation of the error affecting the 
iono-free measurement is modelled as: 

{|��|� = }2.261O{|�O + 1.261O{|�O  

{~��~�8 = }2.422O{|�O + 1.422O{|�O  

Smoothing 
 
Once elaborated, these two GPS and GALILEO iono-free 
measurements are then smoothed to reduce the influence 
of noise and multipath [6]: 

{X� O ≈ {XO2 �̂Q��2� 

wherê �Q��2� is the time smoothing constant in seconds 

{XO is the raw code pseudorange measurement error 
variance 

{X�O is the smoothed code pseudorange 
measurement error variance 

Finally, the receiver noise residual error variance {1�7�UO 
is obtained. It corresponds to the receiver noise, thermal 
noise, inter channel bias and processing error. 
 

• Multipath error 
 
The smoothed multipath error for the airborne equipment 
is described by: 
 {Q��27��2� = 0.3 + 0.53 ��: �−� 10���u � 

 

where � is the elevation angle in degree of the considered 
satellite. This was validated and adopted for GPS L1 
C/A. It is also assumed here for GPS L5, Galileo E1 and 
E5b although smaller error can be anticipated [7]. 
 

• Ionospheric residual error 
 
In the case of a dual frequency receiver with ionospheric 
correction the ionospheric residual error is not considered 
as significant: {7�1� = 0 
 

• Tropospheric residual error 
 
The model for the residual error for the tropospheric 
delay estimate is: 
 

{2V��� = 1.001√0.002001 + sin �� × 0.12 x 
 
 
 where �� is the elevation angle 
  
This model was adopted for GPS L1 C/A and is assumed 
for GPS L5 and Galileo E1 and E5b. 
 

• User equivalent range error 
 
The User Equivalent Range Error is the value reflecting 
the error budget and it is based on the computation of the 
following contributions: orbit determination and 
synchronisation error, troposphere residual error, 
ionosphere residual error, multipath residual error and 
receiver noise residual error. 
 {�~�~O = {���O + {�7VO + {Q��27��2�O + {2V���O + {|�/~�87��O  
 {�7VO = {7�1�O + {1�7�UO  
 
It is supposed that {��� = 0.75x and  {|�~�87��O = 0. 
 
The figure 1 represents the obtained Galileo smoothed 
iono free UERE for different elevation angles  

 
Fig 4– GPS L1/L5 and Galileo E1/E5b smoothed iono-
free UERE  
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Those values are gathered in the following table:  
 

UERE (m) Elevation angle (°) 
 5 10 15 20 30 40 50 60 90 
GPS III L1/L5 1.541 1.105 0.968 0.910 0.865 0.849 0.842 0.839 0.836 
Galileo E1/E5b 1.514 1.067 0.925 0.864 0.816 0.799 0.792 0.788 0.785 

 
 

 
II- RAIM TECHNIQUES 
 
Two types of RAIM algorithm have been tested in this 
study: the classical LSR RAIM and the Solution 
Separation RAIM. The aim of this part is to briefly recall 
the way they have been implemented for this study. 
 

II-1 LSR RAIM 
 
The classical LSR RAIM method is based on the 
comparison between a test statistic depending on the 
prediction error vector and a given threshold. 
 
II-1-1 Implemented Detection function  
 
Let’s consider the measurement residual ΔY (also called 
the prediction error vector) which can be expressed 
thanks to a linear relationship the measurement error 
vector E, its covariance matrix Σ and the observation 
matrix +: 
 Δ� = L� − +�+2Σ��H���+2Σ��M� 
 
The LSR RAIM test is then defined by: 

^ = � ���` − 4 

where ��� = ∆�2 . ∆� = �∆��O
  

The detection threshold is obtained by considering the 
test statistic in the fault free case  
 
If the measurement error E is noise only such as:  
�LyM =

� 
  
¡T�LyM⋮T£LyM⋮TJLyM¤¥

¥¥
¦
 with T7~`L0, {7OM 

 

 
Therefore, ��� is chi-squared distributed with N-4 
degrees of freedom, ���~¨J�NO , that is to say: 
 ∃'7  , ��� = '�O + ⋯ + 'J�N O  ««�, '7~`L0,1M 
 
The probability of false alarm is used to determine the 
normalised detection threshold a such as: 
 

� f���{O > ¬k = ��� 

 

��� = ­ d®¯[°± L²M
³

� �� 

where { = max7∈��,J� {7 

 
Thus, a fault is detected if the chi-squared variable is 
abnormally large above the assumed noise level. 
 
Finally, the threshold that it is compared to our criteria is: 
 

^ℎ = � ¬{O
` − 4 

 
II-1-1- Protection levels computation 
 
The protection levels derive from the smallest bias the 
algorithm is able to detect satisfying the false alarm and 
the missed detection requirement. 
 
Let ‘s consider that he measurement error E is noise and a 
bias b on one satellite j such as: 
 

�LyM =
� 
  
¡T�LyM⋮T£LyM⋮TJLyM¤¥

¥¥
¦
+

� 
  
¡0⋮6⋮0¤¥

¥¥
¦
 

 
In this case, SSE is chi-squared distributed with N-4 
degrees of freedom and non-centrality parameter λ  such 
as SSE~¨¸,J�NO  
 ∃'7 , ��� = '�O + ⋯ + 'J�N O  ««�, '7~`L¹7 , 1M 
 

º = » ¹7O
J�N
7¼�

 

The non centrality parameter º  is computed in order to 
satisfy the Pmd requirement such as: 

�QR = ­ d®½,¯[°± L²M
¾�

% �� 

The obtained non centrality parameter º  is the smallest 
that can be detected by the test. It does not depend of any 
pseudorange. 
 
As ��� = �2L� − +�+2Σ��H���+2Σ��M� = �Δ��O, the 
relation between the smallest detectable bias on the 
pseudorange j and the test statistic is simplified as: 
 {Oº = 6"1 − c££$6 = "1 − c££$6O 
 
where  B=+�+2Σ��H���+2Σ�� 
 º is the smallest detectable non-centrality 
parameter previously obtained 
 
The smallest detectable measurement bias b on satellite j 
can be then expressed as: 
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6£ = {� º1 − c££ 

 
The relationship between the position error and the 
measurement error is: 
 'LyM − ')LyM = −, × �LyM 
 
with , = �+2Σ��H���+2Σ�� 
 
Therefore the impact of the bias 6£ in position domain is 
obtained by: 
 

Δ' = 'LyM − ')LyM =
� 
  
¡…… ,J,££,~,££

……⋯ ,À,££ …⋯ ,¾,££ …¤¥
¥¥
¦ ×

� 
  
¡ 0⋮6£⋮0 ¤¥

¥¥
¦
 

Then, 

∆'Á = }∆'ÁO + ∆'ÂO = }AG,==O + AÂ,==O × b= ∆'Å = AÅ,== × 6£ 
 
Denoting :87�� = { × √º, we obtain 
 

∆'Á = }AG,==O + AÂ,==O
Æ1 − B== × pÇD<@ 

 

∆'Å = 3AÅ,==3Æ1 − B== × pÇD<@ 
 
Denoting, 

5�-È��£ = ,4,££Æ1 − c££  , +�-È��£ = },J,££O + ,~,££O
Æ1 − c££  

 
The protection levels are computed referring to the worst 
satellite:

 
 +�-È��Q�² = max£ "+�-È��£$ 

5�-È��Q�² = max£ "5�-È��£$ 

And +�- = +�-È��Q�² × :87�� 5�- = 5�-È��Q�² × :87�� 
 

II-2 Solution Separation RAIM 
 
The solution separation method is based on the observed 
separation between the position estimate generated by the 
full-set filter (using all the satellite measurements) and 
that generated by each one of the subset filters (each 
using all but one of the satellite measurements). 
 
The separation �7 between each pair of the estimates (the 
full filter estimate and each sub- filter estimate) forms a 
test statistic and each test statistic is compared to its 

respective detection threshold É7 which is determined to 
meet the maximum allowable rate requirement 
 
II-2-1 Implemented detection function 
 
Let 'LyM be the true user position at the instant k and ')LyM the LSR user position estimation at the instant k 
 
Then the relationship between the position error and the 
measurement error is: 
 'LyM − ')LyM = −, × �LyM 
 
with , = �+2Σ��H���+2Σ�� 
 
For «Ê�1, `�, let ')7LyM be the LSR user position 
estimation at the instant k do not considering the pseudo 
range obtained from the satellite i. 
 
The solution separation discriminators are 4 × 1 vectors 
linearly depending on the error measurement such as: 
 �7LyM = ')LyM − ')7LyM = L,7 − ,M × �LyM 
 
Their covariance matrix is given by:  
 ��7LyM = L,7 − ,MΣL,7 − ,M2

 
 
For the horizontal part, computations that are not 
described here show that for the criteria �7,( where « ∈ �1, `�a threshold É7 satisfying the probabity of false 
alarm can be defined such as: 
 

É7 = Æº7  Ë�� f���2`k 

 

where  ËL�M = �√OÌ Í �[Î±± �Ï³²   º7  is the largest eingenvalue of the covariance 
matrix ��7,( = ��7L1: 2,1: 2M 
 
For the vertical part of the detection, we obtain for « ∈ �1, `� the threshold 57 such as: 
 

1 − ���2` = 1√2i{Ñ ­ � �2OÒÓ±�Ï49
�Ô

 

Or such as ���2` = 1√2i{Ñ ­ � �2OÒÓ±�Ï³
/9

 

 
where {4O = ��7L3,3M  
 

II-2-2  Protection level computation 
 
For « ∈ �1, `�, let’s assume that there is a bias 67on the 
pseudorange i and that it is not detected by the 
corresponding criteria.  
 
For the horizontal aspect that means that: 
 &')(,7 − ')(,%& ≤ É7 
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Since  ' − ')% = ' − ')7 + ')7 − ')% : 
 &' − ')%& ≤ &' − ')7& + &')7 − ')%& 
 
Therefore,  &' − ')%& ≤ &' − ')7& + É7 
 
Since the faulty measurement has been removed from ')7 
computation, the vector ' − ')7 corresponds to a fault free 
case situation. 
 
So let’s consider the distribution of this vector ∆')7 = ' −')7 which is the position error resulting from the sub 
solution that doesn’t take into account the «2� pseudo 
range 
 
Computations that are not described here show that in 

this case �∆'7� is bounded by Ö7 = Æ−2�TL:M × Æ¹7 
with the probability 1 − : 
 
Therefore, 

 

: ×&' − ')%& ≤ Ö7 + É7 ∃⁄ non detected bias on the iAÚpseudorange   Ý ≤ 1 − : 

 
And a class of horizontal protection levels can be defined 
as: +�- = max7Þ��,J�LÖ7 + É7M 

 
For the vertical aspect, 3')4,7 − ')4,%3 ≤ 57 and 3'4 − ')4,73  
can be easily bounded with the probability 1 − :. 
 
A bound ß7 is obtained such as 
 

: = 1√2i{Ñ ­ � �2OÒÓ±�Ï/9
�/9

 

 
A class of vertical protection levels can be defined as: 
 5�- = max7Þ��,J�Lß7 + 57M 

 
III- SIMULATIONS RESULTS 

 
 

III-1 LSR RAIM 
 

1- Protection level 
 
Vertical and horizontal protection levels have been 
computed for each point of our user grid. 
 
As it can be seen on the following figures the protection 
are much lower than the corresponding alert limit. It 
results that the LSR RAIM is 100% of the time available 
for APVI operation for each point of our user grid. 
 

 
Figure 5- Horizontal Protection Level 

 
Figure 6-Vertical Protection Level 
 

2- Monte-Carlo simulations 
 
Monte Carlo simulations have been performed by adding 
on each available pseudorange the smallest bias that will 
lead to a positioning failure. The algorithm ability to 
detect it has been measured. 
 
For every user position at every epoch of 3-days 
simulation period, biases have been successively added 
on each available smoothed GPS L1/L5 or Galileo 
E1/E5b.pseudorange measurement. Only one critical bias 
was added at the same time on the measurements. For 
each pseudorange, the number of simulation iteration has 
been designed to be significant with respect to required 

probability of missed detection such as: T72UV ≈ 10XYZ[\
 

 
The way this critical bias is computed for every 
pseudorange is detailed in appendix. The average value of 
this critical bias is represented on the following figure: 
 

 
Figure 7- Average critical bias 

 

Presented at ENC'GNSS 2008



 

 

These simulations have demonstrated that the 
implemented classical LSR RAIM was always able to 
detect the smallest dangerous biases showing an 
availability of 100% for APVI operation for each point of 
our user grid. 
 

III-2 Solution Separation RAIM 
 
Vertical and horizontal protection levels have been 
computed for each point of our user grid.  
 

 
Figure 8- Horizontal Protection Level 
 

 
Figure 9-Vertical Protection Level 
 
As it can be seen the protection levels are much lower 
than the corresponding alert limit. It results that the 
Solution Separation RAIM is 100% of the time available 
for APVI operation for each point of our user grid. 
 
CONCLUSION 
 
A complete review of the assumptions that are made in 
RAIM simulations has been first proposed in this paper. 
 
It has been demonstrated, for the single failure case using 
GPS + Galileo constellations, that the amplitude of 
pseudo range additional biases that lead to a positioning 
failure are systematically larger than 30 meters for APV I 
operations. Therefore even if the targeted phases of flight 
are characterized by smaller horizontal and vertical 
tolerable position errors compared to NPA, this effect is 
mitigated by the great number of available measurements 
that reduce the impact a of single satellite bias on the 
global positioning error. Thus only Major Service 
Failures are taken into account for the single failure case 
in this study. 
 

It also has been seen that the improvement in the quality 
of measurements (dual frequency measurements, better 
clock and ephemeris information, better ranging signals) 
has significantly decreased the user equivalent range error 
variance. Considering that UERE is the major parameter 
of position estimation and autonomous integrity 
monitoring performance, great RAIM availability could 
be expected from an UERE standard deviation of 
approximately one meter. 
 
Then classical LSR and Solution Separation RAIM 
availabilities have been computed for APVI approaches 
using both GPS L1/L5 and Galileo E1/E5b pseudorange 
measurements. An availability of 100% has been 
obtained for the both algorithms. For the LSR RAIM and 
the Solution Separation RAIM, all computed xPL were 
below the corresponding xAL for every point of the user 
grid and for each epoch. Moreover, the LSR RAIM has 
been able to detect every single critical bias that has been 
added on each available pseudorange. 
 
Nevertheless the threat model that has been used in this 
study still needs to be consolidated since it does not 
consider the multiple failure case. Even for the single 
failure case, the threat model should be completed in 
order to take into account potential nominal biases due to 
signal deformation and antenna bias. These nominal 
biases are not correctly bounded with zero-mean 
Gaussian distributions which are currently used for 
modeling the error measurement in the fault free case. 
This parameter should be included in future protection 
level calculation. 
 
Concerning the detection of multiple failures, Solution 
Separation RAIM algorithm seems to be a promising 
method but complete studies need to be conducted using 
a consolidated threat model. 
 
It is also important to keep in mind that only integrity 
aspects have been addressed through this paper. 
Continuity issue also needs to be studied before 
considering RAIM as a future mean for performing 
integrity monitoring in APV operations. 
 
Thus, further studies are needed to definitively conclude 
on the potential use of RAIM for approaches with vertical 
guidance even if these results seem promising. 
 
 
APPENDIX: CRITICAL BIAS 
 
This part is dedicated to the computation for each pseudo 
range i of the bias ib  that will lead to a positioning 

failure with a probability corresponding to the integrity 
risk. 
 
Let us consider the case where there is a bias on the 
pseudo range i,  
 
The error in the position domain is: 
 

( ) ( )BHHH tt
WGSpos +ΣΣ= −−− ξε 111

84,  
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where ( )Σ× ,0~ 14Nξ  and 























=

0

:

:

0

ibB  

If the matrix H is expressed in the local geographic frame 
such as: 
 



















=

1sinsincoscoscos

::::

::::

1sinsincoscoscos

nnnnn

iiiii

EAEAE

EAEAE

H  

 
Then the positioning error is directly expressed in the 
local geographic frame 

( ) ( )BHHH tt
localpos +ΣΣ= −−− ξε 111

,  

 
The covariance matrix C of the error is such as: 
 

[ ]
( )( ) ( )( )ttttt

t
localposlocalpos

HHHHHH

EC

111111

,, .

−−−−−− ΣΣΣΣΣ=

= εε
 

( ) 11 −−Σ= HHC t  

 
The horizontal positioning error is a two dimensions 
vector which follows a Gaussian bi-dimensional law of 

mean Hlocalib ,, the projection of ib  in the horizontal 

plane and of covariance matrixHC , such as 

( )2:1,2:1CCH = , ( ) 111
,

−−− ΣΣ= tt
locali HHHb  and 

( )2:1,,, localiHlocali bb =  

 
Its density function is: 
 

( )

( ) ( )






 −−−

=

−
HlocaliH

T
Hlocali

H

localpos

bXCbX
C

Xf

,,
1

,,

,

2

1
exp

det2

1

π

ε

 
where X is expressed in the Nord East local frame such as 









=

E

N

x

x
X  

Since HC  is a covariance matrix, HC  is a positive 

definite matrix, it is diagonalizable and its eigenvalues 
are all positive. In particular we can find an orthonormal 

basis ( )2,1 eeB=  that is composed of eigenvectors 

ii ee ,2,1 ,  corresponding to the eigenvalues 1λ  and 2λ   

and such as: 

T
H PPC ⊥⊥ ⋅∆⋅=  

where, 

− ( )21,λλdiag=∆  is the diagonal matrix 

whose elements are the eigenvalues of HC  

− ⊥P  is the projection matrix whose columns are 

the eigenvectors 21 ,ee . In particular ⊥P  is 

orthogonal: 
TPP ⊥

−
⊥ =1

. 

 

Then we have ( ) 21det λλ=HC , 
T

H PPC ⊥
−

⊥
− ⋅∆⋅= 11

 

 

( ) ( )
( ) ( )Hlocali

TT
Hlocali

HlocaliH
T

Hlocali

bXPPbX

bXCbX

,,
1

,,

,,
1

,,

−⋅∆⋅−=

−−

⊥
−

⊥

−

 

( )[ ] ( )[ ]Hlocali
TT

Hlocali
T bXPbXP ,,

1
,, −⋅∆⋅−= ⊥

−
⊥  

 

And we have XPX T
⊥⊥ =  and Hlocali

TbP ,,⊥=Ω  ⊥X
where is the vector X expressed in the new local frame 

and Ω  is the vector Hlocalib ,,  in the new local frame. 

 

( ) ( ) ( )


























 Ω−
+

Ω−
−= ⊥⊥

2

2
2

1

2
1

21

0 2

1
exp

2

1

λλλλπ
yx

Xf

 
 

The probability that a couple ( )yx,  be such that 
222 HALyx ≤+  is the probability that 

222 HALyx ≤+ ⊥⊥ and considering the distribution of 

the horizontal positioning error, this probability is: 
 

( )
( ) ( )

dxdy
yx

DXP

D∫∫ 

























 Ω−
+

Ω−
−

=∈

⊥⊥

2

2
2

1

2
1

21
2

1
exp

2

1

λλλλπ
  

denoting D the domain such as 222 HALyx ≤+ ⊥⊥ . 

 
Let’s make a change of coordinates such as we could 

have ( ) ( ) 2

2

2
2

1

2
1 r

yx
=

Ω−
+

Ω− ⊥⊥

λλ
. We re-write 

( )⊥⊥ yx ,  this way: 







+Ω=
+Ω=

⊥

⊥

θλ
θλ

sin

cos

22

11

ry

rx
 

The equation 222 HALyx =+ ⊥⊥  that defines the 

boundaries of the integration domain becomes:  
 

( ) ( )2

22

2

11
22 sincos θλθλ rryx +Ω++Ω=+ ⊥⊥  
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2
22

2
2

2

2
211

2
1

22
1

sin2sin

cos2cos

HALrr

rr

=Ω++

Ω+Ω++Ω=

θλθλ

θλθλ
 

 

( ) ( )
( ) 0

sin2cos2sincos
22

2
2
1

2211
2

2
2

1
2

=−Ω+Ω+

Ω+Ω++

HAL

rr θλθλθλθλ

 
Solving this equation, two roots ( )θ1r  and ( )θ2r  for 

[ ]πθ ,0∈  are obtained such as: 

( )
( ) [ ]πθ

θλθ
θλθ

,0,
sin

cos

212

111 ∈






+Ω=
+Ω=

⊥

⊥

ry

rx
 and 

( )
( ) [ ]πθ

θλθ
θλθ

,0,
sin

cos

222

121 ∈






+Ω=
+Ω=

⊥

⊥

ry

rx
 define the 

boundaries of the integration domain. 
 
The jacobian of this transformation is computed to make 

our change of coordinates 21λλrJ = , and: 

 

( ) ( ) θ
π

drdrr
DXP

D

H 2exp
2

2

'

−=∈ ∫∫  

where the new domain D’ is defined by 
( )( ) ( )( )

[ ]



∈
≤−−

πθ
θθ

,0

021 rrrr
. 

 
Considering properties of second order polynomials: 

( ) ( )
( )

( )
θπ

πθ

θ

θ

θ

drdrrDXP
rr

rr

H ∫ ∫
=

=

=

=

−=∈
0

2
2

1

2exp2
1  

Assuming for example that 21 0 rr ≤≤ ,  

( )

( ) ( ) θ

π
πθ

θ

ddrrrdzrr

DXP

rr

r

r

rr

H

∫ ∫∫
=

=

=

=

=

= 










−+−−

×=∈

0 0

2
0

2
1

2

2exp2exp

2
1

 

( ) θπ
πθ

θ

drrDXP H ∫
=

=















−+






−−=∈
0

2
1

2
2

2exp2exp2
11

and this last integral is computed numerically. 
 
Thus the probability that the point( )yx,  is out of the 

circle of radius HAL is: 
 

( ) θπ
πθ

θ

drrDXP H ∫
=

=















−+






−=∉
0

2
1

2
2

2exp2exp2
1

  
In order to pass from a bias b on a given pseudo range to 
an error vector in the local horizontal plane, projections 
are made using linear relations. Denoting 

( ) TT HHHA
1−=  we define for [ ]Ni ,1∈ : 

  ( ) iNorthpospseudo AiH ,1__ =  

and   ( ) iEastpospseudo AiH ,2__ =   

An equivalent analysis of the vertical risk (which is easier 
in one dimension) must also be done. Then by comparing 
successively the obtained probabilities with the integrity 
risk for different bias amplitudes, the minimum bias 
which leads to a positioning failure with a probability 
equal to the integrity risk is finally obtained.  
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