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ABSTRACT 
 
The advent of new satellite signals with Galileo L1/E5 
and modernized GPS L5 is expected to significantly 
improve navigation performance both in terms of 
accuracy and integrity monitoring. On the one hand, dual 
frequency measurements will allow to remove most of the 
ionospheric error degrading the pseudoranges. On the 
other hand, the opportunity of using two constellations of 
satellites for positioning will significantly improve the 
fault detection and exclusion (FDE) function availability 
by increasing the redundancy among the measurement 
sources. This enhancement comes at the expense an 
increased computational complexity when applying the 
exisiting integrity monitoring schemes. This paper focuses 
on Aircraft-based Autonomous Integrity Monitoring 
(AAIM) techniques where the GPS and Galileo are 
integrated with an Inertial Reference System (IRS). In this 
framework, we present an alternative approach for fault 
detection and exclusion based on the Generalized 
Likelihood Ratio algorithm which is well-known in the 
Control community. A few adaptations to the classical 

formulation are proposed to make the algorithm compliant 
with civil aviation requirements. 

INTRODUCTION 
 
While only GPS L1 signals are available, GPS/IRS 
hybridization is a good candidate to fulfill stringent civil 
aviation requirements. When the integrity of GPS 
measurements is ensured, they can be used to compensate 
for slow IRS drifts thereby yielding a tighter position 
solution. This can be performed in a tightly coupled 
manner by means of a Kalman filter. In return, calibrated 
IRS may ensure coasting while maintaining short-term 
accuracy. Aircraft-based Autonomous Integrity 
Monitoring (AAIM) approaches have been proposed to 
detect errors at the level of the hybridization filter. They 
have been shown to improve availability with respect to 
RAIM by taking advantage of the synergy between GPS 
and IRS measurements to detect slowly growing 
disturbances. 
The advent of Galileo offers new opportunities: it is 
expected that in 2016, the GPS and Galileo satellite 
constellations broadcasting both L1/L5 and L1/E5b 
signals, respectively, will be operational. In this context, 
the relevance of GNSS/IRS hybridization AAIM 
algorithms can be questioned as the GPS/Galileo 
combination is expected to enhance the ability of radio-
navigation receivers to detect and exclude faulty satellites 
by increasing redundancy among measurement sources. 
Besides, dual-frequency measurements will allow 
correcting for the ionospheric delays that degrade the GPS 
or Galileo pseudorange measurements. Hence, once the 
main part of the measurement noise is removed, the 
GNSS estimates of the aircraft dynamics are expected to 
be far more accurate, enhancing the feasibility of stringent 
operations like APV-I with RAIM. On the other side, the 
GNSS/IRS hybridization AAIM algorithms will become 
more complex and more costly in terms of computational 
and material resources, to cope with the dual GPS/Galileo 
constellation. However, hybridization with IRS is still of 
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interest for safety critical operations APV-I and APV-II as 
IRS aiding may improve robustness against interferences 
which are among the most penalizing sources of errors. 
Besides, GNSS/IRS could remain as an alternative to 
satellite navigation when it encounters some degraded 
scenarios (loss of one frequency for instance). It is 
consequently worth studying the impact of a dual 
constellation on hybridization algorithms.  
In GPS/IRS-based AAIM algorithms, the fault detection 
and exclusion (FDE) functions are classically performed 
by means of a bank of Kalman filters, each one taking 
into account a subset of satellites. All but one sub-filter 
use at least a faulty measurement, which makes anomaly 
identification possible. In this context, the potential 
improvement of performance due to the combination of 
GPS and Galileo constellations should be carefully 
balanced with the increased complexity of the 
hybridization algorithms. Moreover, the effects of 
multiple range failures degrading simultaneous 
measurements may be considered to be significant for the 
above mentioned critical operations as they require tight 
alert limits. A straightforward solution consists in adding 
a layer of sub-filters, possibly leading to unrealistic 
architectures. For this reason, it is worth studying 
alternative algorithms which would be less consuming in 
terms of computational resources such as the Generalized 
Likelihood Ratio (GLR), which is widely applied to 
perform fault diagnosis among the signal processing 
community. 
The GLR has been developed as an extension of the 
Kalman filter to detect abrupt changes affecting dynamic 
systems. The monitoring is performed at the level of the 
Kalman innovations. The GLR takes advantage of the fact 
that the impact of a measurement error on the Kalman 
filter innovations can be expressed analytically. Thus, it 
suffices to maintain only the main Kalman filter while 
computing in parallel the signatures of the potential 
failures on the state estimates and the measurement 
predictions. It should be noted that the GLR not only 
detects failures but also estimates their magnitude and 
their time of occurrence. The risk that an anomaly may 
contaminate slowly the Kalman filter outputs without 
being spotted is consequently reduced. This paper 
investigates applying the GLR in a civil aviation context. 
Some modifications to the basic formulation are proposed 
including an extension to cover the case of slowly 
growing errors as well as the derivation of protection level 
formula. 
The paper is organized in 4 parts. The first section is 
dedicated to AAIM techniques. It presents the principles 
of GNSS/IRS hybridization, and gives a hint on the 
concepts underlying integrity monitoring techniques. 
Existing FDE approaches are thus introduced in a few 
words. The 2nd section describes the GLR and discusses 
its properties. Then, some modifications to the standard 
implementation are proposed in the 3rd section to obtain a 
civil aviation compliant algorithm. Finally, a performance 

analysis is conducted by means of extensive simulations. 
The performance in terms of integrity monitoring and 
availability is assessed and compared to those of a 
weighted-LSR RAIM and to the Multiple Solution 
Separation (MSS) algorithm proposed by Brenner [1]-[2]. 
Several configurations have been studied, including 
mono-frequency or dual frequency measurements, and 
mono-constellation or combined constellation. 
 

AAIM APPROACHES 
 
The performance of standalone GPS in terms of accuracy 
and more particularly in terms of integrity monitoring, 
availability and continuity do not suit ICAO 
recommendations to be certified as a primary means of 
navigation. Onboard commercial aircrafts, the GPS is thus 
used in combination with other sensors such as classically 
IRS or radio-altimeters. The use of IRS is motivated by 
their synergy with GPS. Despite a very good short-term 
accuracy, they suffer from long-term estimation error 
drifts. On the contrary, the GPS error is bounded over 
time and only depends on the receiver environment and 
relative geometry with respect to the satellites. The price 
to pay is a sensitivity to external perturbations such as 
multipath effects and interferences. Various coupling 
architectures have been considered but we focus herein on 
a tight hybridization.  
Tight coupling consists in taking advantage of GPS 
measurements to compensate for IRS drifts and calibrate 
IRS sensors. In return, the calibrated IRS provides 
accurate motion estimates during GPS outages. The main 
interest of this architecture is that slowly varying IRS 
estimation errors and sensor biases are estimated rather 
than directly the motion parameters such as the velocity or 
the position. The robustness towards abrupt changes of 
dynamics of the aircraft is thereby increased. A Kalman 
filter is usually implemented to solve the estimation 
problem.  
 
GPS/IRS hybridization model 
 
When a tight GPS/IRS coupling is applied, the state 
vector is composed of the INS estimation errors and the 
various sensor biases, both those affecting INS and GPS 
measurements. This state vector, at time t , is denoted 
hereafter tx  and is defined as 

[ ]tt
g
t

a
ttttt bbbbvpx &,,,,,, ρδδ= , 

where: 
- tpδ  and tvδ  are the IRS positioning and earth 

relative velocity errors, respectively. The frame of 
coordinates in which they are expressed depends on 
the application and thus is voluntarily left unspecified 
herein. Usually, the navigation frame whose axes 
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point toward the local vertical, North and East is used 
by sake of convenience. 

- tρ  is the INS attitude estimation error vector, where 
the aircraft attitude is classically defined by 3 so-
called Euler angles (roll, pitch, yaw). 

- a
tb and g

tb represent the accelerometer and gyrometer 
biases, respectively. 

- tb  and tb&  are the GPS receiver clock bias and drift 
 
Many inertial error models are available in the literature 
depending on the chosen frame of reference and the 
considered sensor error models. They are all obtained by 
linearizing the IRS equations, which relate the inertial 
sensor measurements to the true motion parameters, 
around the IRS estimates. The GPS/IRS state equations 
have therefore the proper linear form for a Kalman 
filtering: 

tttt vxFx +=+1 , 

where tv  is a white Gaussian noise whose covariance 

matrix tQ  depends on the class of the IRS sensors and on 
the GPS receiver clock model. Detailed expressions for 
the state matrices tF  and tQ  can be found in many 
textbooks, including for instance [9]. 
 
The measurement equation non linearly relates the GPS 
measurements to the error states as follows: 

tttt wxhz += )( , 

with tw  a white Gaussian noise whose covariance matrix 

tR  depends on the GPS measurement error budget. The 
GPS measurements are the code pseudo-ranges. 
Geometrically, they represent the distance between the 
observed satellite and the receiver, corrupted by the 
receiver clock bias. The ith component of the measurement 
vector tz  consequently satisfies: 

( ) tt
i
t

ins
ttt

tt
i
ttt

wbpppiz

wbppiz

++−+=

++−=

δ)(

)(
 

where i
tp , tp  and ins

tp  denote the ith satellite position, 
the actual mobile position and its IRS estimate 
respectively, all resolved in the same frame of 
coordinates.  
This equation is non linear, hence must be linearized to 
allow for a Kalman solution to the navigation problem. 
Usually, it is replaced by the following 1st order Taylor 
expansion at each recursion of the Kalman filter: 

tttttttttttt wxHwxHxhzy +=++−= −− 11 ˆ)ˆ( , 

with 1ˆ −ttx  the latest estimate of the state vector and tH  

the matrix of the partial derivates of th  with respect to 
the state parameters. 
The state space model associated to the hybrid GPS/IRS 
navigation system consequently takes the form: 

.
1

tttt

tttt

wxHy
vxFx

+=
+=+  (1) 

It should be noted that this model also holds for 
GPS/Galileo/IRS hybridization, except that the 
measurement vector is augmented with Galileo pseudo-
ranges and the subsequent components of the matrix tR  
depend on the Galileo error budget. In this study it is 
assumed that the GGTO has been broadcasted in the 
Galileo message. Before presenting the Kalman solution 
to the estimation problem defined by (1), let us focus on 
the necessary adjustments when using dual-frequency or 
mono-frequency measurements. As recommended in the 
appendix R to DO229D [3], GNSS measurement errors 
have been modeled as time-correlated processes that can 
mislead the FDE algorithm and result in false detections. 
The solution consists then in augmenting the state vector 
to estimate these correlated errors jointly with the 
navigation parameters and sensor biases. When only 
mono-frequency measurements are available, the 
ionospheric error that is predominant is modeled as a 2nd 
order Markov process [4]. As for the dual-frequency 
measurements, they allow to remove the ionospheric 
delay. In this case the remainder of the measurement error 
can be merely represented by a 1rst order Markov process 
and the variance of the measurement noise is decreased 
accordingly in the matrix tR . 
In this framework, the Kalman filter recursively computes 
the best state vector estimate at time t , denoted ttx̂ , in 

the sense that it minimizes the mean square estimation 
error. Let us recall the Kalman equations to introduce the 
notations used throughout this paper: 
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In these equations, 1+tε  is called the Kalman innovation 
and is expressed as the difference between the actual 
measurement vector and the predicted one. According to 
the Kalman filter properties, the sequence of innovations 
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is a white Gaussian noise. We hereafter denote its 
covariance matrix 1+tS :  

1111111 )( +++++++ +== t
T
tttt

T
ttt RHPHES εε . 

Fault detection and exclusion objectives and 
techniques 
 
The Kalman filter yields a good solution to the estimation 
problem provided the state space model properly 
describes the system behavior. In particular, unexpected 
errors degrading the measurements will gradually drag off 
the estimates. 
Usually, algorithms are calibrated to protect the user 
against a major satellite failure. It is defined as a ranging 
error exceeding 30m whose probability is fh/10 4−  and 
which is assumed to affect only one of the visible GPS 
satellite at a time. In fact, on-board integrity algorithms 
are able to protect the user against any single failure that 
would have a probability lower than fh/10 4−  but larger 
than the required integrity risk. The occurrence of 
simultaneous major failures is very low, and despite the 
occurrence of any type of ranging failures lower than 30m 
is not standardized, the single failure assumption was 
sufficient for the current targeted phases of flight, up to 
NPA, as their alert limit is large enough (larger than 
556.5m) [10]. This major failure results in non centered 
measurement errors, typically modeled as a bias or a 
ramp. Assuming such a measurement failure occurs at 
time k , the state space model (1) becomes: 

),(
1

ktwxHy
vxFx

tttt

tttt

−Γ++=
+=+

ν
 (2) 

where the function )( kt −Γ  depends on the type of error 
as specified in Table 1 and ν  is the vector of the error 
magnitudes, which is multi-dimensional to cover the case 
of multiple simultaneous failures. 
 
Step error 

⎩
⎨
⎧ ≥

=−Γ
otherwise. 0

, if 1
)(

kt
kt  

Ramp error 

⎩
⎨
⎧ ≥−

=−Γ
otherwise. 0

, if 
)(

ktkt
kt  

Table 1: failure specifications. 
 
From now on, the outputs of the Kalman filter assuming a 
measurement failure at time k  will be denoted ][ˆ kx tt , 

][ktε  and ][ˆ 1 kx tt+ , respectively. 

Integrity monitoring techniques aim at detecting the 
presence of faulty measurements and excluding them 
(FDE function) to ensure the continuity of the navigation 
service in accordance with ICAO false alarm, missed alert 

and failed exclusion requirements. For that purpose, the 
navigation algorithms are extended to include statistical 
tests yielding for instance the well-known AIME [5] and 
the MSS approaches in the context of GPS/IRS coupling. 
The AIME monitors the whiteness of the Kalman 
innovations to detect potential failures whereas the second 
one proceeds by comparing the full-measurement solution 
to solutions based on subsets of the collected 
measurements. Whatever the algorithm, the exclusion step 
requires a comparison of the current solution with a fault-
free solution. For that purpose, assuming a single faulty 
measurement at a time, a bank of parallel Kalman sub-
filters using all but one of the available measurements 
must be maintained jointly with the main Kalman filter. In 
this way, one of the sub-filters is sure to exclude the 
faulty measurement and thus compute the fault-free 
solution. If the scenario of two simultaneous failures 
becomes likely, an additional layer of sub-filters 
excluding 2 of the collected measurements is required to 
perform FDE. Integrity is thus ensured at the price of a 
sometimes prohibitive computational cost, in particular 
when the number of satellite measurements is high. The 
advent of modernized GPS and Galileo has consequently 
motivated the development of less resource-consuming 
FDE algorithms. 
This paper studies the applicability of the Generalized 
Likelihood Ratio (GLR) to civil aviation navigation. First, 
only the case of abrupt step failures is investigated. Then, 
extensions to the GLR are discussed to meet civil aviation 
constraints. 
 

THE GENERALIZED LIKELIHOOD RATIO 
TECHNIQUE 
 
The GLR has long been applied in the field of Automatic 
and Control to detect possible component failures in a 
system. First introduced by Willsky [6], this algorithm has 
become increasingly popular for being readily applicable 
to any dynamical system provided its state is estimated by 
Kalman filtering. The detection of abrupt changes 
affecting the components of the state vector, or 
equivalently the components of the observation vector, is 
performed by sequentially applying a likelihood ratio 
(LR) hypothesis testing.  
The GLR is an appealing alternative to existing FDE 
algorithms for naturally coping with multiple 
simultaneous failures, but also for being robust to 
disturbances of small magnitude. Indeed, the GLR 
algorithm not only explores any possible change direction 
but also any possible change time up to the current time. 
In this way, the detection of small systematic 
measurement errors that would slowly contaminate the 
Kalman estimates is made possible. Furthermore, the key 
idea of the GLR is to make explicit the impact of a state 
or measurement mean jump on the Kalman filter 
estimates. In this way, computational power can be saved 
since there is no need to run as many Kalman filters as 
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possible jump hypotheses: it suffices to compute the 
signature of the failures on the filter outputs. The main 
flaw of this approach is that no fault-free solution is 
maintained. Therefore, whenever an anomaly is detected, 
a compensation step is necessary to remove the induced 
errors on the Kalman filter estimates. In this part, we 
briefly recall the principles of the GLR algorithm when 
applied to the model defined by (2) with the step error. 
 
At time t , the issue at hand is to decide between the 
following competing hypotheses: 

- 0H : no measurement failure has occurred, 

- ( )ν,1 kH : a mean jump of amplitude ν  has 
occurred at time tk ≤ . 

 
To begin with, we assume the jump vector ν  is known. 
In this context, likelihood ratios (LR) have been proved to 
be the most efficient statistic tests according to the 
Neyman-Pearson lemma as stated by theorem 3.1. in [7]. 
They proceed by comparing the following test statistic to 
a threshold to make the proper decision: 

( )
)(

),(
),(

0:1

1:1

Hyp
kHyp

kl
t

t
t

ν
ν = . 

This LR can be expressed as a function of the Kalman 
filter innovations only, as follows: 
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∏

∏
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0

1

ε

ε

ε

νε
ν . (3) 

For being easier to handle, the log likelihood ratio 
),(log2),( νν klkL tt =  is usually used instead, where 

the factor 2 is introduced for notational convenience. If 
hkLt ≥),( ν , h  standing for the test threshold, then the 

hypothesis ( )ν,1 kH  is validated. Guidelines on the 
choice of h  are provided below. 
 
This decision rule cannot be applied straightforwardly 
since both the change time k  and the mean jump vector 
ν  are unknown. Assuming the vector ν  is available, the 
best change time can be chosen as the one yielding the 
highest value of the log likelihood ratio. As for the 
dependence of the decision variable on the jump vector, 
the GLR overcomes this difficulty by replacing ν  by its 
maximum likelihood estimate. Indeed, The algorithm 
relies on the observation that the Kalman filter 
innovations under hypothesis ( )ν,1 kH  linearly depend 
on the mean jump vector ν . Thus, they can be expressed 
as follows: 

l
T
ll kk ενϕε += ][][ , for tlk ≤≤ , (4) 

where ][kT
lϕ  is the regression matrix or the failure 

signature matrix for the innovations, which can be 
computed recursively as: 

][][ 11 kFHIk lll
T
l μϕ ++ −= , 

where ][klμ  is the failure signature for the Kalman state 
estimates satisfying: 

][][][ 11 kKkFk T
lllll ϕμμ += −− . 

 
It follows that the Kalman filter innovations can be 
considered as observations of the unknown jump vector 
ν , corrupted by the white noise process lε . Thus, a 
weighted least-square (WLS) estimate of this vector can 
be obtained as  

][][][ˆ 1 kfkRk tt
−=ν , 

with: 

- ][][][ 1 kSkkR T
l

t

kl
llt ϕϕ∑

=

−= , 

- ∑
=

−=
t

kl
lllt kSkkf ][][][ 1εϕ . 

Using this expression in (3) and (4) then yields the 
following simple expression for the test statistic: 

][][][])[ˆ,( 1 kfkRkfkkL tt
T

tt
−=ν . 

The decision rule stated above can finally be applied. 
 
To sump up, the whole GLR algorithm proceeds as 
follows at time t : 

1) For each change time candidate k , computation 
of the corresponding WLS estimate of the 
measurement mean jump vector ][ˆ kν . 

2) Use of this value to obtain an approximate log-
LR test statistic ])[ˆ,( kkLt ν .  

3) The best candidate change time is selected as: 
])[ˆ,(maxargˆ kkLk t

k
ν= . 

4) The corresponding statistic ])ˆ[ˆ,ˆ( kkLt ν  is used 
to make the decision. With no loss of generality, 

we use ])ˆ[ˆ,ˆ( kkLs tt ν=  as test variable in 
this paper for convenience. This formulation is 
indeed equivalent and makes the derivation of 
protection levels easier as shown in the last 
section. 

5) Finally, once detected a system anomaly, the 
GLR takes advantage of the regression matrices 
to compensate for the errors introduced on the 
Kalman outputs. The reader can refer to 
[Willsky] for further details. 
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Before discussing the possibilities to use such an 
algorithm in a civil aviation context, let us make a few 
comments on the implementation. Firstly, it should be 
noticed that the search for the best occurrence time is 
usually limited to a sliding window of size L  to prevent 
the computational cost to increase with time. L  is chosen 
to make the balance between the computational 
complexity and the detection performance. Secondly, the 
inversion of the matrix ][kRt  can be avoided provided a 
weighted recursive least square (RLS) scheme is applied 
to estimate ][ˆ kν . Thus, by comparison with existing 
integrity monitoring techniques, the GLR requires L  
parallel RLS filters instead of a bank of Kalman filters, 
hence is less costly. 
Finally, the test threshold h  can be adjusted to ensure a 
given false alarm rate. It suffices to notice that under the 
null hypothesis, the square of the test variable ts  is 2χ -
distributed with as many degrees of freedom as 
components of the jump vector ν . The convenient 
threshold can consequently be found in standard statistical 
tables. 
 

ADAPTATION TO CIVIL AVIATION 
CONSTRAINTS 
 
Even if the GLR is widely acknowledged as a powerful 
surveying algorithm, it cannot be applied in its current 
form to monitor an aircraft navigation service integrity. In 
this section, we propose a few adaptations to the GLR 
formulation so that the algorithm becomes compliant with 
the civil aviation requirements. In particular, the 
following issues are addressed: 

- the algorithm should be able to deal with ramp 
errors as well as with step errors.  

- The error sources should be identified and 
excluded so that navigation goes on safely with 
the set of error-free measurements. 

- The performance of the integrity monitoring 
scheme should be assessed by means of 
protection level computations, for instance. 

Our contribution is therefore threefold. Firstly, we 
propose to use fixed direction test variables to jointly 
detect a failure and identify its direction. Secondly, we 
extend the standard GLR formulation to handle ramp 
errors. Finally, protection levels formula are derived that 
can take into account slowly growing estimation errors 
due to undetected measurement biases. 
 
Error identification using fixed direction test variables 
 
Integrity monitoring algorithms aim not only at detecting 
measurement failures but also at identifying and 
excluding the faulty measurements to ensure the 
continuity of the navigation service.  

A solution to identify the faulty components of the 
measurement vector consists in using fixed direction test 
variables for which the failure is enforced to lie in a given 
direction, as already proposed in [8]. Under this 
constraint, the scope of the possible measurement failures 
is limited to mean jumps that can be factored as: 

TTνν = , 
where T  is a matrix which projects the errors on a given 
set of measurements and Tν  is the vector of the mean 
jump amplitudes along the failure directions.  
Assuming one failure at a time, projection vectors of the 
form: 

[ ]TiT 0,1,,0 LL=  for yni ,,1 L= , 

are considered, where yn  is the dimension of the 
measurement vector. They are null vectors except for the 
ith component which is equal to 1. In this case, the GLR 
only searches for mean jump vectors that can be written: 

iiTνν = , 

with iν  a scalar corresponding to the failure magnitude.  
Then, the GLR setting remains the same except that in 
addition to testing all possible change times, the algorithm 
searches also the most likely failure directions. For that 
purpose, the algorithm computes an estimate of the mean 
jump amplitude ][ˆ kiν  and thereby a test statistic for 
each time of failure occurrence and direction candidate 
couple ),( ik . It is expressed as: 

][][][])[ˆ,( 1 kfkRkfkkl i
t

i
t

Ti
t

ii
t

−=ν  (5) 
with 

i
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∑
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T
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i
t kSkTkf ][][][ 1εϕ . 

A double maximization gives the best couple: 
])[ˆ,(maxarg),ˆ(

),(
kklîk ii

t
ik

ν= . 

The associated test variable ])ˆ[ˆ,ˆ( kkls îî
tt ν=  is then 

compared to the test threshold to validate the failure 
hypothesis. In this way, the detection and identification 
processes are carried out at the same time. If the test flags 
an anomaly then navigation goes on with all but the ith 
satellite measurement. 
 
This structured testing can be readily extended to handle 
multiple failures. In the case of two simultaneous range 
failures, mean jump vectors of the form: 

ijijT νν = , 
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are considered, where ijT  is a null matrix of dimension 

2×yn  whose elements )1,(iTij  and )2,( jTij  are equal 

to 1, and ijν  is a vector of size 2. 
It should be noticed that this approach does not increase 
too much the computational complexity since the 
regression matrices ][klϕ  can be computed 
independently of the considered failure directions. 
Besides, the GLR parallel RLS filters estimate a scalar or 
a vector of size 2 instead of the whole mean jump vector 
ν . 
 
Detection/Exclusion of ramp failures 
 
Little changes are required so that the GLR algorithm can 
cope with ramp errors. Because of the model linearity 
with respect to both the state vector and the vector ν , we 
can postulate that the Kalman filter outputs assuming a 
ramp error beginning at time k on the ith measurement 
still take the form: 

,ˆ][][ˆ
,][][

ttiit
i

tt

tii
T
t

i
t

xTkkx

Tkk

+=

+=

νμ

ενϕε
 

except that ν  now denotes the slope of the ramp failure. 
However, the regression matrix formula should be 
modified to take into account the error linear growth. 
They become: 

][)(][ 11 kFHIktk ttt
T
t −−−−= μϕ  

][][][ 11 kKkFk T
ttttt ϕμμ += −− . 

The GLR formulation can thus be adapted so that either 
step or ramp failures can be detected. However, the 
integrity monitoring algorithm should apply without prior 
assumption on the type of failure. A simple rule can be 
used to make the GLR decision flexible. We propose to 
modify the GLR so that the regression matrices for both 
ramp and step errors are computed in parallel as well as 
the resulting log-likelihood ratios. The algorithm then 
selects the most likely failure type jointly with the time of 
occurrence and the anomaly direction as the ones yielding 
the highest value of the test statistics. The remainder of 
the algorithm remains is unchanged. 
  
Protection levels 
 
Once FD is processed, one must ensure of the algorithm 
performance with regards to the ICAO integrity 
requirement. FD performance is usually assessed by 
means of protection levels that are compared to the 
required alert limits. They are upper bounds on the 
positioning error, either in the horizontal plane or along 
the vertical axis, that cannot be exceeded without a failure 
being detected by the navigation system with the 

probability MDP−1 , where MDP  is the missed detection 
rate.  
 
Thus, protection levels represent the impact in the 
position domain of the minimum detectable bias. 
Knowing that the position error jointly depends on the 
measurement uncertainty and the satellite constellation 
geometry that varies through time and location, protection 
levels are usually expressed as: 

biassxSLOPExPL ×= max , (6) 
where  

- x  stands for V  or H  for the vertical axis or the 
horizontal plane, respectively, 

- biass  is the projection in the test variable space of the 

minimum detectable bias in accordance with MDP , 

- and maxxSLOPE  is a factor depending on the 
satellite constellation geometry.  

 
In this section, we propose protection level formula to 
measure the integrity monitoring performance of the 
GLR-based FDE algorithm. Previous material on the 
subject can be found in [8]. The main contribution of this 
paper consists in taking into account the GLR detection 
delay in the protection level computation. Indeed, with the 
varying satellite geometry, undetected past failures may 
impact the position estimates more strongly than current 
failures. This is the reason why the GLR searches for any 
failure time in a sliding window and why delayed impact 
of range biases should be considered in the protection 
level formula. Hereafter, the assumption of a single 
failure at a time is made and the structured test variable 
formulation of the GLR is considered.  
 
Assuming all measurements are noise-free and a bias ν  
appears at time k  on the ith measurement, the induced 
positioning error at time kt ≥  is linearly related to ν  
according to the formula: 

iit
i

ttt
i
t Tkkxxkdx νμ ][][ˆ][ =−= . 

By processing separately the horizontal and vertical 
components of the position, we obtain: 

ii
H
t

i
t TkkdR νμ ][][ =  for the horizontal error (7) 

ii
V
t

i
t Tkkdh νμ ][][ =  for the vertical error (8) 

where [ ]kV
tμ  and [ ]kH

tμ  are the sub-matrices of [ ]ktμ  
associated respectively to the vertical and to the 
horizontal position elements. 
 
Besides, the impact of the measurement bias on the test 
variable is also linear. Indeed under the noise free 
assumption, the innovation in the presence of the mean 
jump becomes: 
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By using this expression in (5), it follows that the 
resulting deviation of the test variable is: 
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By combining equation (9) with equation (7) or (8) to 
remove the bias term, a linear relationship between the 
positioning error and the induced test variable deviation 
can be established. Thus, 
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On the basis of this result, conservatives values of the 
protection level can be computed by replacing 

maxHSLOPE  and maxVSLOPE  in (6) by: 
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In this expression, we recall that L  is the size of the 
analyzing window. 
It should be noted that this derivation differs from [8] 
since the xSLOPE  values jointly depend on the failure 
direction and the time of occurrence. The computations of 
the maxxSLOPE  factors consequently involve a double 

maximization over k  and i . As for biass , it is computed 
classically to ensure a given missed detection probability. 
When a failure has occurred, the square of the test 
variable ts  satisfies a non-centered 2χ -distribution. The 

value of the corresponding non-centrality parameter λ  
can be adjusted so that the hypothesis test meets the 
required missed detection probability. Then, biass  is 
obtained as: 

λ=biass . 
By applying (6), small values of the protection levels are 
obtained so that they can be exceeded due to noise only. 
Proper xPLs  should therefore take into account the rare 
normal performance case. They can be computed as: 
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with xxPL σ×= 33.50 , xσ  being the standard 
deviation of the positioning error estimate either along the 
vertical axis or in the horizontal plane 
 
SIMULATION RESULTS 
 
In order to assess the performance of the GLR as an 
integrity monitoring algorithm, we have conducted 
several simulations corresponding to different GPS-
Galileo constellation settings: 

- GPS L1 or L1/L5, 
- Galileo L1/E5, 
- GPS+Galileo L1/E5-L5. 
 

The scope of this paper is limited to AAIM (Aircraft 
Autonomous Integrity Monitoring) approaches so that the 
satellite system is coupled with an IRS in the considered 
simulation scenarios. A tight integration has been applied 
for making the most of GPS/IRS synergy. The obtained 
results are compared with those achieved by classical 
FDE algorithms such as: 

- the Multiple Solution Separation (MSS) [1], 
- the weighted Least-Square Residual RAIM. In this 

case, the FDE is performed previous to the 
GPS/Galileo-IRS hybridization filter which takes as 
inputs only the GPS/Galileo measurements that have 
been monitored fault-free. 

The AIME has not been tested due to the lack of details 
on its exact implementation in the literature.  
 
The performance of the different approaches has been 
studied in terms of availability and detection/exclusion 
capability by computing protection levels, mean 
detection/exclusion delays and mean error sizes at 
detection/exclusion.  
It should be noticed that when coupling GPS or Galileo 
with IRS, the FDE level of performance does not depend 
only on the location of the GNSS receiver on earth. For 
this reason, we cannot provide availability results on a 
world-wide grid map. We propose instead to consider a 
typical flight trajectory and compute pointwise protection 
levels.  
 
Simulation setting 
 
The simulations have been carried out with Matlab. The 
considered trajectory is a Toulouse/Paris flight path of 
duration 6000s which has been simulated from recorded 
attitude and position data. A GNSS software computes the 
GPS and/or Galileo pseudo-ranges all along this 
trajectory. The GPS and Galileo simulated constellations 
are represented on Fig.1. This software can provide 
mono-frequency as well as dual-frequency measurements. 
According to appendix R to DO229D, all the noise 
sources have been generated as correlated processes as 
explained previously. 
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As for the IRS measurements, the gyrometer and 
accelerometer errors have been modeled as random walks 
and biases. The following sensor specifications have been 
considered: 

- Gyrometer random walk standard deviation: h/1° . 
- Accelerometer random walk standard 

deviation: gμ 25 . 
The vertical drift of the IRS is slowed down thanks to a 
baro-altimeter aiding. The implemented baro-inertial 
architecture is a third order loop and we have assumed a 
200 ft standard deviation for the barometric error. 
 

 
Fig 1 : simulated GPS and Galileo constellations. 
 
Performance requirements 
 
In this study, the performance analysis of the integrity 
monitoring algorithms is conducted only for the most 
stringent phases of flight, i.e. APVI and APV II. Thus, the 
value of the false detection/exclusion rates required to 
compute the FDE function decision thresholds as well as 
the value of the missed detection probability used in the 
protection level computation have been set as a function 
of the ICAO requirements reported in Table 2. 
For APV phases of flight, the Integrity Risk must be 
divided into an horizontal and a vertical contribution. 
SBAS allocation has been used which assigns 98% for the 
vertical and 2% for the horizontal. 

 
  APV 

Single constellation 
APV 
Dual constellation

Missed detection 
probability 

0.048 0.0226 

False detection 
rate 

1.6.10-5/test 1.6.10-5/test 

Rare normal 
performance rate

<2x10-7/app  <2x10-7/app  

Failed exclusion 
probability 

0.048 0.0226 

HAL 40 m 40 m 
VAL 50 m (APV I) 

20 m (APV II) 
50 m (APV I) 
20 m (APV II) 

Table 2: Integrity monitoring parameter assumptions. 
Detection/exclusion performance 
 
To assess the detection/exclusion capability of the 
considered algorithms, a failure has been introduced on 
one of the GNSS measurements at time ft =738s. The 
type and amplitude of the failure is determined by ICAO 
recommendations in appendix R to DO229. Each 
algorithm has been run N =20 times, each run 
corresponding to a different realization of the 
measurement noise so as to compute mean 
detection/exclusion performance indicators in the form of: 

- the mean detection/exclusion delay, 

∑
=

−=
N

i
f

i
ed tt

N 1
/

1τ , 

where i
edt /  is either the detection or exclusion time for 

the ith run. 
- the mean error size at detection/exclusion, 
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where x  and x̂  are vectors containing the actual and 
estimated position coordinates of the mobile, respectively. 
The obtained values are given in Table 4 at the end of the 
paper. 
 
The GLR yields the smallest detection delays whatever 
the constellation and the type of error. As a result, the 
algorithm has the smallest error size at detection for the 
ramp error. As for the step error, the detection is 
instantaneous for the GLR and the RAIM but the latter 
achieves smaller error sizes at detection. This somewhat 
surprising result can be explained by the simulation 
setting. When using the RAIM, the position is computed 
by the hybridization filter after the FDE by using only the 
measurements monitored fault-free. It follows that when 
the failure is detected and excluded at once, it has no 
impact on the positioning error. 
The comparison between the MSS and the RAIM should 
be discussed furthest. In the case of a small amplitude 
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error, the MSS outperforms the RAIM for GPS L1 
constellation. On the contrary, when dual frequency 
measurements are considered, it takes on average longer 
for the MSS to detect the failure. Indeed, in this case, the 
measurement noise is small enough to make RAIM 
detection easy whereas the MSS is hindered by its 
implementation: its detection step is based on one 
measurement less than the RAIM. Besides, the correlated 
GNSS measurement error sources have been included in 
the state vector to preclude false detections. The price to 
pay for this increased robustness is that the estimation 
problem is more difficult to solve. 
The same remarks hold for the exclusion performance 
whose results are presented on Table 5 at the end of the 
paper. It should be noted that for the proposed GLR 
algorithm the detection and exclusion are performed at the 
same time, hence the good exclusion performance of this 
approach. 
 
Availability 
 
The availability performance is analyzed by computing 
the protection levels of the Galileo-GPIRS GLR, the 
Galileo-GPIRS MSS and the GNSS RAIM all along the 
flight path and then comparing them to the alert limit 
specifications. The provided availability results should 
thus be understood as percentage of time of the whole 
flight duration when the HPL, respectively the VPL, 
compares favorably with the HAL, respectively the VAL 
provided in Table 2. 
Fig 2 shows the values of the protection levels all along 
the flight trajectory for the GLR and the MSS algorithm. 
The RAIM HPL and VPL are not represented since they 
are on average greater than the MSS ones. Fig2 shows 
that the GLR significantly decreases the values of the 
protection levels, especially in the case of mono-
frequency GPS. The corresponding availability results are 
reported in table 6 at the end of the paper. 
It follows that the GLR exhibits the best results in terms 
of availability. Only in the case of standalone GPS L1 the 
algorithm performance is not compliant with civil aviation 
requirements. As for the MSS and the RAIM, the same 
explanations hold as for the detection/exclusion 
capability. 

 

 

 
Fig 2. GLR Protection levels.  

 

 
Fig 3. MSS Protection levels. 
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Two failures detection/exclusion 
 
Finally, we have carried out additional simulations to 
emphasize the GLR ability to detect 2 simultaneous 
failures. For that purpose, 2 ramp failures of slope 2.5m/s 
have been introduced at time t=738s on 2 of the GPS 
pseudoranges so as to study the behavior of the algorithm. 
Here the one failure test and the two failures tests are run 
in parallel. The algorithm identifies the proper assumption 
and detects and excludes the failure source(s), as selecting 
the direction(s) of the largest test variable. 
As for the single failures scenarios, the results obtained 
for 20 runs of the algorithm have been averaged to obtain 
the values reported in Table 5. It should be noticed that no 
misidentification (between the one failure and two failures 
assumptions) or missed detection has been observed all 
along the runs.  
 

Constellation Estimated 
failure 
amplitude 

Mean 
detection 
delay 

Mean 
error 
size at 
detection

SAT1 2.79 m/s GPS 
L1 SAT2 2.62 m/s 

10.57s 3.62m 

SAT1 2.72 m/s GPS 
L1/L5 SAT2 2.55 m/s 

5.17s 1.5m 

Table 3: GLR two failures detection. 
 
CONCLUSION 
 
This paper proposes to use the GLR algorithm to perform 
AAIM FDE. This approach has the advantage of being 
less computationally intensive than existing integrity 
monitoring schemes. Furthermore, the GLR can naturally 
cope with simultaneous multiple failures and is also well 
suited to detect small errors that would contaminate little 
by little the estimation filter outputs. However its 
application to civil aviation is not straightforward so that a 
few improvements are necessary. Therefore, we have 
extended the classical GLR formulation from step to ramp 
errors and we have also put forward a solution to identify 
and exclude the faulty measurements. Finally, a protection 
level formula has been developed that takes into account 
the error growth before detection. 
The good performance of the proposed GLR AAIM 
algorithm based on GPS-Galileo/IRS tightly coupling has 
been emphasized through numerous simulation results. In 
particular, for the simulations run, the GLR is shown to 
improve FDE availability and to decrease on average the 
detection and exclusion delays in comparison to a 
Solution Separation AAIM and a weighted-LSR RAIM 
solutions that have been implemented: 

- The GLR test affords better availability whatever 
the configuration of signals. 

- It achieves on average smaller detection and 
exclusion delays than the GNSS RAIM and GNSS-
IRS MSS. 

- The GLR structured test allows for the detection 
and the exclusion of one as well as two 
simultaneous range failures without increasing the 
number of Kalman filters to run in parallel. 

 

REFERENCES 
 
[1] Integrated GPS/inertial detection availability- M. 
Brenner - Journal of The Institute of Navigation, Vol. 43, 
No. 2, Summer 1996. 
[2] Navigation System With Solution Separation 
Apparatus For Detecting Accuracy Failures - M. Brenner 
- June 2, 1998,United States Patent #5,760,737. 
[3] Minimum Operational Performance Standards for 
Global Positioning System / Wide Area Augmentation 
System Airborne Equipment 
DO 229-D update FRAC - RTCA paper No 093-
06/SC159-939, 2006 
[4] FDE Using Multiple Integrated GPS/Inertial Kalman 
Filters in the Presence of Temporally and Spatially 
Correlated Ionospheric Errors – K.Vanderwerf – ION 
GPS 2001, Salt Lake City, UT. 
[5] GPS/IRS AIME: certification for sole means and 
solution to RF interference Journal of The Institute of 
Navigation - J. Diesel, G. Dunn – Journal of The Institute 
of Navigation, Sept. 17-20 1996. 
[6] A Generalized Likelihood Ratio approach to the 
detection of mean jumps in linear systems – A.S. Willsky 
- IEEE Transactions on Automatic Control, pp 108-112, 
1976. 
[7] Testing statistical hypothesis - E.L. Lehmann - 
Statistical/Probability series - Wadsworth & Brooks/Cole 
– 1991. 
[8] On integrity monitoring of integrated navigation 
systems - J. Palmqvist - Thesis No. 600, Linköping 
Studies in Science and Technology, 1997 
[9] The Global Positioning System and Inertial 
Navigation - J.A. Farrell, M. Barth - Mac Graw Hill, 
1998. 
[10] Investigation of Extending receiver Autonomous 
Integrity Monitoring (RAIM) to Combined Use of Galileo 
and Modernized GPS – Y.C. Lee – ION GNSS 2004, 
Long Beach, CA 
 
 
 
 
 

 

2921



Algorithm MSS GLR RAIM 
Constellation 1 2 1 2 1 2 

Mean detection delay 91.48 43.17 23.7 20.27 97.42 29.95 
Horizontal error at detection 29.46 14.98 6.38 5.05 33.54 10.13 

Ramp 
error 

0.75m/s 
Vertical error at detection 86.1 39.78 21.62 17.25 91.11 29.18 

Mean detection delay 2.76 1 1 1 1 1 
Horizontal error at detection 27.58 21.03 2.75 1.2 2.23 1.18 

Step 
error 

300 m 
Vertical error at detection 42.73 31.20 11.51 5.71 5.51 4.39 

Table 4 - Detection performance. Constellation 1: GPS L1, constellation 2: GPS L1/L5. 
 

Algorithm MSS GLR RAIM 
Constellation 1 2 1 2 1 83.55 

Mean detection delay 93.26 104.08 23.7 20.27 28.08 29.95 
Horizontal error at detection 30.29 34.34 6.38 5.05 77.20 10.13 

Ramp 
error 

0.75m/s 
Vertical error at detection 87 93.30 21.62 17.25 1 29.18 

Mean detection delay 2.81 2.06 1 1 1.18 1 
Horizontal error at detection 28.07 22.67 2.75 1.2 4.39 1.18 

Step 
error 

300 m 
Vertical error at detection 43.22 39.66 11.51 5.71 83.55 4.39 

Table 5 - Exclusion performance. Constellation 1: GPS L1, constellation 2: GPS L1/L5. 
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Algorithm GLR MSS RAIM 
Constellation 1 2 3 4 1 2 3 4 1 2 3 4 

Horizontal 84.2% 100% 100% 100% 0% 100% 100% 100% 0% 100% 100% 100% APV I 
Vertical 48% 100% 100% 100% 0% 100% 100% 100% 27% 99% 100% 100% 

Horizontal 84.2% 100% 100% 100% 0% 100% 100% 100% 0% 100% 100% 100% APV II 
Vertical 0% 100% 100% 100% 0% 76.2% 100% 38.7% 0% 74% 100% 100% 

 
Table 6: Percentage of time for which the algorithms are compliant with APV requirements.Constellations :  

(1) GPS L1, (2)GPS L1-L5, (3) Galileo+GPS L1-E5/L5, (4) Galileo E5. 
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