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ABSTRACT

It is well known that GPS C/A codes present cross
correlation peak potentially causing false acquisitions.
These cross-correlations peaks can in addition cause
tracking errors and C/No degradation [7/, /2], [3], [4]
and /5], not in traditional GPS tracking situations, but for
applications where signals are received with low Doppler.

There are several applications that can have low relative
Doppler, and thus more frequent Doppler collision
causing code cross-correlation interference : the first
application occurs with the use of ranging signal
broadcasted from geostationary satellites (SBAS systems)
when two or more geostationary satellites are in common
views of a fixed or low dynamic receiver (control station,
reference station for differential positioning or any ground
user with none or little motion), the second application
occurs when ground pseudolites are used, with a receiver
either on board a geostationary satellite or in a plane and
on the ground as well.

The findings described in this paper are part of the work
performed by M3 Systems under a project initiated by the



CNES (French Space Agency) which aims at studying the
EGNOS RIMS performances.
The work presented here aimed at:
» Characterizing precisely these C/A codes
interference tracking errors on WAAS satellites,
» Identifying the exact factors driving the
occurrence of these errors

INTRODUCTION

The goal of this study is to show that, when specific
conditions are met, large tracking errors can occur with
C/A code due to C/A code cross-correlation interference.

The interference mechanism is physically the same than
for multipath error. Actually, multipath can be viewed as
C/A code interference on itself. For multipath error, the
cross correlation peak of the reflected signal adds its
contribution to the correlation function and causes an
offset of the zero-crossing of the discrimination function.
This offset is the tracking error. For C/A code
interference, the cross-correlation peak of the interfering
code causes the same effect. Normalized cross-correlation
peak values are either +63/1023 or -65/1023. A simple
analysis shows that the error can reach up to 18 meter for
a half chip spacing correlator. If the cross-correlation
function of the desired and interfering codes has a
secondary peak that falls within the receiver chip spacing
of the relative code offset, there is potential for a tracking
error.

A necessary condition for C/A code interference to take
place is to have the relative Doppler between the 2
interfering signal lower than the receiver code loop
bandwidth that is typically lower than 1 Hz. The reason is
that the signed amplitude of the interfering peak is
function of the relative phase, and if the relative phase
moves too much during the code loop integration period,
the interfering peak (and the tracking error) will be
fillered. @~ We can name this condition as “Doppler
Collision” or as having “quasi-stationary code” because
from the receiver point of view, the received codes will
not move one relatively to another, the cross-correlation
peak of the interfering signal will not move relatively to
the main auto-correlation peak of the desired signal, and
the interference will result in a lasting bias.

For common GPS application, having a Doppler collision
smaller than 1 Hz is quite a rare phenomena: indeed the
Doppler due to the satellite motion is high: from —4.5kHz
to 4.5kHz for standard use, so there is a low probability to
have Doppler collision lower than 1 Hz leading to a
tracking errors, and even if it happens, it will only last a
few seconds. Therefore, for common GPS applications,
C/A code interference rarely leads to a noticeable tracking
error.
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However, with the development of the Satellite Based
Augmentation Systems (SBAS) using geostationary
satellite, like EGNOS, WAAS, GAGAN, or MSAS, the
dynamics are much lower, in the range of a few 10’s of
Hz. Doppler collision will happen twice a day and last
several minutes and even more. The lower the relative
Doppler will be, the longer the interference will be
significant. Interference due to C/A code cross-correlation
will happen. These C/A code interferences can cause false
acquisition, C/No degradation and tracking error. This
paper will focus on the tracking error due to the C/A code
cross-correlation encountered in real situations using
WAAS data collected by EGNOS’s Range and Integrity
Monitoring Stations (RIMS). It will also show the impact
of several factor, including the navigation message on the
tracking error This work is subsequent to previous papers
where theoretical cross-correlation tracking error have
been already studied /1/, /2], [3], [4], [5] and simulated
in laboratory /3/.

The first section of this paper presents the applications
concerned by this phenomenon. The second section
introduces theoretical aspect of this interference. The next
section shows the real-life identification of the C/A code
interference tracking errors, based on WAAS data
collected by EGNOS RIMS. Finally, the last section
introduces the possible interferences mitigation
techniques.

1- APPLICATIONS

A- Geostationary Satellites Motion

Geostationary satellites motion is supposed to be fixed
relative to the earth, therefore, signals from SBAS
geostationary satellites would always be in Doppler
collision with one another when received by a fixed
receiver.

In reality, geostationary satellites move slowly within a
station-keeping window, mostly along the N-S and the E-
W axis, with a 24-hour period. This generates relative
Doppler with an harmonic pattern and an amplitude of
several 10’s of Hz, so Doppler collision inside the code
loop (~1Hz) occurs only twice a day during a few minutes
(see figures 4 and 5).

B- SBAS Satellites Applications

The first application concerns the ranging signal
broadcasted from geostationary satellites, when two or
more satellites are in common view of a fixed receiver or
with low dynamic (control station, reference station for
differential positioning or any ground user not moving).



To resolve integrity problems and to improve GPS
performances, the Satellite Based Augmentation System
(SBAS) has been developed with different inter-operable
regional complements like EGNOS, WAAS, GAGAN,
and MSAS, for instance.

Geostationary
% satellites

~
>~ —
~ —
~
~ -
-
Fixed or weak dynamic receiver

Fig. 1 : SBAS application

A tracking error due to C/A code cross-correlation can
occur when at least two geostationary satellites are visible
from a fixed receiver and increase strongly with more
geostationary satellites. Indeed it is thus possible that all
the signals will be interfering at the same time, or
sequentially, one after another.

C- Pseudolites

The use of pseudolites can also induce low dynamic
signals.
Two applications can involve pseudolites:
¢ pseudolites and receiver on  board
geostationary satellite
¢ pseudolites and fixed or low dynamic receiver

‘? Host satellite
1\

/ ‘\ \

/1N

Pseudolite 3
Pseudolite 1 !
Pseudolite 2

Fig. 2 : Pseudolite application

2- TRACKING ERRORS - THEORY

In presence of interfering signal, the receiver delay lock
loop does not track only the desired signal delay but the
delay of the sum of the desired signal (index k) and all
interfering signals (index 1 to N).
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The received signal can thus be written as follows:

Cr(t):idi.di(l‘_rz‘).pi(l‘_Ti).COS( wi+gi(t))

Where:
p, (t) : PRN code sequence of the i" satellite

d,(t) : Data from the i" satellite

Cu : Pulsation of the reference signal

a;(t), T,(t)and @,(t) : Power, Propagation delay and
Phase of the i" signal wrt. the desired one

With an early minus late power code discrimination
function and in presence of low Doppler, the error
function induced by C/A code interference can be written
as follows [/]:

V;(A fk) =2 gak ai.[Rk,k@ fk‘%)Rk,i@ fk_A Tk,i_z/lg)" .

m@ ﬁ%)m@ fi—\ Tk;+%j V[ di(t=T0).d(t=T) cos(A g 0)).dt+- -
B

iGIZ[szJ@ fk_A Tk,i—z/lg)‘R% J@ fk_A Tki %l-‘- ..

=]
i#k

2 i ia: a /{Rk,i@ fk_A Thi _%)Rk,j@ fk_A Tk,‘/'_%lz)" .

=l j=H
i#k Jj#k

m(A fi—\ n,%)zac,j(a A Z'k,ﬁ%i V[ di(t=T)).d(t=T;) cos(Ap.A1)).d
B

Where:

Rk’i: Cross-correlation between the desired signal “k”
and the i" signal

B, : Bandwidth of the Delay Lock Loop

T.: Code C/A period
n : Length of the code C/A

From this mathematical expression we observe that the
tracking error induced by C/A code interference will
depend on different parameters:

_Z'k

i

* therelative code delay: AT, ;, =7
» the power factor : a;a,

* therelative carrier phase: AP, , =@, — @,
» the relative Doppler

»  the cross-correlation function: Rk’i

 and the message data : d,

3- TRACKING ERRORS - OBSERVATIONS

All the analyzed WAAS data are real data, RINEX format
and other receiver raw measurements (C/No, receiver
flags) being issued from EGNOS RIMS collected by the



EGNOS PACF (Performance Assessment and Check-out
Facility).

A-Detection of the C/A Code Interference

These results are based on the analyze of WAAS data
collected by the RIMS station type B of Moncton
(Canada) between 2008-03-09 and 2008-03-13 for which
the interference error was clearly visible.

The following figure is a map showing the location of the
Moncton RIMS B station and the two interfering
satellites:

» WAAS satellite PRN 135 (GALAXY 15-

PanAmSat)
» and WAAS satellite PRN 138 (ANIK FIR-
Telesat)
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Fig. 3 :MONCTON RIMS Localization

The following figure presents the Doppler evolution and
the relative Doppler between geostationary satellites PRN
135 and 138, seen from Moncton:
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Fig. 4 : Relative Dopplers and Doppler Collisions between
geostatinary satellites PRN 135 and 138 (Moncton station)

On this figure, we observe two periods of approximately 3
hours (in red in the figure) where the relative Doppler is
less than 1 Hz (approx. the code bandwidth) between
those 2 WAAS satellites. This implies that, during 6 hours
per day (more than 25% of the time), C/A code
interference can occur.

B- Characterization of the C/A Code Interference

The characterization of the C/A code interference is made
using three complementary methods:

Computing the 3™ degree derivative of the C1 pseudo
distance (code C/A on L1). This allows to have a first
estimation of the noise which affects the Cl
measurement. The tracking bias is characterized by
an increase of the noise.
Analyzing the residuals errors on Cl measurement
obtained by polynomial interpolation of C1 by a 15"
order polynomial and a sliding window of 2 hours.
Analyzing the enabling causes for fine analysis:

0 Relative Doppler,

0 Gold sequences

function,
0 SBAS navigation messages correlation.

cross  correlation

The 3™ Derived of C1 between the 2008-03-09 and the
2008-03-13 shows an increased noise on the measurement
of the WAAS PRNs 135 and 138, which only happens
during Doppler collisions between these satellites. These
noises reach a maximum value at approx. 10h and 23h, as
illustrated in the following figure:
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(2008-03-09)

Residual values on C1 for PRN 135 and 138 are presented

on the next figures:
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Fig. 6 : Residuals Error on C1 — PRN135 - Moncton
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These figures show that we have residual errors up to 14
meters on C1 measurements on WAAS PRNs 135 & 138,
during the first Doppler collision between these PRNs.

The following figure shows the code relative pseudo-
range and the Cross Correlation function of the PRNs
sequences during time. We note that between 8h30 and
10h30 the relative chip offset is between 727 and 729
chips, and figure 9 shows that this corresponds to a
secondary peak of the X-correlation function.
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The following figure is a zoom between 8h30 and 11h00
of the Chip relative offset, Cross Correlation function and

cross correlation value for the prompt correlator over
time:
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Fig. 9: Cross Correlation functions exact and interpolate during 1"
Doppler Collision

RELATIVE POWER

In addition, we note that PRN 135 is received with 2 dB
more power than PRN 138 during the first Doppler
collision. This explains why the tracking error is larger on
PRN 138, the reason is PRN 135 interfers more on PRN
138 than PRN 138 interfers on PRN 135 (fig. 6 & 7).



NAVIGATION MESSAGE

Remark:

The raw navigation message of the SBAS signal contains
500 symbols, transmitted each second. This sequence is
the convolutional encoding of the 250 bits of the SBAS
navigation message available on the fip://serenad-
public.cnes.fr. With the convolution encoder logic
described in MOPS DO229C presented below, it is
possible to recover the 500 original SBAS symbols.
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Fig. 10:Convolutional Encoding

If the navigation message symbol sign is reversed, then
the sign of the interfering peak will also be reversed.
Therefore, for the tracking interference to reach full scale,
the navigation symbols of the interfering signal have to be
the same.

If this is not the case, then we expect the tracking error to
be modulated according to the data message symbol x-
correlation function.

Next figure shows the x-correlation computed over 1s
data frame for the data symbols coming from PRN 135
and 138:

Navigation Message Intercorrelation between PRNs 135 and 138
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Fig. 11: Navigation messages correlation function and distribution of
PRNs 135 and 138

It appears that raw transmitted navigation symbols are
strongly correlated between 8h00 and 12h00 (correlation
function reaching 0.8 to 1), a 0.8 correlation values means
that over a 1s frame, 90% of the data symbols have the
same sign, and 10% are of opposite sign).

4- C/A CODE INTERFERENCE
MITIGATION

A -Carrier Smoothing

As C/A code interferences looks like multipath, some
multipath-like mitigation techniques can be envisaged.
But other techniques can not.

Narrow correlator or double delta correlator is a technique
that can’t be used, because WAAS signals are band
limited.

Carrier smoothing can be used to reduce code tracking
noise as well as tracking error.

For WAAS end-users, the smoothing of pseudorange
observations using integrated carrier phase observations is
given by the following equation /5/:

Ber @+ ED B e (g -ap ] €8 D
Where:
- is the raw pseudorange,

n

~

- P, is the smoothed raw pseudorange,

- ®n is the phase measurement in radian,
- Ais the wavelength,
- Kis the filter parameter (time constant).

The following figures show the residual errors on the C1
measurements for different carrier smoothing time: 20
and 100 seconds (as recommended in /6/) for PRNs 135
& 138 on Moncton RIMS station.



For PRN 135, with carrier smoothing of 20 seconds, we
observed that the C/A code interference errors have been
reduced by a factor 5 approximately to reach maximum
values about 3 meters.
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Fig. 12 : Residuals Error on C1 with Carrier Smoothing of 20 and
100 seconds on PRNI135

The same behavior is observed for PRN 138; with carrier
smoothing of 20 seconds, we note that the C/A code
interference errors have been reduced by a factor 5
approximately to reach maximum values about 3 meters.
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Fig. 13 : Residuals Error on C1 with Carrier Smoothing of 20 and
100 seconds on PRNI138

As we can see, applying a carrier smoothing on 100
seconds, as recommended by MOPS /6], gives good
results in terms of C/A code interference mitigation. The
remaining oscillations on the smoothed pseudorange
residuals could be due to multipath and/or residual errors
in the code/carrier coherency (fig. 12 &13).

B- C/A Code Interference Correction Algorithm
Fortunately, mutual C/A code interferences have an

interesting difference wrt multipath: if the receiver tracks
all the signals in view, we can assume that the interfering
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signal is tracked on another receiver channel, and is
therefore observable.

MULTIAPATH

|
[}
L}
-4
1

C/A CODE CROSS CORRELATION INTERFERENCE

TRACKING
CHANNEL 1

TRACKING
CHANNEL 2

Code 1 Code 2

Code 2 Code 1

Table 1: Correction algorithm principle

The idea is to let the receiver track each signal. The
correction comes as a post processing on the raw
measurements.

The receiver provides code delay, phase, power, Doppler
and data for each satellites and knowing the cross-
correlation function for each code pair, it is possible to
predict the tracking error and then to subtract it from the
raw code pseudo-range measurements. This has been
demonstrated with simulated signals (same data symbols)
coming from a Spirent Simulator in /3/ and /4/.

Results with this C/A code interference correction
algorithm, wusing real data, will be presented in
forthcoming publications.

CONCLUSION

Analysis of real GNSS data collected by EGNOS RIMS
allowed to highlight that C/A code interference can cause
tracking errors with signals coming from WAAS
satellites.



This works has shown that C/A code interference can
induce tracking error of several meters in situations
where:
» Doppler collision with Doppler difference lower
than the DLL bandwidth,
» PRN code cross-correlations exhibit peaks,
» Navigation messages are correlated.

A great number of applications have low relative
Dopplers (SBAS, pseudolites) and can thus be affected by
this interference.

Fortunately, in this case, carrier smoothing gives good
mitigation and unlike a multipath interference situation,
the receiver can provide the interfering signal parameters
(C/No, delay, phase and Doppler) and thus a correction
algorithm can be developed /3/.

In the future GEO satellites with ionic propulsion
subsystem might have even lower Doppler variations
leading to increased periods with code interferences.

This study could be extended in the future for SBAS
L5/E5a quasi-stationary codes and possible future MBOC
signals broadcasted by new versions of EGNOS, WAAS
and other equivalent systems.
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