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ABSTRACT 
 
The European satellite navigation system GALILEO will 
provide radionavigation signals for a variety of 
applications. Safety Of Life users will get a safe 

navigation service through ranging signals carrying 
integrity information. 
 
  The Galileo Integrity Baseline algorithm includes the 
transmission of three parameters allowing users to monitor 
their integrity level. These parameters are the Signal-In-
Space Accuracy (SISA: prediction of the minimum 
standard deviation of a Gaussian distribution 
overbounding the Signal-In-Space error in the fault-free 
case), the Signal-In-Space Monitoring Accuracy (SISMA: 
minimum standard deviation of a Gaussian distribution 
overbounding the difference between Signal-In-Space 
error and its estimation by ground control stations) and the 
Integrity Flag, which accounts for satellite status (it can be 
set to “OK”, “DON’T USE” or “NOT MONITORED”). 
 
  The work presented in this paper studies the possibility 
of computing SISMA using a statistically robust 
algorithm, so as to reject wrong measurements and 
decrease ground system False Alarm rate (fault-free 
satellites flagged “DON’T USE”). 

INTRODUCTION 
 
This article presents the first results of the use of robust 
regression algorithms in the Integrity concept of 
GALILEO. Indeed, it consists in providing users with 
information concerning the system contribution to the 
final user position error, in order to allow them to 
autonomously check their integrity level. That information 
provided to the users is in fact a quantification of the 
quality of the SIS (Signal In Space). The SIS is the signal 
emitted by a satellite in the constellation as received by a 
fault-free receiver. In the present Integrity Check 
algorithm, propagation errors are not considered, only the 
contribution of the satellite payload will be included in the 
broadcasted information. 
 
  Indeed, the error induced by the ground and space 
segments on the determination of the user’s position and 
clock bias is assumed to be essentially due to the 
difference between the satellite true position and clock 
bias and the values provided by the OD&TS (Orbit 
Determination and Time Synchronisation) through the 
broadcast ephemeris data. The projection of these position 
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and clock errors on the satellite user axis is called the 
SISE (Signal In Space Error): it is in fact the equivalent 
measurement error due to OD&TS errors. Thus, the 
integrity information to be provided by GALILEO to the 
users only concerns OD&TS errors: propagation errors or 
local errors such as multipath or jamming are not taken 
into account in the broadcast integrity parameters. 
 
  The integrity information broadcasted in the navigation 
message is composed of three parameters: 

• Signal-In-Space accuracy (SISA): predicted 
smallest standard deviation of a Gaussian 
distribution overbounding the SISE distribution 
in fault-free mode for any user in the service 
area. 

• Signal-In-Space Monitoring Accuracy (SISMA): 
smallest standard deviation of a Gaussian 
distribution overbounding the difference between 
SISE and SISEest, its estimation by the ground 
segment. 

• Integrity Flag (IF): depending on the results of 
the monitoring system, this flag can be set to one 
of the three following values: “USE”, “DON’T 
USE” or “NOT MONITORED” 

 
  The value of the integrity flag for each satellite will be 
determined by the Integrity monitoring system. Composed 
of about 40 GALILEO Sensor Stations (GSS) in precisely 
known positions, it performs an estimation of the 
difference between the true satellite position and clock 
bias and the corresponding values provided by the 
OD&TS. This estimation is carried out by using the L1, 
E5b and E6 pseudorange measurements made by the GSS. 
The estimated vector and its covariance matrix are then 
projected over a user grid, so as to obtain respectively 
SISEest,u (an estimation of the SISE) and its standard 

deviation ucheck ,σ  for each potential user u. The WUL 

(Worst User Location) is determined by looking for the 

maximum of ucheck ,σ . The SISMA is the maximum value 

of ucheck ,σ . The corresponding SISEest,u for this worst 

user location is the chosen estimate of SISE and is called 
SISEest. The Integrity Flag is raised when the SISEest has a 
magnitude which cannot be due to the normal ephemeris 
error nor to the noise on the GSS measurements. 
  The detailed way to determine SISMA and SISEest and 
the algorithm which computes the Integrity Flag based on 
SISEest and SISMA are described in the Integrity Check 
section. 
 
  The use, in the process of computing SISMA and 
SISEest, of a least-squares algorithm implies that all input 
residuals are considered fault-free and Gaussian. In the 
case of an undetected malfunction (concerning either a 
satellite or a GSS), biased measurements may be included, 
thus leading to the overestimation of SISEest and thus 
possibly causing a fault-free satellite to be flagged 
“DON’T USE”. 
 

  Therefore this paper studies the possibility of replacing 
the Least-Squares by a robust estimation algorithm in the 
Integrity check performed by Galileo ground segment in 
the baseline. The term “robust” refers here to the ability of 
such algorithms to estimate correct statistical parameters 
in the presence of some corrupted samples: while a single 
biased sample (called an outlier, a measurement not 
belonging to the same distribution as the other samples 
from the set) may lead a non-robust algorithm (e.g. Least-
Squares) to provide an estimate far away from the 
underlying distribution of the sample space, a robust 
estimator (M-estimator, Least-Trimmed-Squares…) will 
resist such a small change and be able to provide an 
estimate close to the true distribution. Typically, one 
biased measurement in a set of otherwise Gaussian 
distributed ones will be either discarded (in the case of the 
LTS, for instance) or weighted down so as not to influence 
the estimation process (e.g. in the case of the M-
estimator). The cost of this ability to detect and discard 
outliers is twofold: first, the loss of the optimality in the 
case of a truly Gaussian distributed sample set, and 
second, an additional computational cost (most robust 
algorithms are based on iterative residual computation 
ranking). 
 
  The performance analysis of the robust algorithm on the 
computation of the SISMA is performed in this paper with 
simulated data (with and without satellite or station 
failure), taking into account the steps of the pre-processing 
that impact most on the shape of the input signal (carrier-
phase smoothing, ionospheric and tropospheric). 
 
  Thus the paper will be structured as follows: the first 
section describes the input signal simulator, the second 
section presents the Integrity Check algorithm. Section 3 
gives the definition of overbounding used throughout the 
article.  Then sections 4 to 8 introduce the notion of 
statistical robustness, the methods that were used, how 
they were optimized and the gains that could be expected 
from them. Section 9 presents the results obtained through 
simulation and finally conclusions are derived on the 
feasibility of introducing a robust algorithm in the 
Integrity Check. 

MODELISATION AND GENERATION OF INPUT 
RESIDUALS 
 
The pseudorange measurements made by the Galileo 
Sensor Stations used for the Integrity Check are L1, E5b 
and E6 code and carrier phase measurements. For the 
purpose of the integrity check by the Integrity Processing 
Facility, where the impact of satellite position and clock 
errors on user range measurements is checked, these 
measurements are first pre-processed in order to test 
anomalies and to remove residual errors that may affect 
these measurements. 
 
  The main steps of this pre-processing are the following: 
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• Detection of cycle slips on L1, E5b and E6 
carrier phase measurements, and correction of 
these cycle slips if possible 

• Correction of L1, E5b and E6 tropospheric errors 
• Code-carrier smoothing of L1, E5b and E6 
• Elaboration of composite range measurements 

L1-E5b and L1-E6, with weights inducing 
correction of ionospheric errors 

• Computation of residual composite range 
measurements by differencing observed 
composite measurements and range measurement 
prediction made from the knowledge of GSS 
positions and GALILEO satellites ephemeris data 

• Correction of GSS clock errors and residual 
tropospheric error 

 

  Thus, for any Galileo satellite i, the L1/E5b residuals for 
any GSS n can be modelled in the following way (the 
same model applies for the L1-E6 composite range 
measurements): 
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where 

tzzyyxx chhhSISE δδδδ +++=  is the SIS Error  in 

the direction of the GSS, with zyx hhh ,,  the GSS-

satellite direction cosines and tzyx δδδδ ,,,  is the 

satellite ephemeris error. 

bELcs 51,ε  is the transient response of the smoothing filter 

to carrier cycle slips 

tropoε  is the residual tropospheric error 

bELMP 51,ε  is the residual multipath error  

bELMP 51,ε  is the residual  

 
  In order to test the performance of the Integrity check for 
several configurations of algorithms, a program was 
implemented that generates residuals with the same 
characteristics as residuals obtained by preprocessing 
measurements from GSS stations. 
 
  The goal here is to generate simulated residuals that 
would be representative of the final Galileo system, 
without oversimplifying the behaviour of the 
measurements. Each error component is therefore 
generated with reasonable characteristics. Two types of 
components need to be distinguished: the SISE originating 
from ephemeris errors, and the other components 
originating from measurement errors. 
 
  The SISE is generated quite simply by assuming 
reasonable ephemeris errors. It is generated from the 
model recalled above: 

tzzyyxx chhhSISE δδδδ +++= . The ephemeris 

errors tzyx δδδδ ,,,  are simulated as 1st order Markov 

processes such that the satellite radial error has a standard 
deviation of 1.34 m, the satellite tangential plane 
component has a standard deviation of 2.45 m, the satellite 
clock error has a standard deviation of 2 m. 
 
  Residual components originating from measurements 
errors are not stationary, and their characteristics do 
change over time. More precisely, two main effects must 
be taken into account: the dependency of the measurement 
errors over the satellite elevation, and the error reduction 
due to the smoothing filter. Therefore, the input parameter 
is a targeted standard deviation of the sum of these 

components over the elevation angle denoted ( )θσ ett arg , 

and these components are generated sequentially, then 
they are affected by the smoothing filter. 

As a summary, the technique used to generated these 
components is recalled below: 

csε  is first simulated by inserting random cycle slips at 

random epochs following a Poisson distribution with 

mean time between occurrences of 810− . Then, these 
cycle slips go through the smoothing filter. 

tropoε  is generated as the product of a zenith residual bias 

multiplied by a mapping function depending on the 
elevation angle. 

MPε  is generated as the multipath error induced by two 

reflected rays in addition to the line of sight signal. As 
these multipath rays do not vary fast for a ground station, 

this error is solved as the solution τε  to the traditional set 

of equations originating from the PLL and DLL 
discriminators model: 
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τε , θε  are the code and phase tracking errors 

iα , iτ∆ , iθ∆  are the relative amplitude, relative delay 

and relative phase of each reflected ray (assuming 

10 =α , 00 =∆τ , 00 =∆θ ). 

sC  is the DLL chip spacing 

cK  is the PRN code correlation function 

noiseε  is the residual error due to noise. At the smoothing 

filter input, this error is generated as a Gaussian white 
noise with standard deviation 

( ) smoothett T25.0arg ××θσ  where smoothT  is the 

smoothing filter time constant. 

INTEGRITY CHECK ALGORITM 
 
  At a given instant, each satellite i is seen by N GSS, 
which all perform pseudorange measurements based on 

satellite i signal. Let ( )ssss tzyx ∆,,,  be the satellite 

true position (in the WGS-84 referential) and clock bias: 
these 4 values are the unknowns of the problem. Let 

( )n
r

n
r

n
r zyx ,,  be the coordinates of the GSS of index n. 

The GSS coordinates are precisely known. The GSS clock 
biases will be determined through common view 
techniques, using a specific GSS as a reference station 
connected to the Galileo Time. Therefore, the relation 
between the residuals for GSS n and the coordinates of 
satellite i can be expressed as follows: 

i
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where H is a (3xN) matrix, defined as follows 
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���  and ∆X is the 

satellite ephemeris error. Indeed, in the present case, a 3-
parameter model is used rather than the usual 4-parameter 
one. This can be justified by projecting the measurement 
equation in the local referential of the GSS (north east 
down), in which the down component of the observation 
matrix is almost equal to 1. Thus, it is the sum of the 
down and clock parameters that are estimated. This causes 
no problem since ∆X is estimated only to be projected on 
the Worst User Location axis. 
 

  Let X̂∆  be the estimation of ∆X and ( )X̂cov ∆  its 

covariance matrix. To obtain an estimation of SISE, the 
current method consists in forming a user grid on the 

surface of the Earth. X̂∆  and ( )X̂cov ∆  are projected on 

each satellite-user axis. Let ( )0000 ,, zyxX =  be the 

OD&TS coordinates of satellite i and 

( )gggg zyxX ,,=  the coordinates of a user on the grid.  

 
  The relation between the pseudorange measurement 
performed by the ground user, user position and satellite 
position is the same as the relation between the 
pseudorange measurement performed by the GSS, GSS 
position and satellite position. Therefore, the projection 

vector hu for the ( )gXX 0  axis is obtained by replacing 

the coordinates of the GSS by the user’s in a line vector of 
the observation matrix H: 
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Thus, for a given user u, the estimations of the SISE and 
its standard deviation are: 
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The maximum values of SISEest,u and �check,u are called 
SISEest and SISMA: 
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  It appears that the standard deviation of SISEest depends 
on the observation time-span. Indeed, if SISEest is 
observed for a short time, SISE (projection of ∆X) will be 
considered a constant. SISEest will therefore follow a 
normal distribution centred on SISE, with a standard 
deviation equal to SISMA. If, on the other hand, SISEest is  
observed for a long time, the variations of SISE will have 
to be taken into account: SISEest will follow a centred 
normal distribution, with standard deviation equal to 

22 SISMASISA + . 
 
  The integrity flag is raised when the observed SISEest 
departs significantly from this statistics. The decision 
threshold is tuned using the specified false alarm rate, so 
the integrity flag is raised when 

22 SISMASISAkSISE FAest +×>  

where FAk =4.34 as per the design false alarm rate 1.5 x 

10-5 per independent sample.  
 

  Thus, estSISE  is computed from the residuals provided 

by the pre-processing algorithms, while SISMA is only 
computed from assumptions on the standard deviation of 
the measurement noise and geometrical data. If one of the 
input residuals does not respect the assumption on its 
standard deviation (because of a propagation problem or a 
reception problem in the vicinity of the GSS), then there is 

risk that estSISE  will exceed the decision threshold 

despite the fact that the satellite is not malfunctioning. In 
this case, a robust algorithm, able to reject input data that 
do not respect the assumptions made on them, might help 
in not flagging unduly a satellite. 

OVERBOUNDING 
 
  The SISMA is defined as the smallest standard deviation 
of a Gaussian distribution overbounding 

estSISESISE − , the difference between true and 

estimated pseudorange measurement error. The practical 
definition of overbounding is the following: 
Let f  be an experimental distribution and g a normal, 

centred distribution. g  overbounds f  means: 
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measurements with bias bxp 
However one can show that a biased normal distribution   
f ~ N(bxp,σxp) σxp < ∞ with can be bounded by a centred 
normal distribution g ~ N(0,σob) with: 
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2
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b

σ
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This can be graphically assessed by plotting the tail 
weights of both the experimental and objective 
distributions. For a given distribution f , the tail weights 

are defined as: 

[ ] ( ) ( ) 0, ≥∀+=> ��
+∞−

∞−

LdxxfdxxfLerrorP
L
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The overbounding of f  by g  is achieved if the tail 

weights of g  are superior to those of f  for any L. 

 
  This definition is suited to distributions: in order to test 
whether a centred normal distribution of standard 

deviation SISMA  overbounds estSISESISE − , it is 

required to have a statistically significant number of 

estSISE  measurements corresponding to the same value 

of SISMA . But in the present case, each value of 

SISMA  (for a particular satellite at a particular epoch) 

corresponds to only one value of estSISE . Thus, in this 

paper, the test that will be used to compare the 
overbounding performances of the Least-Squares and 
robust methods consists in computing the standardized 

random variable ( ) SISMASISESISEest −  for all 

satellites at all epochs and dividing it by the corresponding 
SISMA, so as to obtain a normalized random variable. 
Data coming from all satellites are then considered as a 
single normalized random variable whose tail weights are 
compared to that of a standard Gaussian distribution. 
 
  It must be added that the algorithms used for this paper 
(robust or not) do not include an additional overbounding 
procedure (such as inflating the SISMA by a given 
percentage), the overbounding performance being ensured 
by the fact that the predicted standard deviations of the 
measurement noise are actually superior bounds. 

PRINCIPLE OF ROBUST ALGORITHMS 
 
  The aim of robust statistics is to construct estimation and 
regression algorithms able to provide reliable results when 
all the assumptions made on the observation data are not 
met in full. Indeed, it is generally assumed that all 
variables are normally distributed: it is the case for which 
the classical Least-Squares algorithm is optimal. When the 
underlying Gaussian model does not hold for every 
sample, for instance when a feared event causes one 
pseudorange measurement to deviate (such a measurement 
is called an outlier), the results provided by the Least-
Squares may actually be far away from the true data 
distribution. The whole point of robustness can be 
expressed in terms of continuity of the estimator: a small 
variation in the sample space (either a small change on the 
whole sample space, or great change on a small fraction of 
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the sample space) must bring only small variations to the 
estimated distribution. 
 
  In order to underline the differences between Least-
Squares and robust algorithms, we will use the example of 
linear regression (which is the type of problem solved to 
obtain a position with satellite positioning systems):  

iippii exxy ++++= βββ �110  for Ni ,,1�= , 

where iy  is the response variable (e.g. a pseudorange 

measurement), ipi xx ,,1 �  are the regressors (e.g. 

elements of the user-satellite direction vector) and ie  is a 

zero-mean normal noise with σ  standard deviation. The 

aim is to obtain ( )pββ ˆ,,ˆ
0 � , estimate of the set 

( )pββ ,,0 �  of regression coefficients (which are user 

coordinates and clock bias in the case of satellite 
positioning). The regression residuals may be expressed as 
follows: 

( )ippiii xxyr βββ ˆˆˆ
110 +++−= � . 

The estimate( )pββ ˆ,,ˆ
0 �  computed by LS is the one 

which minimizes the sum of squared residuals: 
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ˆ,,ˆ
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Figure 1: Example of the influence of a single outlier 

 

  The LS criterion brings optimal results when ie  is 

Gaussian. But there is no guarantee of reliability of the 

algorithm’s results when ie  is not Gaussian (which is 

generally the case). Indeed, figure 1 illustrates the fact that 
one single outlying sample may cause a two-dimensional 
LS regression to break down. 
 
  This example may be used to introduce the notions of 
breakdown value and breakdown bound, as described by 
Huber in [1]: the breakdown value is the smallest fraction 
of contamination in the sample space that can cause the 
regression method to run arbitrarily far from the 
distribution of the majority of the samples. For instance, it 
can be seen from the preceding figure that the breakdown 

value of the LS algorithm is N1 . The breakdown bound 

is the limiting value (for ∞→N ) of the breakdown 
value. It is thus equal to 0 for the LS. Estimators with a 
breakdown bound strictly superior to 0 are called positive-
breakdown methods (as will be seen in the following, 
robust methods do not systematically have positive 
breakdown bounds). 

M-ESTIMATOR 
 
  In order to avoid the situation illustrated in the preceding 
figure, robust algorithms derive their estimates from a 
different minimization criterion. The type of criterion used 
defines the type of algorithm: in the case of M-estimation 
(or maximum likelihood estimation), the criterion is the 
following:  
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where ρ  is any symmetric positive-definite function with 

a unique minimum at zero, ir  are the estimation residuals 

and σ their scale factor. The M-estimator of the 

( )pββ ,,0 �  set is thus the solution of the p  equations: 
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where ( ) ( ) dxxdx ρψ =  and is called the influence 

function. ψ  describes the influence of  one given sample 

on the computed estimate. In the LS case, where 

( ) 2xx =ρ , the influence function is ( ) xx 2=ψ , which      

means that the influence of a sample grows linearly with 
the size of its error: an outlier will thus have more 
influence on the regression outcome than samples 
belonging to the regular underlying distribution, which 
explains the non-robustness illustrated in figure 1. Let us 

then define a weight function: ( ) ( ) xxxw ψ= . The 

equation system to solve then becomes: 

0
1

=
∂
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�
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�
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= j

i
i

N

i

i r
r

r
w

βσ
 for pj ,,1�= , 

which shows that M-estimation simply comes down to 
solving the following iterated reweighted Least-Squares 
problem: 
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 Thus, the efficiency of the M-estimator relies on the fact 
that its ρ  function is chosen so that samples have a 

bounded influence. 
Several ρ  functions have been tested. The first one (a 

popular choice) is the Huber function: 
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which is a parabola in the vicinity of 0 (the same as the 
LS) then grows linearly. k  is a tuning variable which 
defines the value of the residual error beyond which the 
corresponding sample will be deemed an outlier. The 
influence function of Huber’s M-estimator : 
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is thus bounded by k . The corresponding weight function 
is thus: 
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An outlying measurement, raising a large error residual, 
will therefore be weighted down. But its influence will 
never be completely set to zero. In order to Thus a 
different function was tried, namely the Tukey function, 
which is expressed as follows. 
ρ  function: 
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Influence function: 
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Weight function: 

( )

( )�
�
�

��
�

�

≥=

≤
��
�

�

�

		
	




�





�

�

�
�
�

�
�
�

�
	



�−−=

kxifxw

kxif
k

x
xw

0

11

22

 

The Tukey function actually gave poor results as is shown 
and explained in the results section. This lead to the 
implementation of a custom-made triple weight function, 

designed to combine the qualities of both Huber and 
Tukey functions. It is expressed as follows:  
 
ρ  function:  
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Influence function: 
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Weight function: 
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  Figure 2 compares ρ , the influence function and the 

weight function for the LS, the Huber, Tukey and custom 
functions. It is clear from this figure that the Tukey and 
custom functions are not convex: in order to ensure 
convergence of the solution, the M-estimators based on 
these functions are initialized with a vector resulting from 
several iterations of Huber’s M-estimator. 
It must be noted that M-estimators are not positive 
breakdown estimators. However, their combination of 
robustness and small additional computational cost has led 
us to use them as a reference. 
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Figure 2: Comparison of �, influence and weight 
functions 

LEAST-TRIMMED-SQUARES AND MINIMUM 
COVARIANCE DETERMINANT REGRESSION 
 
  Two positive-breakdown methods were also tested, both 
consisting in selecting a subset of samples.  Indeed, the 
Least Trimmed Squares (LTS) criterion is the following: 

( ) ( )�
=

h

i
Nir

p 1
:

2

ˆ,,ˆ
0

min
ββ �

 

where ( ) ( ) ( ) NNNN rrr :
2

:2
2

:1
2 ≤≤≤ �  are the ordered 

squared residuals. Practically, the method consists in 
forming all sample subsets of cardinal h  (out of N  
available samples) and then computing the Least-Squares 

solution on the subset. The solution subset is the one for 
which the sum of squared error residuals is minimum.  
 
  Directly outputting the solution computed with the subset 
would mean systematically considering one of the 
measurements to be biased. Such an assumption is 
unrealistic and statistically inefficient. Therefore, a 
reweighing of the samples is performed. It consists in 
computing a robust (according to the LTS criterion) 
estimate of the residuals: 

�
=

⋅⋅⋅⋅
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−

=
h

i
LTS

tt
LTS

ired
hr xHHx
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y

1

2
,
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where: 

iredy ,  is the 
thi  element of  redy , the vector composed of 

the h  measurements selected by the LTS, 

LTSx̂  is the state vector estimated from the subset, 

H  is the complete design matrix. 
 

Let r  be the ( )1×N  standardized residual vector, 

computed as: 

( )LTS
hr

xHyr ˆ
ˆ
1

,

⋅−=
σ

 

Each element of r  is then squared and compared to a 
threshold computed as : 

( ) ( )thresholdPT
12

1

−= χ  

where 

( ) 12
1

−χ  is the inverse of the chi-square function with one 

free variable 

thresholdP  is a probability (typically comprised between 

0.9 and 1) used to adapt the algorithm to user’s needs.  
The solution is obtained by applying the Least-Squares to 

the measurements corresponding to the elements of 2r  
that are smaller than T . 
 
  The Minimum Covariance Determinant is a high-
breakdown estimation algorithm: it determines the mean 
and covariance matrix of a collection of vectors by 
computing the sample mean and sample covariance of the 
subset of h  vectors out of N  for which the determinant 
of the covariance matrix is minimum. Its application to 
linear regression consists in applying the algorithm to the 
measurement vector y  in order to select a subset of  h  

elements, on which the least-squares is applied to obtain 
an estimate of the state vector and its covariance matrix.  
Thus in practice, the standard deviation of each 
measurement subset of length h  (set to 1−N  or  

2−N ) is computed. The subset with smallest standard 
deviation is used to compute a first estimate. Then, the 
same additional reweighing as for the LTS is performed to 
achieve better statistical efficiency. 
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  The breakdown bound of LTS and MCD is then a 
function of h : for instance, if Nh ×= 75.0 , the 

breakdown bound is 25%; for 2Nh = , it reaches 50%. 

But such values of h are adapted for statistical problems 
where samples are very abundant (in such cases, it is not 
feasible to compute all subsets: Huber and Rousseeuw 
thus proposed in [Huber-Rousseeuw] a method to 
converge towards the optimal subset without having to 
compute all possible solutions). The value of h  was thus 
set to the expected maximum proportion of outlying 
measurements in sample sets: 1−N  or  2−N . 

OPTIMISATION OF ROBUST METHODS 
 
  All the robust methods presented above have a parameter 
enabling users to tune them to suit the characteristics of 

the experimental distribution (k  or 1k  and 2k  for the M-

estimators, thresholdP  for the LTS and MCD). The values 

that are assigned to these parameters set the percentage of 
the experimental data distribution that will kept by the 
robust procedure. In order to find the values best suiting 
the needs of the Integrity flag algorithm, a quick 
optimisation procedure was set up. The key aspects of the 
robust procedures are their ability to reject outlying 
pseudorange measurements and the fact that the SISMA  
they provide is at best equal to (but often larger than) the 
Least-Squares SISMA . If the tuning parameter of a 
given method is small, the algorithm will be very 
selective: outlying samples will be detected more easily, 
but regular samples belonging to the tails of the 
experimental data distribution will also be rejected more 
often. The resulting SISMA  will be higher (since 
computed with fewer samples). Thus a series of short 
simulations (performed on three hours of data each) was 
conducted: for each method and each tuning parameter 
value, two simulations were performed, one with fault-
free measurements, the other with a ten-meter bias on one 
of the measurements for each of the satellites so as to 
obtain, for each method, the value of the maximum 
SISMA  with fault-free measurements and the value of 
the detection rate with one outlying measurement, as a 
function of the value of the parameter. The aim was to 
find, if possible, a trade-off between the ability to reject 
outliers and the ability to keep as many regular samples as 
possible. Figure 3 displays simulation results for the 
Huber M-estimator. It appears that the maximum 
SISMA  significantly drops between 5.0=k  and 

25.1=k , then stays nearly constant. On the other hand, 

the detection rate increases slowly for 5.1≤k , then 
rapidly grows to reach the same value as the Least-
Squares. Thus k  was set to 1.25. 

 

Figure 3: Results of Huber M-estimator optimisation 

 
 

 

Figure 4: Results of Tukey M-estimator optimisation 

  Figure 4 represents the same type of data for the Tukey 
M-estimator, with the addition of the so-called “rate of 
null SISMA ”. Indeed, when the k  parameter is too 
small, the weight function is over selective and rejects all 
or all but one measurement, leading to 0=SISMA . 
Additionally, if few measurements are kept, the 
reweighting of the covariance matrix by the inverse of the 
residual scale can lead to huge values of SISMA (see 
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figure 4).  Thus, the k parameter was set to 6. However, 
this potential instability of the algorithm was what lead to 
the implementation of the Custom weight function. 
 
  Figure 5 represents the optimization curves for the 
Custom M-estimator. These are 3-dimensional, since there 
are two parameters to choose. Their analysis lead to 
choose k1 = 2 and k2 = 7.  
 

 

Figure 5: Results of custom M-estimator optimisation 

  As for the LTS and MCD, the parameter to optimize is 

the thresholdP  , with which a chi square threshold is 

computed, so as to perform a final selection of the input 
data. The analysis of the data represented in figures 6 and 

7 lead to the choice of 97.0=thresholdP  for both 

methods. 

 

Figure 6: Results of LTS optimisation 

 

 

Figure 7: Results of MCD optimisation 

EXPECTED GAINS FROM ROBUST METHODS 
AND TESTING PROCEDURE 
 
  Now that the different algorithms are ready to be used, 
we must explain what can be expected from them and how 
they can be tested. Indeed, the reason to use robust 
methods in the Galileo ground segment is obviously to 

remove outlying measurements when computing estSISE  

and SISMA , as the estSISE  computed from outlier-free 

input would be less likely to cause false alarms. The 
Integrity Flag Algorithm would thus be prevented from 
sending a “DON’T USE” flag because of propagation or 
reception problems.  
Such an isolated propagation and/or reception problem 
would appear as one outlier in the set of pre-processing  
residuals. Therefore the test procedure for this feature 
consists in adding a bias to one of the inputs, for all 
satellites and all epochs, so as to cause a potential false 
alarm at every test. The detection rate of each robust 
method is then compared to the LS detection rate: the 
smaller the rate, the more robust the estimator is. 
 
  Then, three aspects must be monitored. The first is that 
the derivation of high-level availability requirements 
implies that all SISMA values must be under a certain 
value, depending on the station configuration. Indeed, as 
SISMA reflects satellite position and clock estimation 
errors, it is expected to be as small as possible in order to 
satisfy system availability requirements. In the present 
case, the ground network comprising 40 stations, the 
maximum allowed value of SISMA is 0.7m. As the LS is 
optimal when measurements are truly Gaussian (fault-free 
case), robust estimators are expected to degrade 
performances in this respect. This degradation is assessed 
by performing a simulation in the fault-free case and 
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computing, for each method, the cumulative density 
function of SISMA. The two quality criteria that were 
chosen to compare the different methods are the 
maximum value of the SISMA, and the proportion of 
SISMA values inferior to 0.7m, as shown for the LS in 
figure 8. 

 

Figure 8: CDF of SISMA computed with LS 

 
  The second aspect is the overbounding capability: in the 
fault-free case, the true distribution of SISEest-SISE must 
be overbounded by a centred Gaussian distribution of 
standard deviation equal to SISMA. The performances in 
this respect are assessed by computing the difference 
between tail weights of the Gaussian distribution 

( )SISMAN ,0  and the tail weights of the experimental 

distribution of SISEest-SISE (in the present case, all data 
being simulated, the true SISE is known). This difference 
should ideally be always positive. The quality criterion for 
this simulation is the aspect of the curve, showing the 
minimum value of the difference and the proportion of 
negative values. 
 
  The third aspect is true failure detection: the ability to 
reject outliers may degrade failure detection capability. In 
order to assess this degradation, a third type of simulation 
was performed, where, at every epoch, a failure of one 
satellite was simulated by adding a bias to all the 
measurements performed by GSS on the faulty satellite. 
The quality criterion for this experiment is the detection 
rate on the faulty satellite, which should be equal to 1.  
  As mentioned above, the false detection and true 
detection tests require a bias. Thus all the corresponding 
simulations were performed for biases ranging from 10cm 
to 10m. 

SISMA COMPUTATION RESULTS 
 
  The reader must first be warned against considering that 
the following results are representative of the true 
performances of the future GALILEO system. Indeed, the 
present study aimed at appreciating the impact of using 
robust statistics rather than classical Least-Squares and is 
only representative of the relative efficiency of the 
proposed methods as compared to LS. All the following 

tests have been performed on 24 hours of simulated 
pseudorange residual data. 
 
  Figure 9 displays the results obtained in detection of 
fault-free and faulty satellites. In the top figure, all 
detections cause a fault-free satellite to be flagged 
“DON’T USE” and it is expected from robust algorithms 
that they may decrease the false alarm rate. This result is 
achieved since detection rates are always smaller for 
robust algorithms than for LS. In particular, the LTS and 
MCD algorithms perform well: the maximum detection 
rate of the LTS (obtained for a bias of 10m) is inferior to 
1.10-4, while MCD actually succeeds in never raising the 
Integrity Flag for all but one bias value (for a bias of 4m, 
the detection rate is 1.569.10-4). 
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Figure 9: False alarm and true fault detection rates 

 
  Then, the bottom figure shows the fault detection rate as 
a function of the bias. M-estimators tend to slightly 
decrease detection rate (as compared to LS), thus 
increasing missed detection rate. On the opposite, LTS 
and MCD perform once again particularly well, since they 
actually provide higher detection rates than the LS. 
  On the other hand, this efficiency in false alarm and fault 
detection cause LTS and MCD to provide mediocre 
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results in terms of SISMA distribution. Indeed, table 1 
shows maximum values of SISMA and percentage of 
SISMA inferior to 0.70m for all methods: while M-
estimators (particularly with the custom function) only 
slightly degrade SISMA distributions, system availability 
might be seriously impacted by the use of LTS or MCD. 
 
 Max SISMA (m) Percentage of 

SISMA < 0.7m 
LS 0.9388 77.9278 
M Huber 0.9760 74.9155 
M Tukey 1.2638 70.4186 
M custom 0.9931 77.5716 
LTS 1.7262 64.5722 
MCD 1.9752 63.9085 

Table 1: SISMA distribution for all estimation 
methods 

  Finally, the last feature that has been studied is the 
overbounding capability, as shown in figure 10. It appears 
that the performance of M-estimators is comparable to 
that of LS, while that of MCD is particularly good 
(minimum value of the difference much higher than for 
other methods), and that of LTS is particularly bad 
(minimum value of the difference much inferior to that of 
other methods). 
 

 

Figure 10: Overbounding capability 

CONCLUSION 
 
  Thus the results obtained through our simulations can be 
summarized by the following table, which compares the 
performance of integrity check achieved through LS with 
the other procedures: 
 
 M-

estimators 
LTS MCD 

False alarm 
rate 

Good Excellent Excellent 

SISMA 
distribution 

Slightly 
Degraded 

Degraded Degraded 

True fault 
detection rate 

Lowered Increased Increased 

Overbounding 
capability 

Comparable 
to LS 

Degraded Increased 

 
  Therefore, although the feasibility is achieved, there is 
no candidate algorithm improving all the quality criteria 
chosen to compare all methods, since algorithms that 
perform best in detection have serious drawbacks on other 
respects (SISMA distribution for MCD and LTS, 
overbounding for LTS). 
  However, the performance of MCD (or LTS) is very 
interesting, and it is important to determine the budget of 
the degradation in SISMA distribution (caused for 
example by the MCD), especially when a robust algorithm 
is also implemented on the user side. 
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