
HAL Id: hal-01022139
https://enac.hal.science/hal-01022139

Submitted on 23 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting multidisciplinary software composition for
interactive applications

Stéphane Chatty

To cite this version:
Stéphane Chatty. Supporting multidisciplinary software composition for interactive applications. SC
2008, 7th International Symposium on Software Composition, Mar 2008, Budapest, Hungary. pp
173-189, �10.1007/978-3-540-78789-1_14�. �hal-01022139�

https://enac.hal.science/hal-01022139
https://hal.archives-ouvertes.fr

Supporting multidisiplinary softwareomposition for interative appliationsStéphane ChattyENAC IntuiLabLaboratoire d'Informatique Interative Les Triades A, rue Galilée31055 Toulouse, Frane 31672 Labège, Franehatty�ena.fr hatty�ena.frAbstrat. Produing interative appliations is a multidisiplinary soft-ware omposition ativity. This, and the nature of user interfae ode,puts partiular requirements on omponent omposition frameworks. Wedesribe a omponent model that relies on a hierarhial tree of hetero-geneous elements ommuniating through events and data �ows. Thismodel allows to assemble, reuse and apply late binding tehniques toomponents as diverse as data management, algorithms, interation wid-gets, graphial objets, or speeh reognition rules at all levels of gran-ularity. We desribe implementations of the model and example uses.Finally, we outline researh diretions for making the model more om-plete and ompatible with mainstream software models.1 IntrodutionGraphi designers and usability experts are inreasingly involved in the designof appliations, espeially when the user interfae goes beyond traditional wid-gets. Until reently, they did it by produing spei�ations that programmerstried to follow. This proess was not optimal: work was dupliated, mistakes ortehnial onstraints altered the original design, and it fored a sequential work-�ow between ators. It also impeded the redesign of appliations. If a medialimaging ompany aquired a solution for analysing images, wanted to merge itwith their image apture solution, and had onsisteny problems between thetwo user interfaes, they had to reprogram major parts of the software.An emerging alternative proess is the multidisiplinary prodution of soft-ware [1℄. Graphi designers produe the visual parts, interation designers pro-due interative behaviours, and programmers only produe the funtional ore(data management and algorithms) and the overall appliation struture. Thisredues the global amount of work, eliminates programmer-indued mistakes aswell as inompatibilities, and allows for onurrent engineering: all ators anwork in parallel and assemble their work just before delivering.In this artile we propose a omponent model to support this new proess.The main ontributions are:� an analysis of how this proess and the nature of interative software all fora software omposition model, appliable to all types of user interfaes andto the funtional ore at all granularities of ode;

Published in the Proceedings of the 7th International Syposium on Software Composition, Lecture Notes in Computer
Science. Copyright (c) 2008 by Springer-Verlag. Available online at http://www.springer.de/comp/lncs/index.html

� the desription of a hierarhial omponent model using events and data�ows for ommuniations among omponents, aimed at addressing the or-responding requirements.Contrasting with most models that desribe graphial interative omponents,our model is aimed at desribing all parts of an appliation, inluding non-visualinteration as well as the parts that do not belong to the user interfae. Weexamplify the use of this model through several development senarios, involvingvarious degrees of interation. Finally, we outline some researh diretions.2 Motivation: assembling interative softwareInterative software is hard to develop [2℄. This is in part beause the user inter-fae per se, whih aounts for half of the size of interative appliations, obeysdi�erent priniples than the other half. It has external ontrol, deals with staterather than omputation, and heavily uses referenes beause its objets havemultiple interdependenies. With imperative or funtional languages, its objetbehaviours tend to be split aross multiple funtions. The arhiteture patternsused for interative omponents even give them onurrent semantis [3℄.But most of all, the way interative software is designed and produed poses asoftware omposition problem that must be addressed. If software omposition isabout assembling omponents that have not be planned and designed together,then building an interative appliation is a ontinuous software ompositionativity: from the beginning, unplanned reorganisation is the rule rather thanthe exeption. Moreover, it deals with elements produed by ators with variedbakgrounds and methods at any level of granularity and any degree of loality.2.1 Varied stakeholdersInterative software requires skills from usability experts, domain experts, users,programmers, interation designers and graphial designers. Their ontributionan be very onrete in the atual prodution of software, whether during thedevelopment or later during appliation 'revamping' or ustomisation:� domain experts de�ne sequenes of user tasks (game levels, for instane);� graphial designers de�ne all the graphis and the geometrial layout;� natural language grammar designers, sound designers or other speialistsmay also produe parts of the appliation;� usability experts or interation designers may de�ne the �ne behaviour ofinterative omponents: should buttons highlight when one enters them fromthe side or only when pressing diretly?� users or support sta� may rede�ne the layout or alternate input on�gura-tions to suit their speial needs.All of these are the owners of onerns that should legitimately form individ-ual omponents. All have their own abstrations and tools to manipulate them,but in the end their produtions must be assembled and run together.

2.2 Planning issuesThe above ators do not follow the traditional shedules of software development.As already mentioned, their tasks are best ahieved in parallel. More, the designis iterative: beause user needs are di�ult to eliit, iterative proesses based onprototyping and evaluation have been devised. The iterations may ontinue andimportant design deisions may be delayed while the rest of the software is beingdeveloped: from the beginning, the appliation is in an unplanned ustomisationphase. This reates di�ulties in large projets suh as air tra� ontrol systems:one both has to delay interfae design issues and hoose an arhiteture veryearly, whih often leads to arhiteture on�its later in the projet. Only aomponent model suiting all types of user interfaes would alleviate this problem.Interative software also has the lassial issues of appliation redesign: graph-is instead of text dialogue, post-WIMP1, interfaes instead of widgets, or fusionof several appliations under a uni�ed interfae. The adaptation to varying plat-forms (sreen size, input devies) also requires a redesign or even a dynamiadaptation of the visual layout, the dialogue sequene, or even the interationstyle (a button does not work the same with a mouse or a touh sreen). Thiswill ulminate with the ubiquitous omputing paradigm, when appliations willdisover their exeution ontext at run time. In summary, software ompositionours at any time from initial development to run-time.2.3 Component granularityThe omponents that are assembled or interhanged an have very di�erent sizeand omplexity. At the largest sale is the integration of two appliations intoone: an email appliation and a Web browser, for instane. At a smaller sale, agiven widget must sometimes be replaed: hanging a lassi retangular menuin favour of a pie-shaped one that works better on tabletop user interfaes, forinstane. In some ases the replaement is at an even smaller sale: swithingfrom a mouse interfae to a touh sreen interfae just requires to hange apart of the internals of some interators2. For interation designers this is bestseen as a hange of sub-interator sized omponents from their own library ofomponents: in buttons for instane, replaing the behaviour that reats onlyto liks initiated on the graphial objet ('mouse-oriented' behaviour) with onethat allows to start beside then enter ('touh-sreen-oriented' behaviour).Furthermore, these various granularities annot be handled independently:one often has to replae a omponent by another of a very di�erent size. Considera desktop metaphor in whih appliations are shown as pages in a book. Whenturning the pages, you see an image on eah page; but as soon as a page is �at,the image is replaed with the atual running appliation. As another example,when adding animation to user interfaes so that visual hanges are not toosudden, one has to replae assignments of numerial values by whole animation1 interfaes that do not rely on the Windows-Ions-Mouse-Pointing paradigm2 omponents that deal with a given interation: a widget, a drag and drop sequene,a speeh-enabled dialogue box

sequenes: instead of jumping to its position, the temperature dial of a oolerwill make a ontinuous movement. And the target itself an be a onstant, oran be obtained by ativating a speeh grammar rule, or through a 'wizard'appliation that helps the user make the hoie.2.4 Crossutting onernsNot all hanges are as loal as the ones above. When 're-skinning' a user interfae,they only hange the graphis but all the visual omponents in the appliation aremodi�ed. Many faets of user interfaes are �rossutting onerns� in the senseof aspet-oriented programming: graphial style, geometrial layout, animation,drag and drop management, loalisation, time onstants, et. Spaghetti of odeis still the norm today in most reasonable-size interative appliations beauseof this. For instane, building drag and drop behaviour as a omponent ratherthan a blak box or a series of ode fragments is still a hallenge.3 Requirements on omponent modelsThe situation desribed above generates requirements on the omponent modelused for organising appliations. Some are not new and have been adressedindividually in the past. But the new multidisiplinary proesses and post-WIMPinteration exaerbate them and make it important to address them olletively.Uni�ed framework. Beause of the planning issues desribed above, it is desirableto have a unique model for all omponents in an appliation, so as not to limithow and when omponents an be interhanged and onneted. This applies toomponents in the user interfae as well as the funtional ore: for instane, ananimated objet suh as a srollbar index an be onneted to the mouse, to alok, or to the �le-loading omponent at di�erent times. Post-WIMP interfaedesigners rely heavily on this, whereas most user interfae omponent modelsapply only to graphial interative omponents, and to their sub-omponents aslong as they are themselves graphial interative omponents. This only oversvery few omposition senarios, and fores programmers to use several softwareomposition models in the same appliation.Heterogeneity support. An interative appliation is a heterogeneous system byitself. Not only do developers ome from di�erent bakgrounds, not only dothey manipulate very di�erent entities, but their preferred omputation modelsare also very di�erent. Some interation styles are best de�ned through statemahines; others are easier with data �ows. Graphis are often seen as puredelarative objets. Some dialogue sequenes are purely linear (levels in a game,steps in a wizard) but onurreny is always present, if only to provide animatedfeedbak. Gesture reognition and similar algorithms, like omputations, are welldesribed with funtional programming, while input handling alls for reativeprogramming [5℄. Within the proposed model, it must be possible to build om-ponents as di�erent as graphial objets, omputations, interative behavioursor speeh grammar rules, by taking any of these points of views.

Multiple granularities. Heterogeneity also exists in the granularity of ompo-nents, as identi�ed in the previous setion. The model must therefore have aomponent onept that is the same at all sales, from basi instrutions towhole appliations, like does funtional programming.Modularity. Not all user interfaes are only graphial. Some have sound, speehreognition, or video apture. Some even hange over time: an appliation anat as a voie server when you are away from the o�e and launh a graphialinterfae when you use your omputer. It is important that the parts of theframework that manage these modalities are as modular as dynami librariesare today, and that developers an hoose to use them or not.Behaviour heking. The model must provide support for heking omponentomposition, beause interative software also has the issues of traditional soft-ware. It is partiularly important to hek the ompatibility of omponent be-haviours, and not only data types [6℄.Delarativeness. Some stakeholders in the development use purely graphialtools. If they are to ontribute e�iently, they must be allowed to modify appli-ations without the help of programmers. Therefore the model must support adelarative style of omposition, that is a style in whih the existene of a givenomponent at a given loation fully determines its semantis.External ontrol �ows. In user interfaes, what triggers an ation is not a on-trol �ow from the main program but an external ondition: user's ation, loksignal, et. Funtion alls do not properly support this beause they require thatthe soure of the ontrol �ow has information about the reipient and thus isdeveloped after it. It usually is developped before: devie drivers and interativeomponents predate appliations. Funtion referenes and allbaks, or the useof late binding for that purpose are workarounds that sometimes indue pro-grammers into mistakes [3℄. Events are more useful than funtions, espeiallywith post-WIMP user interfaes.Conurreny. Some interative omponents require onurrent semantis, forinstane when two users manipulate two menus on a tabletop interfae. Conur-reny also shows more subtly when two programmers subsribe two omponentsto the same event without knowing about the other, and a third programmerombines their omponents and expets them to respet some sequening prop-erties. Not only does the model need to support onurreny, it also needs toprovide ways of reasoning about it and expressing ordering onstraints.4 The I* omponent modelTo address the above requirements we propose a hierarhial omponent modelnamed I*, that ombines features of omputer graphis sene graphs, interative

software models, and omponent models. Suessive versions of it have beenimplemented in the IntuiKit model-oriented programming framework and usedin an industrial ontext sine 2003. Its major features are its tree of elements,its event-based ommuniation model, and its modular exeution model.4.1 The element treeIn the I* model, an appliation is a tree of elements. An element is made of:� a set of named properties, that store its state;� a set of named hildren elements;� an interfae that exports the names of ertain hildren, properties and events,and manages internal operations on hildren element and properties.Some elements, alled atomi, are built using the host language and theirinternals are not aessible within the model. All others, alled omponents, arebuilt by assembling elements, reating properties and de�ning interfaes. The I*model onsists of the desription of elements and operations on them, of a setof atomi elements that desribe ontrol, and of their exeution semantis.Appliation struture. The tree of elements not only represents the arhitetureof the appliation, but also the logial struture of its interfae. It provides areferene framework for all ators of the development. For instane, a lassialimage editing program is made of a palette omponent, a menu bar omponent,a drawing area omponent, and a few pop-up dialogue box omponents. Thepalette ontains buttons, and so on reursively. All interators are omponents,and their hildren are omponents (smaller interators) or atomi elements.Atomi elements. In most user interfae models, interators are atomi. Here,atomi elements are smaller and more heterogeneous: omputations, graphialobjets, speeh rules, state mahines, event noti�ations, property assignments.The model allows a mapping from objet-oriented lasses to atomi elements, soas to failitate integration with the host language. To build an atomi elementone takes a lass and turns an instane of it into an element, seleting some lassmembers as exported properties and some methods as exported hildren.Graphial objets and graphial ontext objets (brushes, gradients, et) areatomi elements. For instane, a retangle is an element, and thus forms a le-gitimate appliation; running it atually displays a retangle on the sreen. Theode below shows how this is done with the IntuiKit Perl programming interfae:
my $r = new GUI::Rectangle (-x => 0, -y => 0, -width => 100, -height => 100);

$r->run;The same priniple applies to other interation media; for instane, the In-tuiKit environment also implements elements that represent 3D sounds andspeeh grammar rules. One of the lassial tehniques for desribing the be-haviour of interators is the use of �nite state mahines. These, as well as data-�ow onnetions for ontinuous behaviours and algorithms that reognise ges-tures from trajetories, are also implemented as atomi elements.

Finally, an interative appliation also ontains omputation ode and ap-pliation domain objets. These too are elements, and are urrently most oftenimplemented as atomi elements by appliation programmers.Element aggregation. Components are built by assembling other elements. Some-times mere juxtaposition is enough, for instane when building a multimodaldialogue box by assembling a retangular frame, two buttons (Yes and No), anda speeh grammar rule that reognises �yes� and �no�. More usually, elementsneed to be interonneted so as to exhange events or values, for instane whenoupling a writing zone, a gesture reognition element, and a text element thatshows what has been reognised; we will later see how event and data-�ow prop-agation are desribed through speialised atomi elements.But in some ases the hildren elements are too �ne grain to have a signi�antsemantis as suh, and must be ombined tightly to produe a signi�ant e�et:the state of a state mahine has a meaning only if it is also the state of apereptible element. By extending the model to sub-interator elements, we havelost the natural sharing of data between the two parts of an interator. Usingevent ommuniation would be a solution, but at the ost of a poorly justi�edmemory overhead. To avoid it, a tight aggregation mehanism alled propertymerging is proposed, and managed in the parent omponent's interfae. Theresult is that a memory slot for one property only is used, and this property isaessible under di�erent names from the hildren elements. Control propagationwhen the property hanges ours as a speial ase of data-�ow.For instane, here is how one would desribe a button made of arbitrarygraphis for eah of its two states, with an element of type Swith that uses itsbranh property to hoose whih of its hildren is ative at a given time:
$btn = new Component;

$sw = new Switch (-parent => $btn);

$on = load Element (-parent => $sw, -name => ’on’, -file => ’on.svg’);

$off = load Element (-parent => $sw, -name => ’off’, -file => ’off.svg’);

$fsm = load Element (-parent => $btn, -file => ’behaviour.xml’);

$btn->merge (-names => [$fsm->state, $sw->branch]);

$b->run;Beause it allows to delay the assoiation of graphis (or any other perep-tive hannel) and behaviour, merging is useful for managing heterogeneity in agroup of developers. One a onvention has been established about the names ofelements and their properties, a programmer an build a omponent in whih heor she just names the hildren and spei�es the merged properties, an interationdesigner builds a state mahine that desribes how the user's input is managed,and a graphi designer builds a set of graphial objets; the �nal omponent isassembled in a ompilation or linking phase, just prior to exeuting the program.Information hiding The names given to hildren elements and properties arevisible to all hildren of a omponent, as well as the events de�ned by hildren.From this internal symbol table is built an external one, by deiding what names

are visible; during that operation, renaming is also allowed. Note that mergingis also a manipulation of symbol tables within the omponent's interfae.Name hiding is for lassial software engineering purposes. Renaming is forinterative software arhiteture purposes. Interative omponents are de�ned interms of interation onepts; names suh as 'button', 'ion', 'lik', 'press', or'drag' are used. At some point, they need to be onneted to the funtional orethat uses names suh as '�le', 'appliation', 'launh', or 'ship', 'pro�le', 'math'.This onnetion implies two operations. First, one needs to math onepts;for instane, a ship is represented as an ion, a pro�le as a button, and the'math' operation is assoiated to the 'press' event. Then, beause the names aredi�erent, one needs to translate them. This is alled funtional ore adaptation;in objet-oriented frameworks, it is implemented with lasses whose only role isto glue objets of inompatible types together. Here, renaming makes funtionalore adaptation a framework-level feature, optimised out at ompile time.Another peuliarity is that there are di�erent publis to hide informationfrom. Appliation programmers do not need to see the implementation details ofa button, but designers who ustomise an appliation do need it; symmetriallythey do not are about the external interfae of the button. This is urrentlyhandled at the implementation level only: name hiding applies to all program-ming interfaes to the I* tree languages suh as Perl, C++ or Java, and not tointerfaes in languages for designers suh as CSS.4.2 Communiation and ontrolThe prevalent exeution model in user interfaes, and partiularly post-WIMPuser interfaes, is the reative model. This model usually oexists with the pro-edural model brought by the programming language. To satisfy the uniformframework requirement, I* solely relies on event ommuniation and a variant:data-�ow ommuniation.Events. Some elements in the tree are able to emit events when ertain onditionsare met. A lok emits events at regular intervals, a graphial objet emits eventswhen it is liked on with the mouse, a �nite state mahine when it hangesstate, an animation when it ends, a button when its state mahine hangesstate. Funtional ore elements an also be soures: a plane emits an event whenit hanges altitude or position, a �le when it hanges size, and so on. Eventsubsriptions are represented as Bindings, that is atomi elements that assoiateations to onditions. A Binding is de�ned with:� a referene to a soure, that is a property or an element that may emit events;� an event spei�ation, that is a soure-spei� expression that desribes whatevents are seleted;� a referene to an ation, that is an element that is exeuted when a mathingevent is emitted.For instane, this reates a retangle whenever a multitouh surfae is touhed:

my $table = find Element (-uri => ’input:/intuiface’);

my $b = new Binding (-source => $table->pointers,

-spec => ’add’,

-action => "GUI::Rectangle (-x => %X, -y => %Y)");A �nite state mahine is an atomi element made of a set of bindings thatare only ative when the mahine is in a given state. Atomi ations namedNoti�ation allow omponent builders to emit their own events. Others namedAssignment set the values of properties. Callbak funtions in the host languagean be enapsulated as ations named NativeCode.The Binding elements make behaviour delarative: one reates a ontrol �owjust by adding the appropriate Binding. It also helps to reate state-dependentbehaviours, by making bindings or state mahines ative or not depending ona state, without having to introdue hierarhial state mahines or Stateharts:hierarhy is represented by the I* tree.Data-�ow. Data-�ow is a speial ase of event ommuniation. Properties areevent soures, and atomi elements alled Connetors are Bindings de�ned fromtwo properties: they trigger an impliit ation that opies the value of the �rstproperty into the seond when it hanges. For instane with the following odea retangle follows the �nger on a touhsreen.
my $t = find Element (-uri => ’input:/touchscreen’);

my $r = new GUI::Rectangle (-width => 10, -height => 10);

my $xc = new Connector (-in => $t->X, -out => $r->x);

my $yc = new Connector (-in => $t->Y, -out => $r->y);Atomi elements named Wathers are used within elements to bind ations tohanges of their own properties. This allows to build data-�ow briks suh asthose desribed in [4℄ or [7℄, and produes the ontrol �ows assoiated to merging.This de�nition of data-�ow does not only provide a delarative way of build-ing behaviours. It also allows to de�ne a onsistent sheduling for event anddata-�ow propagation, so that mixing them leads to preditable results. Imple-mentations of I* inlude a sheduling algorithm based on properties, omparableto those used in synhronous programming.5 Implementing element semantisWe have built two implementations of the I* model named IntuiKit Perl andIntuiKit C++. We now desribe what semantis they give to elements and howtheir arhiteture helps ful�ll the initial requirements.5.1 A model-based implementationFor eah type of elements, an XML format has been de�ned. For instane, theSVG format is used for graphis. IntuiKit inludes parsers for these formats, inaddition to a programming interfae for instantiating elements, loning them, or

reating omponents. Developers an thus build the appliation tree by loadingXML �les, instantiating elements from ode, or both.Using XML �les has allowed to use IntuiKit in a researh projet as the �-nal exeution engine in a model transformation hain. It also helps manage theheterogeneity of ators and the planning issues: graphi designers use their owntools to build graphis and export them as SVG. Programmers or interationdesigners an build the rest of the appliation in ode or XML. Then one anhoose to load the XML �les at run time, thus delaying integration to the lastminute, or to generate ode from them. Using XML also allows to migrate appli-ation parts from one IntuiKit implementation to another. The typial intendeduse for this is to arry out iterative prototyping with the Perl implementation,then export the graphis, behaviours, and struture of the appliation tree inXML and reuse them in the �nal C++ development.The manipulation of part of the tree as data �les introdues preliminaryphases in the exeution of appliations: the loading or instantiation of elements,then their linking, prior to exeuting the tree. So as to make the programminginterfaes for instantiating elements ompatible with element reation in graph-ial editors, instantiation has been de�ned along the lines of prototype-orientedlanguages: elements an be opied from others, then modi�ed.5.2 Modules and rendering enginesFollowing the onstrution of the tree, IntuiKit takes harge of exeuting ('run-ning') it. The assoiated semantis is that eah element represents an instrutionfor a part of the exeution environment named a module: graphial objets arerendered by a graphial engine, speeh grammar rules are managed by a speehengine, bindings, ations and other behaviour-oriented elements are exeuted bythe ore module. This addresses the modularity requirement: eah module is inharge of a set of element types.Eah module de�nes an XML namespae and implements the assoiatedparser, provides a programming interfae for instantiating the elements it de�nes,and inludes a rendering engine for them. Leaving aside user-de�ned modulesthat ontain user-assembled omponents suh as WIMP interators (buttons,menus, dialogue boxes) or dials for okpits, most modules introdue atomielements. The ore module provides the entral onepts of the model and afew types of ontrol elements: bindings, onnetors, state mahines. Other mod-ules are used only when required: a GUI module for graphial objets and basiWIMP objets suh as windows, mouse and ursors; an input module for atypialinput devies; an animation module for animation trajetories; a speeh reog-nition module for grammar rules. Suh modules are implemented by reusing anexisting rendering engine, either as a library or a server, and enapsulating itsprimitives into the exeution methods of atomi elements.Using modules provides support for the management of rossutting onernswhile preserving delarativeness: to enrih a omponent with a new media, onejust needs to add a hild element from the orresponding module. All otheromplexity is hidden in the module internals. Furthermore, modules interat

niely with the appliation arhiteture, reating a two-dimensional struture:one dimension is the set of modules, the other is the appliation tree that drivesthe rendering in all modules. In our view, this is the key for providing an leararhiteture for multimodal appliations.We have enountered two types of rendering engines with that regard. Some,suh as OpenGL, do not store the objets they render and need to be alledperiodially. In this ase, the I* tree serves not only as the appliation struturebut also as the basis for rendering: one the tree is run, the graphial moduleperiodially traverses the tree, updates its rendering ontext or the engine's,and has graphial objets rendered by the engine as it enounters them. In otherwords, the restrition of the tree to ontainers and graphial elements has thesemantis of a graphial sene graph. Other rendering engines do manage theirown internal struture. In that ase the tree is only traversed one to reate thisstruture, and the engine is then noti�ed of hanges in the tree that onern it;the engine ats as a server, and one an interpret this as an extension of eventommuniation to the rendering itself.6 Example appliationsIntuiLab and their partners have used IntuiKit during �ve years for developingdozens of interative appliations as diverse as ar dashboard and multimediadisplays, air tra� ontrol tools, geographial information systems on tabletops,multimodal information query systems or lotto kiosks. We desribe here someexample uses that demonstrate the robustness of the I* model.
Fig. 1. An set of tabs for a ar multimedia system6.1 Skinning a visual omponentFigure 1 shows the tree struture of a omponent that was built for a ar mul-timedia system. It has a stati bakground, four tabs that represent four partsof an appliation, a Swith element, and a �nite state mahine. The transitionsof the state mahine are bound to events from a set of keys loated near thesteering wheel, and its state is merged with that of the Swith. Depending onthe SVG �le used for the graphial elements, the result looks as in Figure 2a orFigure 2b.

Fig. 2. a. With one graphis �le b. and another6.2 Building a multimodal dialogue boxThe following ode shows how one builds a simple multimodal Yes/No dialoguebox from atomi elements: a retangular frame; two retangles and bindings onthem that emit Y (resp. N) events when they are pressed on; a speeh grammar;two bindings on the reognition of words by the grammar. For onision theparent omponent does not appear here, nor the arguments that reate theelements within this parent.
my $r = new GUI::Rectangle (-x => 0, -y => 0, -width => 200, -height => 100);

my $y = new GUI::Rectangle (-x => 20, -y => 30, -width => 60, -height => 40);

new Binding (-source => $y, -spec => ’ButtonPress’, -action => "notify(’Y’)");

my $n = new GUI::Rectangle (-x => 120, -y => 30, -width => 60, -height => 40);

new Binding (-source => $n, -spec => ’ButtonPress’, -action => "notify(’N’)");

my $g = new Speech::Grammar (-grammar => ’yes-no’);

new Binding (-source => $g, -spec => [command => ’yes’], -action => "notify(’Y’)");

new Binding (-source => $g, -spec => [command => ’no’], -action => "notify(’N’)");The same events are emitted by this dialogue box whether the mouse or voieis used. The speeh grammar, sine it is a hild element of the dialogue box, isonly ative when the box is ative; the same holds for the retangles and thebindings of ourse.6.3 Appliation design and developmentFigure 3 illustrates the use of IntuiKit in a phase of the multidisiplinary proessdesribed in the introdution of this artile. The illustrated air tra� ontrolprojet involved �virtual paper�: objets that felt like paper strips through aombination of visual e�ets, animation and gesture reognition. A �rst phaseof iterative design yielded a paper prototype that outlined the struture and thebehaviour of the appliation. Designers and programmers used this prototypeto de�ne an I* tree and give names to elements to be produed by designers.Then eah started to program, draw or otherwise build their elements and givethem the appropriate names. For test purposes, someone in the group quiklyprodued very rude graphis, gave them the agreed names and saved them in a

SVG �le. This allowed programmers to test their work by loading these elementsfrom the SVG �le (left). When the �nal data management, behaviour, animationand graphial elements were ready, the programmers just had to put XML �lesdelivered by designers at the right plae, and test the appliation (right). Thisappliation later had several sets of graphis for di�erent ustomers in Europe.Measurements arried out on this ase study (omparison with a projet ofsimilar size and omplexity, by the same team, using a linear proess) showeda redution of projet duration by about 50%, expenses by about 30%, and adramati derease of oordination osts (estimated number of phone alls) [1℄.

Fig. 3. ATC appliation before and after �nal integration6.4 Transferring more tasks to designersIn the above example, graphi designers only produed graphis. However, someare willing to take more tasks from programmers, and partiularly visual layoutand its adaptation to size hanges. We have designed artisti resizing [9℄, a teh-nique where graphi designers provide examples of graphial objets at di�erentsizes, and the system interpolates their appearane for any hosen size.Implementing the artisti resizing algorithm with IntuiKit was a simple appli-ation of the I* model: we built a new atomi element that has properties widthand height, implements the artisti resizing algorithm, is de�ned by passingit the examples as hildren elements, and then behaves as a single graphialelement. This new element an then be plaed in the tree wherever a resiz-able graphi element is desired, and its properties onneted to the size of theavailable window. From then on, the graphial objet adapts to the size of thewindow, respeting the designer's non-linear transformations.6.5 Input managementOne of the future hallenges for interative software is that when building anappliation, developers will not have a preise idea of what input devies will beavailable at run time. We have been able to build an IntuiKit module to addressthis problem, by slightly extending the semantis of the I* model.

Input devies are event soures and hene andidate tree elements, but theyare out of ontrol of developers. It makes sense to deide that the appliationtree is just an element of a larger I* tree that ontains the omputer devies.Therefore, we just had to reate a new element set and element disovery fun-tions to allow programmers to test and use input devies [8℄. Using a tehniqueused for ommuniating dynami data reation from the funtional ore to theuser interfae, the hot-plugging of devies is reported as an event by the set ofinput devies, whih is an automatially managed omponent that ontains allinput devie elements. In that ontext, multimodal fusion, that is the ombi-nation of inputs from di�erent soures, beomes a matter of reating elementsthat subsribe to di�erent soures and implement one ombination poliy or theother: time windows, for instane.7 Researh diretionsThe I* model and its implementations have allowed us to turn innovation in userinterfaes into a more industrial ativity. But questions remain to be addressed,to give the model more solid foundations and to over issues urrently not ad-dressed. First of all, the ontrol strutures desribed above are insu�ient forbuilding all of the funtional ore; this fores developers to build it as a set ofatomi elements, and breaks the requirement for a uniform model. Similarly,one needs to devise a data-passing sheme that makes the implementation ofdata-�ow elements as easy as funtions in a funtional framework, as well as atyping system for ontrolling bindings and onnetions. We may also need topropose a �servie all� ommuniation system on top of event ommuniation,for the few ases where the aller is de�ned after the allee.In another diretion, de�ning a formal semantis for the I* tree and its om-muniations would provide developers with an unmbiguous understanding of howtheir omponents behave, and help ompare with more general frameworks. Itould also serve as the basis for ompiling omponents rather than just interpret-ing them: whereas during exeution IntuiKit, even in Perl, ompares favourablywith all rih graphis frameworks, interpretation times are not satisfatory.Finally, a strong similitude appears between elements and proesses in re-ative systems or other onurrent models, but the onsequenes of hoosing agiven semantis need to be explored. In partiular, we must understand whatlevel of ontrol programmers and designers need over the sequening of theirations, and how it �ts in the available models of onurreny.8 Related workMany omposition senarios and requirements have been studied by user in-terfae software speialists. The proposed solutions either have been high levelguidelines or patterns foused on a given requirement: for instane MVC orPAC [10℄ for separing the interfae from the funtional ore; the use of ative

values (exampli�ed reently by Cooa's bindings) then data �ows or one way on-straints for desribing user input, layout or animation [4, 11℄; hierarhies of visualomponents as in Self [12℄; the Java soure/listener and Qt signal/slot patternsfor event ommuniation. Most suh patterns implement a reative ompositionmodel on top of an existing funtion-oriented language (using inheritane, for in-stane), thus not addressing the uniform framework requirement. None of thesehave explored the heterogeneity requirement.Reent produts support the new development proesses. Flash allows graph-ial designers to build omplete appliations; programmers an extend these us-ing a dediated language or even a mainstream language. Other solutions forWeb appliations, suh as SVG+Javasript or Mirosoft Silverlight, take a sim-ilar hybrid approah. However, suh solutions are very spei� to graphis, anddo not propose a uni�ed framework for omplex appliations: Flash has limitedenapsulation features and the others fall in the hybrid model ategory.Solutions for programming user interfaes have been proposed for nearly ev-ery programming paradigm: objet-oriented programming of ourse, but alsoreative programming [13℄, funtional programming [5℄, et. Many of these ap-proahes, with the notable exeption of reative programming and the Smalltalklanguage [14℄, onsist in providing patterns that extend or alter the semantisof the original framework to support interative omponents.With the advent of large heterogeneous systems [15℄, researh on software ar-hiteture and software omposition addresses requirements that are very similarto ours. The I* tree an be ompared to the hierarhy of omponents in the Fra-tal framework [16℄; omponent interfaes, inluding the experimental behaviourinspetion features, and some aspets of internal ontrol in I* omponents notdesribed here an be ompared to Fratal membranes. The main di�erene isprobably that Fratal is servie-oriented while I* is event-oriented. Aspet pro-gramming [17℄ also shares requirements with I*, partiularly modularity (for han-dling ross-utting onerns) and external ontrol. One an interpret point-utsand advies as the I* binding of ations to partiular soures, with a partiularevent spei�ation language. The main di�erene is that this event ommuni-ation is the main ontrol onstrution in I* whereas aspet programming usesit only for partiular software engineering ases. I* an also be onsidered asan arhiteture desription language, but one that would aim at desribing theinternal arhiteture of omponents as well, down to the level of instrutions.9 ConlusionWe have analysed in this artile how the new multidisiplinary proesses usedfor interative software in�uene software arhiteture and omposition. Theyreate a need for a omponent model that uni�es the heterogeneous oneptsused by the various stakeholders, that ombines with the more traditional re-quirements of user interfae software. We have desribed the main features ofthe I* omponent model that addresses these issues. In partiular, the ability toapply late binding tehniques to heterogeneous omponents suh as behaviours,

graphial objets, speeh rules or omputations allows to implement onurrentdevelopment proesses. One of the main hallenges now is to ompare our modelwith more mainstream results in software engineering. Understanding the linksbetween interative software and other heterogeneous systems may prove fer-tile, as well as omparing I* with formal models for desribing onurreny. Inthe long term, our objetive is to reonile user interfae design with softwareengineering theories, praties and tools.AknowledgementsThis work was partly funded by the Frenh government through the ITEAEmode projet and by Agene Nationale de la Reherhe through the Digitableand Istar projets. L. Bass, R. Kazman and S. Conversy provided useful advieon this artile. The anonymous reviewers helped a lot to improve it.Referenes1. Chatty, S. et al: Revisiting visual interfae programming: reating GUI tools fordesigners and programmers In: Pro. of the ACM UIST, Addison-Wesley (2004)2. Myers, B.A.: Why are human-omputer interfaes di�ult to design and imple-ment? Tehnial Report CMU-CS-93-183, Carnegie Mellon University (1993)3. Chatty, S.: Programs = data + algorithms + arhiteture. In: Pro. of the 2007onferene on Engineering Interative Systems. LNCS, Springer-Verlag (2008)4. Chatty, S.: De�ning the behaviour of animated interfaes. In: Proeedings of theIFIP WG 2.7 working onferene, North-Holland (1992) 95�1095. Elliott, C., Hudak, P.: Funtional reative animation. In: International Confereneon Funtional Programming. (1997)6. Aot, J. et al.: Formal transduers: models of devies and building briks for thedesign of highly interative systems. In: Pro. of DSVIS'97, Springer-Verlag (1997)7. Dragievi, P., Fekete, J.D.: Support for input adaptability in the ion toolkit. In:Proeedings of ICMI'04, ACM Press (2004) 212�2198. Chatty, S. et al.: Multiple input support in a model-based interation framework.In: Proeedings of Tabletop 2007, IEEE omputer soiety (2007)9. Dragievi, P. et al.: Artisti resizing: A tehnique for rih sale-sensitive vetorgraphis. In: Proeedings of the ACM UIST, Addison-Wesley (2005)10. Coutaz, J.: PAC, an implementation model for dialog design. In: Proeedings ofthe Interat'87 Conferene, North Holland (1987) 431�43611. Myers, B.: Separating appliation ode from toolkits: Eliminating the spaghetti ofallbaks. In: Proeedings of the ACM UIST, Addison-Wesley (1991)12. Smith, R.B. et al: The Self-4.0 User Interfae. In: OOPSLA'95 onferene pro-eedings, Addison-Wesley 47�6013. Clement, D., Inerpi, J.: Programming the behavior of graphial objets usingesterel. In: Proeedings of TAPSOFT'89, LNCS 352, Springer Verlag (1989)14. Kay, A.C.: The early history of Smalltalk. ACM SIGPLAN (3) (1993) 69�7515. Hardebolle, C. et al.: A generi exeution framework for models of omputation.In: Proeedings of MOMPES 2007, IEEE Computer Soiety (2007) 45�5416. Bruneton, E. et al.: An open omponent model and its support in Java. In:Proeedings of CBSE 2004. LNCS 3054, Springer-Verlag (2004)17. Kizales, G.: Aspet-oriented programming. ACM Comp. Surveys 28(4es) (1996)

