N

N

Supporting multidisciplinary software composition for
interactive applications
Stéphane Chatty

» To cite this version:

Stéphane Chatty. Supporting multidisciplinary software composition for interactive applications. SC
2008, 7th International Symposium on Software Composition, Mar 2008, Budapest, Hungary. pp
173-189, 10.1007/978-3-540-78789-1_14 . hal-01022139

HAL Id: hal-01022139
https://enac.hal.science/hal-01022139
Submitted on 23 Jul 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://enac.hal.science/hal-01022139
https://hal.archives-ouvertes.fr

Published in the Proceedings of the 7th International Syposium on Software Composition, Lecture Notes in Computer
Science. Copyright (c) 2008 by Springer-Verlag. Available online at http://www.springer.de/comp/Incs/index.html

Supporting multidisciplinary software
composition for interactive applications

Stéphane Chatty

ENAC IntuiLab
Laboratoire d’Informatique Interactive Les Triades A, rue Galilée
31055 Toulouse, France 31672 Labeége, France
chatty@enac.fr chatty@enac.fr

Abstract. Producing interactive applications is a multidisciplinary soft-
ware composition activity. This, and the nature of user interface code,
puts particular requirements on component composition frameworks. We
describe a component model that relies on a hierarchical tree of hetero-
geneous elements communicating through events and data flows. This
model allows to assemble, reuse and apply late binding techniques to
components as diverse as data management, algorithms, interaction wid-
gets, graphical objects, or speech recognition rules at all levels of gran-
ularity. We describe implementations of the model and example uses.
Finally, we outline research directions for making the model more com-
plete and compatible with mainstream software models.

1 Introduction

Graphic designers and usability experts are increasingly involved in the design
of applications, especially when the user interface goes beyond traditional wid-
gets. Until recently, they did it by producing specifications that programmers
tried to follow. This process was not optimal: work was duplicated, mistakes or
technical constraints altered the original design, and it forced a sequential work-
flow between actors. It also impeded the redesign of applications. If a medical
imaging company acquired a solution for analysing images, wanted to merge it
with their image capture solution, and had consistency problems between the
two user interfaces, they had to reprogram major parts of the software.

An emerging alternative process is the multidisciplinary production of soft-
ware [1]. Graphic designers produce the visual parts, interaction designers pro-
duce interactive behaviours, and programmers only produce the functional core
(data management and algorithms) and the overall application structure. This
reduces the global amount of work, eliminates programmer-induced mistakes as
well as incompatibilities, and allows for concurrent engineering: all actors can
work in parallel and assemble their work just before delivering.

In this article we propose a component model to support this new process.
The main contributions are:

— an analysis of how this process and the nature of interactive software call for
a software composition model, applicable to all types of user interfaces and
to the functional core at all granularities of code;

— the description of a hierarchical component model using events and data
flows for communications among components, aimed at addressing the cor-
responding requirements.

Contrasting with most models that describe graphical interactive components,
our model is aimed at describing all parts of an application, including non-visual
interaction as well as the parts that do not belong to the user interface. We
examplify the use of this model through several development scenarios, involving
various degrees of interaction. Finally, we outline some research directions.

2 DMotivation: assembling interactive software

Interactive software is hard to develop [2]. This is in part because the user inter-
face per se, which accounts for half of the size of interactive applications, obeys
different principles than the other half. It has external control, deals with state
rather than computation, and heavily uses references because its objects have
multiple interdependencies. With imperative or functional languages, its object
behaviours tend to be split across multiple functions. The architecture patterns
used for interactive components even give them concurrent semantics [3].

But most of all, the way interactive software is designed and produced poses a
software composition problem that must be addressed. If software composition is
about assembling components that have not be planned and designed together,
then building an interactive application is a continuous software composition
activity: from the beginning, unplanned reorganisation is the rule rather than
the exception. Moreover, it deals with elements produced by actors with varied
backgrounds and methods at any level of granularity and any degree of locality.

2.1 Varied stakeholders

Interactive software requires skills from usability experts, domain experts, users,
programmers, interaction designers and graphical designers. Their contribution
can be very concrete in the actual production of software, whether during the
development or later during application revamping’ or customisation:

— domain experts define sequences of user tasks (game levels, for instance);

— graphical designers define all the graphics and the geometrical layout;

— natural language grammar designers, sound designers or other specialists
may also produce parts of the application;

— usability experts or interaction designers may define the fine behaviour of
interactive components: should buttons highlight when one enters them from
the side or only when pressing directly?

— users or support staff may redefine the layout or alternate input configura-
tions to suit their special needs.

All of these are the owners of concerns that should legitimately form individ-
ual components. All have their own abstractions and tools to manipulate them,
but in the end their productions must be assembled and run together.

2.2 Planning issues

The above actors do not follow the traditional schedules of software development.
As already mentioned, their tasks are best achieved in parallel. More, the design
is iterative: because user needs are difficult to elicit, iterative processes based on
prototyping and evaluation have been devised. The iterations may continue and
important design decisions may be delayed while the rest of the software is being
developed: from the beginning, the application is in an unplanned customisation
phase. This creates difficulties in large projects such as air traffic control systems:
one both has to delay interface design issues and choose an architecture very
early, which often leads to architecture conflicts later in the project. Only a
component model suiting all types of user interfaces would alleviate this problem.

Interactive software also has the classical issues of application redesign: graph-
ics instead of text dialogue, post-WIMP!, interfaces instead of widgets, or fusion
of several applications under a unified interface. The adaptation to varying plat-
forms (screen size, input devices) also requires a redesign or even a dynamic
adaptation of the visual layout, the dialogue sequence, or even the interaction
style (a button does not work the same with a mouse or a touch screen). This
will culminate with the ubiquitous computing paradigm, when applications will
discover their execution context at run time. In summary, software composition
occurs at any time from initial development to run-time.

2.3 Component granularity

The components that are assembled or interchanged can have very different size
and complexity. At the largest scale is the integration of two applications into
one: an email application and a Web browser, for instance. At a smaller scale, a
given widget must sometimes be replaced: changing a classic rectangular menu
in favour of a pie-shaped one that works better on tabletop user interfaces, for
instance. In some cases the replacement is at an even smaller scale: switching
from a mouse interface to a touch screen interface just requires to change a
part of the internals of some interactors?. For interaction designers this is best
seen as a change of sub-interactor sized components from their own library of
components: in buttons for instance, replacing the behaviour that reacts only
to clicks initiated on the graphical object ('mouse-oriented’ behaviour) with one
that allows to start beside then enter (’touch-screen-oriented’ behaviour).
Furthermore, these various granularities cannot be handled independently:
one often has to replace a component by another of a very different size. Consider
a desktop metaphor in which applications are shown as pages in a book. When
turning the pages, you see an image on each page; but as soon as a page is flat,
the image is replaced with the actual running application. As another example,
when adding animation to user interfaces so that visual changes are not too
sudden, one has to replace assignments of numerical values by whole animation

! interfaces that do not rely on the Windows-Icons-Mouse-Pointing paradigm
2 components that deal with a given interaction: a widget, a drag and drop sequence,
a speech-enabled dialogue box

sequences: instead of jumping to its position, the temperature dial of a cooler
will make a continuous movement. And the target itself can be a constant, or
can be obtained by activating a speech grammar rule, or through a ’wizard’
application that helps the user make the choice.

2.4 Crosscutting concerns

Not all changes are as local as the ones above. When ’re-skinning’ a user interface,
they only change the graphics but all the visual components in the application are
modified. Many facets of user interfaces are “crosscutting concerns” in the sense
of aspect-oriented programming: graphical style, geometrical layout, animation,
drag and drop management, localisation, time constants, etc. Spaghetti of code
is still the norm today in most reasonable-size interactive applications because
of this. For instance, building drag and drop behaviour as a component rather
than a black box or a series of code fragments is still a challenge.

3 Requirements on component models

The situation described above generates requirements on the component model
used for organising applications. Some are not new and have been adressed
individually in the past. But the new multidisciplinary processes and post-WIMP
interaction exacerbate them and make it important to address them collectively.

Unified framework. Because of the planning issues described above, it is desirable
to have a unique model for all components in an application, so as not to limit
how and when components can be interchanged and connected. This applies to
components in the user interface as well as the functional core: for instance, an
animated object such as a scrollbar index can be connected to the mouse, to a
clock, or to the file-loading component at different times. Post-WIMP interface
designers rely heavily on this, whereas most user interface component models
apply only to graphical interactive components, and to their sub-components as
long as they are themselves graphical interactive components. This only covers
very few composition scenarios, and forces programmers to use several software
composition models in the same application.

Heterogeneity support. An interactive application is a heterogeneous system by
itself. Not only do developers come from different backgrounds, not only do
they manipulate very different entities, but their preferred computation models
are also very different. Some interaction styles are best defined through state
machines; others are easier with data flows. Graphics are often seen as pure
declarative objects. Some dialogue sequences are purely linear (levels in a game,
steps in a wizard) but concurrency is always present, if only to provide animated
feedback. Gesture recognition and similar algorithms, like computations, are well
described with functional programming, while input handling calls for reactive
programming [5]. Within the proposed model, it must be possible to build com-
ponents as different as graphical objects, computations, interactive behaviours
or speech grammar rules, by taking any of these points of views.

Multiple granularities. Heterogeneity also exists in the granularity of compo-
nents, as identified in the previous section. The model must therefore have a
component concept that is the same at all scales, from basic instructions to
whole applications, like does functional programming.

Modularity. Not all user interfaces are only graphical. Some have sound, speech
recognition, or video capture. Some even change over time: an application can
act as a voice server when you are away from the office and launch a graphical
interface when you use your computer. It is important that the parts of the
framework that manage these modalities are as modular as dynamic libraries
are today, and that developers can choose to use them or not.

Behaviour checking. The model must provide support for checking component
composition, because interactive software also has the issues of traditional soft-
ware. It is particularly important to check the compatibility of component be-
haviours, and not only data types [6].

Declarativeness. Some stakeholders in the development use purely graphical
tools. If they are to contribute efficiently, they must be allowed to modify appli-
cations without the help of programmers. Therefore the model must support a
declarative style of composition, that is a style in which the existence of a given
component at a given location fully determines its semantics.

Ezxternal control flows. In user interfaces, what triggers an action is not a con-
trol flow from the main program but an external condition: user’s action, clock
signal, etc. Function calls do not properly support this because they require that
the source of the control flow has information about the recipient and thus is
developed after it. It usually is developped before: device drivers and interactive
components predate applications. Function references and callbacks, or the use
of late binding for that purpose are workarounds that sometimes induce pro-
grammers into mistakes [3]. Events are more useful than functions, especially
with post-WIMP user interfaces.

Concurrency. Some interactive components require concurrent semantics, for
instance when two users manipulate two menus on a tabletop interface. Concur-
rency also shows more subtly when two programmers subscribe two components
to the same event without knowing about the other, and a third programmer
combines their components and expects them to respect some sequencing prop-
erties. Not only does the model need to support concurrency, it also needs to
provide ways of reasoning about it and expressing ordering constraints.

4 The I* component model

To address the above requirements we propose a hierarchical component model
named I*, that combines features of computer graphics scene graphs, interactive

software models, and component models. Successive versions of it have been
implemented in the IntuiKit model-oriented programming framework and used
in an industrial context since 2003. Its major features are its tree of elements,
its event-based communication model, and its modular execution model.

4.1 The element tree
In the I* model, an application is a tree of elements. An element is made of:

— a set of named properties, that store its state;

— a set of named children elements;

— an interface that exports the names of certain children, properties and events,
and manages internal operations on children element and properties.

Some elements, called atomic, are built using the host language and their
internals are not accessible within the model. All others, called components, are
built by assembling elements, creating properties and defining interfaces. The I*
model consists of the description of elements and operations on them, of a set
of atomic elements that describe control, and of their execution semantics.

Application structure. The tree of elements not only represents the architecture
of the application, but also the logical structure of its interface. It provides a
reference framework for all actors of the development. For instance, a classical
image editing program is made of a palette component, a menu bar component,
a drawing area component, and a few pop-up dialogue box components. The
palette contains buttons, and so on recursively. All interactors are components,
and their children are components (smaller interactors) or atomic elements.

Atomic elements. In most user interface models, interactors are atomic. Here,
atomic elements are smaller and more heterogeneous: computations, graphical
objects, speech rules, state machines, event notifications, property assignments.
The model allows a mapping from object-oriented classes to atomic elements, so
as to facilitate integration with the host language. To build an atomic element
one takes a class and turns an instance of it into an element, selecting some class
members as exported properties and some methods as exported children.
Graphical objects and graphical context objects (brushes, gradients, etc) are
atomic elements. For instance, a rectangle is an element, and thus forms a le-
gitimate application; running it actually displays a rectangle on the screen. The
code below shows how this is done with the IntuiKit Perl programming interface:

ny $r = new GUJI::Rectangle (-x => 0, -y => 0, -width => 100, -height => 100);
$r->run;

The same principle applies to other interaction media; for instance, the In-
tuiKit environment also implements elements that represent 3D sounds and
speech grammar rules. One of the classical techniques for describing the be-
haviour of interactors is the use of finite state machines. These, as well as data-
flow connections for continuous behaviours and algorithms that recognise ges-
tures from trajectories, are also implemented as atomic elements.

Finally, an interactive application also contains computation code and ap-
plication domain objects. These too are elements, and are currently most often
implemented as atomic elements by application programmers.

Element aggregation. Components are built by assembling other elements. Some-
times mere juxtaposition is enough, for instance when building a multimodal
dialogue box by assembling a rectangular frame, two buttons (Yes and No), and
a speech grammar rule that recognises “yes” and “no”. More usually, elements
need to be interconnected so as to exchange events or values, for instance when
coupling a writing zone, a gesture recognition element, and a text element that
shows what has been recognised; we will later see how event and data-flow prop-
agation are described through specialised atomic elements.

But in some cases the children elements are too fine grain to have a significant
semantics as such, and must be combined tightly to produce a significant effect:
the state of a state machine has a meaning only if it is also the state of a
perceptible element. By extending the model to sub-interactor elements, we have
lost the natural sharing of data between the two parts of an interactor. Using
event communication would be a solution, but at the cost of a poorly justified
memory overhead. To avoid it, a tight aggregation mechanism called property
merging is proposed, and managed in the parent component’s interface. The
result is that a memory slot for one property only is used, and this property is
accessible under different names from the children elements. Control propagation
when the property changes occurs as a special case of data-flow.

For instance, here is how one would describe a button made of arbitrary
graphics for each of its two states, with an element of type Switch that uses its
branch property to choose which of its children is active at a given time:

$btn = new Conponent;

$sw = new Switch (-parent => $btn);

$on = | oad El enent (-parent => $sw, -nane => 'on’, -file => "on.svg');
$off = load El ement (-parent => $sw, -nanme => 'off', -file => 'off.svg’);
$fsm = |l oad El enent (-parent => $btn, -file => ’behaviour.xm’);

$bt n->merge (-names => [$fsm >state, $sw >branch]);

$b- >run;

Because it allows to delay the association of graphics (or any other percep-
tive channel) and behaviour, merging is useful for managing heterogeneity in a
group of developers. Once a convention has been established about the names of
elements and their properties, a programmer can build a component in which he
or she just names the children and specifies the merged properties, an interaction
designer builds a state machine that describes how the user’s input is managed,
and a graphic designer builds a set of graphical objects; the final component is
assembled in a compilation or linking phase, just prior to executing the program.

Information hiding The names given to children elements and properties are
visible to all children of a component, as well as the events defined by children.
From this internal symbol table is built an external one, by deciding what names

are visible; during that operation, renaming is also allowed. Note that merging
is also a manipulation of symbol tables within the component’s interface.

Name hiding is for classical software engineering purposes. Renaming is for
interactive software architecture purposes. Interactive components are defined in
terms of interaction concepts; names such as ’button’, ’icon’, ’click’, ’press’, or
"drag’ are used. At some point, they need to be connected to the functional core
that uses names such as ’file’, ’application’, ’launch’, or ’ship’, ’profile’, 'match’.
This connection implies two operations. First, one needs to match concepts;
for instance, a ship is represented as an icon, a profile as a button, and the
'match’ operation is associated to the ’press’ event. Then, because the names are
different, one needs to translate them. This is called functional core adaptation;
in object-oriented frameworks, it is implemented with classes whose only role is
to glue objects of incompatible types together. Here, renaming makes functional
core adaptation a framework-level feature, optimised out at compile time.

Another peculiarity is that there are different publics to hide information
from. Application programmers do not need to see the implementation details of
a button, but designers who customise an application do need it; symmetrically
they do not care about the external interface of the button. This is currently
handled at the implementation level only: name hiding applies to all program-
ming interfaces to the I* tree languages such as Perl, C++ or Java, and not to
interfaces in languages for designers such as CSS.

4.2 Communication and control

The prevalent execution model in user interfaces, and particularly post-WIMP
user interfaces, is the reactive model. This model usually coexists with the pro-
cedural model brought by the programming language. To satisfy the uniform
framework requirement, I* solely relies on event communication and a variant:
data-flow communication.

Events. Some elements in the tree are able to emit events when certain conditions
are met. A clock emits events at regular intervals, a graphical object emits events
when it is clicked on with the mouse, a finite state machine when it changes
state, an animation when it ends, a button when its state machine changes
state. Functional core elements can also be sources: a plane emits an event when
it changes altitude or position, a file when it changes size, and so on. Event
subscriptions are represented as Bindings, that is atomic elements that associate
actions to conditions. A Binding is defined with:

— areference to a source, that is a property or an element that may emit events;

— an event specification, that is a source-specific expression that describes what
events are selected;

— areference to an action, that is an element that is executed when a matching
event is emitted.

For instance, this creates a rectangle whenever a multitouch surface is touched:

ny $table = find Element (-uri => 'input:/intuiface);
ny $b = new Binding (-source => $tabl e->pointers,
-spec => 'add’,
-action => "GU ::Rectangle (-x_=> 9% -y => %)");

A finite state machine is an atomic element made of a set of bindings that
are only active when the machine is in a given state. Atomic actions named
Notification allow component builders to emit their own events. Others named
Assignment set the values of properties. Callback functions in the host language
can be encapsulated as actions named NativeCode.

The Binding elements make behaviour declarative: one creates a control flow
just by adding the appropriate Binding. It also helps to create state-dependent
behaviours, by making bindings or state machines active or not depending on
a state, without having to introduce hierarchical state machines or Statecharts:
hierarchy is represented by the I* tree.

Data-flow. Data-flow is a special case of event communication. Properties are
event sources, and atomic elements called Connectors are Bindings defined from
two properties: they trigger an implicit action that copies the value of the first
property into the second when it changes. For instance with the following code
a rectangle follows the finger on a touchscreen.

ny $t = find Element (-uri => ’input:/touchscreen);
ny $r = new QUI:: Rectangle (-width => 10, -height => 10);
ny $xc = new Connector (-in => $t->X, -out => $r->x);
ny $yc = new Connector (-in => $t->Y, -out => $r->y);

Atomic elements named Watchers are used within elements to bind actions to
changes of their own properties. This allows to build data-flow bricks such as
those described in [4] or [7], and produces the control flows associated to merging.

This definition of data-flow does not only provide a declarative way of build-
ing behaviours. It also allows to define a consistent scheduling for event and
data-flow propagation, so that mixing them leads to predictable results. Imple-
mentations of I* include a scheduling algorithm based on properties, comparable
to those used in synchronous programming.

5 Implementing element semantics

We have built two implementations of the I* model named IntuiKit Perl and
IntuiKit C++. We now describe what semantics they give to elements and how
their architecture helps fulfill the initial requirements.

5.1 A model-based implementation

For each type of elements, an XML format has been defined. For instance, the
SVG format is used for graphics. IntuiKit includes parsers for these formats, in
addition to a programming interface for instantiating elements, cloning them, or

creating components. Developers can thus build the application tree by loading
XML files, instantiating elements from code, or both.

Using XML files has allowed to use IntuiKit in a research project as the fi-
nal execution engine in a model transformation chain. It also helps manage the
heterogeneity of actors and the planning issues: graphic designers use their own
tools to build graphics and export them as SVG. Programmers or interaction
designers can build the rest of the application in code or XML. Then one can
choose to load the XML files at run time, thus delaying integration to the last
minute, or to generate code from them. Using XML also allows to migrate appli-
cation parts from one IntuiKit implementation to another. The typical intended
use for this is to carry out iterative prototyping with the Perl implementation,
then export the graphics, behaviours, and structure of the application tree in
XML and reuse them in the final C++ development.

The manipulation of part of the tree as data files introduces preliminary
phases in the execution of applications: the loading or instantiation of elements,
then their linking, prior to executing the tree. So as to make the programming
interfaces for instantiating elements compatible with element creation in graph-
ical editors, instantiation has been defined along the lines of prototype-oriented
languages: elements can be copied from others, then modified.

5.2 Modules and rendering engines

Following the construction of the tree, IntuiKit takes charge of executing ('run-
ning’) it. The associated semantics is that each element represents an instruction
for a part of the execution environment named a module: graphical objects are
rendered by a graphical engine, speech grammar rules are managed by a speech
engine, bindings, actions and other behaviour-oriented elements are executed by
the core module. This addresses the modularity requirement: each module is in
charge of a set of element types.

Each module defines an XML namespace and implements the associated
parser, provides a programming interface for instantiating the elements it defines,
and includes a rendering engine for them. Leaving aside user-defined modules
that contain user-assembled components such as WIMP interactors (buttons,
menus, dialogue boxes) or dials for cockpits, most modules introduce atomic
elements. The core module provides the central concepts of the model and a
few types of control elements: bindings, connectors, state machines. Other mod-
ules are used only when required: a GUI module for graphical objects and basic
WIMP objects such as windows, mouse and cursors; an input module for atypical
input devices; an animation module for animation trajectories; a speech recog-
nition module for grammar rules. Such modules are implemented by reusing an
existing rendering engine, either as a library or a server, and encapsulating its
primitives into the execution methods of atomic elements.

Using modules provides support for the management of crosscutting concerns
while preserving declarativeness: to enrich a component with a new media, one
just needs to add a child element from the corresponding module. All other
complexity is hidden in the module internals. Furthermore, modules interact

nicely with the application architecture, creating a two-dimensional structure:
one dimension is the set of modules, the other is the application tree that drives
the rendering in all modules. In our view, this is the key for providing an clear
architecture for multimodal applications.

We have encountered two types of rendering engines with that regard. Some,
such as OpenGL, do not store the objects they render and need to be called
periodically. In this case, the I* tree serves not only as the application structure
but also as the basis for rendering: once the tree is run, the graphical module
periodically traverses the tree, updates its rendering context or the engine’s,
and has graphical objects rendered by the engine as it encounters them. In other
words, the restriction of the tree to containers and graphical elements has the
semantics of a graphical scene graph. Other rendering engines do manage their
own internal structure. In that case the tree is only traversed once to create this
structure, and the engine is then notified of changes in the tree that concern it;
the engine acts as a server, and one can interpret this as an extension of event
communication to the rendering itself.

6 Example applications

IntuiLab and their partners have used IntuiKit during five years for developing
dozens of interactive applications as diverse as car dashboard and multimedia
displays, air traffic control tools, geographical information systems on tabletops,
multimodal information query systems or lotto kiosks. We describe here some
example uses that demonstrate the robustness of the I* model.

O ur
-]
Yl e—

[@]

O tab2mmmm [Radio CD

tabs selection

[&)

| Navigation J

Jﬁ.\‘

tab4mmm [Comfort
D,

Fig. 1. An set of tabs for a car multimedia system

6.1 Skinning a visual component

Figure 1 shows the tree structure of a component that was built for a car mul-
timedia system. It has a static background, four tabs that represent four parts
of an application, a Switch element, and a finite state machine. The transitions
of the state machine are bound to events from a set of keys located near the
steering wheel, and its state is merged with that of the Switch. Depending on
the SVG file used for the graphical elements, the result looks as in Figure 2a or
Figure 2b.

& CHN G ——

Directory - ;Navigation} I Comfort ‘

2052 km. Vancouver
8689 km. Paris

2481 km. Orlando
1080 km. San Diego

(@] T
®) v |

Fig. 2. a. With one graphics file b. and another

6.2 Building a multimodal dialogue box

The following code shows how one builds a simple multimodal Yes/No dialogue
box from atomic elements: a rectangular frame; two rectangles and bindings on
them that emit Y (resp. N) events when they are pressed on; a speech grammar;
two bindings on the recognition of words by the grammar. For concision the
parent component does not appear here, nor the arguments that create the
elements within this parent.

ny $r = new QU :: Rectangle (-x => 0, -y => 0, -width => 200, -height => 100);
ny $y = new QU :: Rectangle (-x => 20, -y => 30, -width => 60, -height => 40);

new Bi ndi ng (-source => $y, -spec => 'ButtonPress’, -action => "notify("’Y)");
ny $n = new QU ::Rectangle (-x => 120, -y => 30, -width => 60, -height => 40);
new Binding (-source => $n, -spec => 'ButtonPress’, -action => "notify('N)");

ny $g = new Speech:: G anmar (-granmar => 'yes-no’');
new Bi ndi ng (-source => $g, -spec => [command => 'yes'], -action => "notify(’Y)");
new Bi ndi ng (-source => $g, -spec => [command => 'no’], -action => "notify('N)");

The same events are emitted by this dialogue box whether the mouse or voice
is used. The speech grammar, since it is a child element of the dialogue box, is
only active when the box is active; the same holds for the rectangles and the
bindings of course.

6.3 Application design and development

Figure 3 illustrates the use of IntuiKit in a phase of the multidisciplinary process
described in the introduction of this article. The illustrated air traffic control
project involved “virtual paper”: objects that felt like paper strips through a
combination of visual effects, animation and gesture recognition. A first phase
of iterative design yielded a paper prototype that outlined the structure and the
behaviour of the application. Designers and programmers used this prototype
to define an I* tree and give names to elements to be produced by designers.
Then each started to program, draw or otherwise build their elements and give
them the appropriate names. For test purposes, someone in the group quickly
produced very crude graphics, gave them the agreed names and saved them in a

SVG file. This allowed programmers to test their work by loading these elements
from the SVG file (left). When the final data management, behaviour, animation
and graphical elements were ready, the programmers just had to put XML files
delivered by designers at the right place, and test the application (right). This
application later had several sets of graphics for different customers in Europe.
Measurements carried out on this case study (comparison with a project of
similar size and complexity, by the same team, using a linear process) showed
a reduction of project duration by about 50%, expenses by about 30%, and a
dramatic decrease of coordination costs (estimated number of phone calls) [1].

e || o intuilobR J||

Fig. 3. ATC application before and after final integration

6.4 Transferring more tasks to designers

In the above example, graphic designers only produced graphics. However, some
are willing to take more tasks from programmers, and particularly visual layout
and its adaptation to size changes. We have designed artistic resizing [9], a tech-
nique where graphic designers provide examples of graphical objects at different
sizes, and the system interpolates their appearance for any chosen size.

Implementing the artistic resizing algorithm with IntuiKit was a simple appli-
cation of the I* model: we built a new atomic element that has properties width
and height, implements the artistic resizing algorithm, is defined by passing
it the examples as children elements, and then behaves as a single graphical
element. This new element can then be placed in the tree wherever a resiz-
able graphic element is desired, and its properties connected to the size of the
available window. From then on, the graphical object adapts to the size of the
window, respecting the designer’s non-linear transformations.

6.5 Input management

One of the future challenges for interactive software is that when building an
application, developers will not have a precise idea of what input devices will be
available at run time. We have been able to build an IntuiKit module to address
this problem, by slightly extending the semantics of the I* model.

Input devices are event sources and hence candidate tree elements, but they
are out of control of developers. It makes sense to decide that the application
tree is just an element of a larger I* tree that contains the computer devices.
Therefore, we just had to create a new element set and element discovery func-
tions to allow programmers to test and use input devices [8]. Using a technique
used for communicating dynamic data creation from the functional core to the
user interface, the hot-plugging of devices is reported as an event by the set of
input devices, which is an automatically managed component that contains all
input device elements. In that context, multimodal fusion, that is the combi-
nation of inputs from different sources, becomes a matter of creating elements
that subscribe to different sources and implement one combination policy or the
other: time windows, for instance.

7 Research directions

The I* model and its implementations have allowed us to turn innovation in user
interfaces into a more industrial activity. But questions remain to be addressed,
to give the model more solid foundations and to cover issues currently not ad-
dressed. First of all, the control structures described above are insufficient for
building all of the functional core; this forces developers to build it as a set of
atomic elements, and breaks the requirement for a uniform model. Similarly,
one needs to devise a data-passing scheme that makes the implementation of
data-flow elements as easy as functions in a functional framework, as well as a
typing system for controlling bindings and connections. We may also need to
propose a “service call” communication system on top of event communication,
for the few cases where the caller is defined after the callee.

In another direction, defining a formal semantics for the I* tree and its com-
munications would provide developers with an unmbiguous understanding of how
their components behave, and help compare with more general frameworks. It
could also serve as the basis for compiling components rather than just interpret-
ing them: whereas during execution IntuiKit, even in Perl, compares favourably
with all rich graphics frameworks, interpretation times are not satisfactory.

Finally, a strong similitude appears between elements and processes in re-
active systems or other concurrent models, but the consequences of choosing a
given semantics need to be explored. In particular, we must understand what
level of control programmers and designers need over the sequencing of their
actions, and how it fits in the available models of concurrency.

8 Related work

Many composition scenarios and requirements have been studied by user in-
terface software specialists. The proposed solutions either have been high level
guidelines or patterns focused on a given requirement: for instance MVC or
PAC [10] for separing the interface from the functional core; the use of active

values (examplified recently by Cocoa’s bindings) then data flows or one way con-
straints for describing user input, layout or animation [4, 11]; hierarchies of visual
components as in Self [12]; the Java source/listener and Qt signal/slot patterns
for event communication. Most such patterns implement a reactive composition
model on top of an existing function-oriented language (using inheritance, for in-
stance), thus not addressing the uniform framework requirement. None of these
have explored the heterogeneity requirement.

Recent products support the new development processes. Flash allows graph-
ical designers to build complete applications; programmers can extend these us-
ing a dedicated language or even a mainstream language. Other solutions for
Web applications, such as SVG+Javascript or Microsoft Silverlight, take a sim-
ilar hybrid approach. However, such solutions are very specific to graphics, and
do not propose a unified framework for complex applications: Flash has limited
encapsulation features and the others fall in the hybrid model category.

Solutions for programming user interfaces have been proposed for nearly ev-
ery programming paradigm: object-oriented programming of course, but also
reactive programming [13], functional programming [5], etc. Many of these ap-
proaches, with the notable exception of reactive programming and the Smalltalk
language [14], consist in providing patterns that extend or alter the semantics
of the original framework to support interactive components.

With the advent of large heterogeneous systems [15], research on software ar-
chitecture and software composition addresses requirements that are very similar
to ours. The I* tree can be compared to the hierarchy of components in the Frac-
tal framework [16]; component interfaces, including the experimental behaviour
inspection features, and some aspects of internal control in I* components not
described here can be compared to Fractal membranes. The main difference is
probably that Fractal is service-oriented while I* is event-oriented. Aspect pro-
gramming [17] also shares requirements with I*, particularly modularity (for han-
dling cross-cutting concerns) and external control. One can interpret point-cuts
and advices as the I* binding of actions to particular sources, with a particular
event specification language. The main difference is that this event communi-
cation is the main control construction in I* whereas aspect programming uses
it only for particular software engineering cases. I* can also be considered as
an architecture description language, but one that would aim at describing the
internal architecture of components as well, down to the level of instructions.

9 Conclusion

We have analysed in this article how the new multidisciplinary processes used
for interactive software influence software architecture and composition. They
create a need for a component model that unifies the heterogeneous concepts
used by the various stakeholders, that combines with the more traditional re-
quirements of user interface software. We have described the main features of
the I* component model that addresses these issues. In particular, the ability to
apply late binding techniques to heterogeneous components such as behaviours,

graphical objects, speech rules or computations allows to implement concurrent
development processes. One of the main challenges now is to compare our model
with more mainstream results in software engineering. Understanding the links
between interactive software and other heterogeneous systems may prove fer-
tile, as well as comparing I* with formal models for describing concurrency. In
the long term, our objective is to reconcile user interface design with software
engineering theories, practices and tools.

Acknowledgements

This work was partly funded by the French government through the ITEA
Emode project and by Agence Nationale de la Recherche through the Digitable
and Istar projects. L. Bass, R. Kazman and S. Conversy provided useful advice
on this article. The anonymous reviewers helped a lot to improve it.

References

1. Chatty, S. et al: Revisiting visual interface programming: creating GUI tools for
designers and programmers In: Proc. of the ACM UIST, Addison-Wesley (2004)
2. Myers, B.A.: Why are human-computer interfaces difficult to design and imple-
ment? Technical Report CMU-CS-93-183, Carnegie Mellon University (1993)
3. Chatty, S.: Programs = data + algorithms + architecture. In: Proc. of the 2007
conference on Engineering Interactive Systems. LNCS, Springer-Verlag (2008)
4. Chatty, S.: Defining the behaviour of animated interfaces. In: Proceedings of the
IFIP WG 2.7 working conference, North-Holland (1992) 95-109
5. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming. (1997)
6. Accot, J. et al.: Formal transducers: models of devices and building bricks for the
design of highly interactive systems. In: Proc. of DSVIS’97, Springer-Verlag (1997)
7. Dragicevic, P., Fekete, J.D.: Support for input adaptability in the icon toolkit. In:
Proceedings of ICMI'04, ACM Press (2004) 212-219
8. Chatty, S. et al.: Multiple input support in a model-based interaction framework.
In: Proceedings of Tabletop 2007, IEEE computer society (2007)
9. Dragicevic, P. et al.: Artistic resizing: A technique for rich scale-sensitive vector
graphics. In: Proceedings of the ACM UIST, Addison-Wesley (2005)
10. Coutaz, J.: PAC, an implementation model for dialog design. In: Proceedings of
the Interact’87 Conference, North Holland (1987) 431-436
11. Myers, B.: Separating application code from toolkits: Eliminating the spaghetti of
callbacks. In: Proceedings of the ACM UIST, Addison-Wesley (1991)
12. Smith, R.B. et al: The Self-4.0 User Interface. In: OOPSLA’95 conference pro-
ceedings, Addison-Wesley 47-60
13. Clement, D., Incerpi, J.: Programming the behavior of graphical objects using
esterel. In: Proceedings of TAPSOFT’89, LNCS 352, Springer Verlag (1989)
14. Kay, A.C.: The early history of Smalltalk. ACM SIGPLAN (3) (1993) 69-75
15. Hardebolle, C. et al.: A generic execution framework for models of computation.
In: Proceedings of MOMPES 2007, IEEE Computer Society (2007) 45-54
16. Bruneton, E. et al.: An open component model and its support in Java. In:
Proceedings of CBSE 2004. LNCS 3054, Springer-Verlag (2004)
17. Kiczales, G.: Aspect-oriented programming. ACM Comp. Surveys 28(4es) (1996)

