
HAL Id: hal-01022139
https://enac.hal.science/hal-01022139

Submitted on 23 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting multidisciplinary software composition for
interactive applications

Stéphane Chatty

To cite this version:
Stéphane Chatty. Supporting multidisciplinary software composition for interactive applications. SC
2008, 7th International Symposium on Software Composition, Mar 2008, Budapest, Hungary. pp
173-189, �10.1007/978-3-540-78789-1_14�. �hal-01022139�

https://enac.hal.science/hal-01022139
https://hal.archives-ouvertes.fr

Supporting multidis
iplinary software
omposition for intera
tive appli
ationsStéphane ChattyENAC IntuiLabLaboratoire d'Informatique Intera
tive Les Triades A, rue Galilée31055 Toulouse, Fran
e 31672 Labège, Fran
e
hatty�ena
.fr
hatty�ena
.frAbstra
t. Produ
ing intera
tive appli
ations is a multidis
iplinary soft-ware
omposition a
tivity. This, and the nature of user interfa
e
ode,puts parti
ular requirements on
omponent
omposition frameworks. Wedes
ribe a
omponent model that relies on a hierar
hi
al tree of hetero-geneous elements
ommuni
ating through events and data �ows. Thismodel allows to assemble, reuse and apply late binding te
hniques to
omponents as diverse as data management, algorithms, intera
tion wid-gets, graphi
al obje
ts, or spee
h re
ognition rules at all levels of gran-ularity. We des
ribe implementations of the model and example uses.Finally, we outline resear
h dire
tions for making the model more
om-plete and
ompatible with mainstream software models.1 Introdu
tionGraphi
 designers and usability experts are in
reasingly involved in the designof appli
ations, espe
ially when the user interfa
e goes beyond traditional wid-gets. Until re
ently, they did it by produ
ing spe
i�
ations that programmerstried to follow. This pro
ess was not optimal: work was dupli
ated, mistakes orte
hni
al
onstraints altered the original design, and it for
ed a sequential work-�ow between a
tors. It also impeded the redesign of appli
ations. If a medi
alimaging
ompany a
quired a solution for analysing images, wanted to merge itwith their image
apture solution, and had
onsisten
y problems between thetwo user interfa
es, they had to reprogram major parts of the software.An emerging alternative pro
ess is the multidis
iplinary produ
tion of soft-ware [1℄. Graphi
 designers produ
e the visual parts, intera
tion designers pro-du
e intera
tive behaviours, and programmers only produ
e the fun
tional
ore(data management and algorithms) and the overall appli
ation stru
ture. Thisredu
es the global amount of work, eliminates programmer-indu
ed mistakes aswell as in
ompatibilities, and allows for
on
urrent engineering: all a
tors
anwork in parallel and assemble their work just before delivering.In this arti
le we propose a
omponent model to support this new pro
ess.The main
ontributions are:� an analysis of how this pro
ess and the nature of intera
tive software
all fora software
omposition model, appli
able to all types of user interfa
es andto the fun
tional
ore at all granularities of
ode;

Published in the Proceedings of the 7th International Syposium on Software Composition, Lecture Notes in Computer
Science. Copyright (c) 2008 by Springer-Verlag. Available online at http://www.springer.de/comp/lncs/index.html

� the des
ription of a hierar
hi
al
omponent model using events and data�ows for
ommuni
ations among
omponents, aimed at addressing the
or-responding requirements.Contrasting with most models that des
ribe graphi
al intera
tive
omponents,our model is aimed at des
ribing all parts of an appli
ation, in
luding non-visualintera
tion as well as the parts that do not belong to the user interfa
e. Weexamplify the use of this model through several development s
enarios, involvingvarious degrees of intera
tion. Finally, we outline some resear
h dire
tions.2 Motivation: assembling intera
tive softwareIntera
tive software is hard to develop [2℄. This is in part be
ause the user inter-fa
e per se, whi
h a

ounts for half of the size of intera
tive appli
ations, obeysdi�erent prin
iples than the other half. It has external
ontrol, deals with staterather than
omputation, and heavily uses referen
es be
ause its obje
ts havemultiple interdependen
ies. With imperative or fun
tional languages, its obje
tbehaviours tend to be split a
ross multiple fun
tions. The ar
hite
ture patternsused for intera
tive
omponents even give them
on
urrent semanti
s [3℄.But most of all, the way intera
tive software is designed and produ
ed poses asoftware
omposition problem that must be addressed. If software
omposition isabout assembling
omponents that have not be planned and designed together,then building an intera
tive appli
ation is a
ontinuous software
ompositiona
tivity: from the beginning, unplanned reorganisation is the rule rather thanthe ex
eption. Moreover, it deals with elements produ
ed by a
tors with variedba
kgrounds and methods at any level of granularity and any degree of lo
ality.2.1 Varied stakeholdersIntera
tive software requires skills from usability experts, domain experts, users,programmers, intera
tion designers and graphi
al designers. Their
ontribution
an be very
on
rete in the a
tual produ
tion of software, whether during thedevelopment or later during appli
ation 'revamping' or
ustomisation:� domain experts de�ne sequen
es of user tasks (game levels, for instan
e);� graphi
al designers de�ne all the graphi
s and the geometri
al layout;� natural language grammar designers, sound designers or other spe
ialistsmay also produ
e parts of the appli
ation;� usability experts or intera
tion designers may de�ne the �ne behaviour ofintera
tive
omponents: should buttons highlight when one enters them fromthe side or only when pressing dire
tly?� users or support sta� may rede�ne the layout or alternate input
on�gura-tions to suit their spe
ial needs.All of these are the owners of
on
erns that should legitimately form individ-ual
omponents. All have their own abstra
tions and tools to manipulate them,but in the end their produ
tions must be assembled and run together.

2.2 Planning issuesThe above a
tors do not follow the traditional s
hedules of software development.As already mentioned, their tasks are best a
hieved in parallel. More, the designis iterative: be
ause user needs are di�
ult to eli
it, iterative pro
esses based onprototyping and evaluation have been devised. The iterations may
ontinue andimportant design de
isions may be delayed while the rest of the software is beingdeveloped: from the beginning, the appli
ation is in an unplanned
ustomisationphase. This
reates di�
ulties in large proje
ts su
h as air tra�

ontrol systems:one both has to delay interfa
e design issues and
hoose an ar
hite
ture veryearly, whi
h often leads to ar
hite
ture
on�i
ts later in the proje
t. Only a
omponent model suiting all types of user interfa
es would alleviate this problem.Intera
tive software also has the
lassi
al issues of appli
ation redesign: graph-i
s instead of text dialogue, post-WIMP1, interfa
es instead of widgets, or fusionof several appli
ations under a uni�ed interfa
e. The adaptation to varying plat-forms (s
reen size, input devi
es) also requires a redesign or even a dynami
adaptation of the visual layout, the dialogue sequen
e, or even the intera
tionstyle (a button does not work the same with a mouse or a tou
h s
reen). Thiswill
ulminate with the ubiquitous
omputing paradigm, when appli
ations willdis
over their exe
ution
ontext at run time. In summary, software
ompositiono

urs at any time from initial development to run-time.2.3 Component granularityThe
omponents that are assembled or inter
hanged
an have very di�erent sizeand
omplexity. At the largest s
ale is the integration of two appli
ations intoone: an email appli
ation and a Web browser, for instan
e. At a smaller s
ale, agiven widget must sometimes be repla
ed:
hanging a
lassi
 re
tangular menuin favour of a pie-shaped one that works better on tabletop user interfa
es, forinstan
e. In some
ases the repla
ement is at an even smaller s
ale: swit
hingfrom a mouse interfa
e to a tou
h s
reen interfa
e just requires to
hange apart of the internals of some intera
tors2. For intera
tion designers this is bestseen as a
hange of sub-intera
tor sized
omponents from their own library of
omponents: in buttons for instan
e, repla
ing the behaviour that rea
ts onlyto
li
ks initiated on the graphi
al obje
t ('mouse-oriented' behaviour) with onethat allows to start beside then enter ('tou
h-s
reen-oriented' behaviour).Furthermore, these various granularities
annot be handled independently:one often has to repla
e a
omponent by another of a very di�erent size. Considera desktop metaphor in whi
h appli
ations are shown as pages in a book. Whenturning the pages, you see an image on ea
h page; but as soon as a page is �at,the image is repla
ed with the a
tual running appli
ation. As another example,when adding animation to user interfa
es so that visual
hanges are not toosudden, one has to repla
e assignments of numeri
al values by whole animation1 interfa
es that do not rely on the Windows-I
ons-Mouse-Pointing paradigm2
omponents that deal with a given intera
tion: a widget, a drag and drop sequen
e,a spee
h-enabled dialogue box

sequen
es: instead of jumping to its position, the temperature dial of a
oolerwill make a
ontinuous movement. And the target itself
an be a
onstant, or
an be obtained by a
tivating a spee
h grammar rule, or through a 'wizard'appli
ation that helps the user make the
hoi
e.2.4 Cross
utting
on
ernsNot all
hanges are as lo
al as the ones above. When 're-skinning' a user interfa
e,they only
hange the graphi
s but all the visual
omponents in the appli
ation aremodi�ed. Many fa
ets of user interfa
es are �
ross
utting
on
erns� in the senseof aspe
t-oriented programming: graphi
al style, geometri
al layout, animation,drag and drop management, lo
alisation, time
onstants, et
. Spaghetti of
odeis still the norm today in most reasonable-size intera
tive appli
ations be
auseof this. For instan
e, building drag and drop behaviour as a
omponent ratherthan a bla
k box or a series of
ode fragments is still a
hallenge.3 Requirements on
omponent modelsThe situation des
ribed above generates requirements on the
omponent modelused for organising appli
ations. Some are not new and have been adressedindividually in the past. But the new multidis
iplinary pro
esses and post-WIMPintera
tion exa
erbate them and make it important to address them
olle
tively.Uni�ed framework. Be
ause of the planning issues des
ribed above, it is desirableto have a unique model for all
omponents in an appli
ation, so as not to limithow and when
omponents
an be inter
hanged and
onne
ted. This applies to
omponents in the user interfa
e as well as the fun
tional
ore: for instan
e, ananimated obje
t su
h as a s
rollbar index
an be
onne
ted to the mouse, to a
lo
k, or to the �le-loading
omponent at di�erent times. Post-WIMP interfa
edesigners rely heavily on this, whereas most user interfa
e
omponent modelsapply only to graphi
al intera
tive
omponents, and to their sub-
omponents aslong as they are themselves graphi
al intera
tive
omponents. This only
oversvery few
omposition s
enarios, and for
es programmers to use several software
omposition models in the same appli
ation.Heterogeneity support. An intera
tive appli
ation is a heterogeneous system byitself. Not only do developers
ome from di�erent ba
kgrounds, not only dothey manipulate very di�erent entities, but their preferred
omputation modelsare also very di�erent. Some intera
tion styles are best de�ned through statema
hines; others are easier with data �ows. Graphi
s are often seen as purede
larative obje
ts. Some dialogue sequen
es are purely linear (levels in a game,steps in a wizard) but
on
urren
y is always present, if only to provide animatedfeedba
k. Gesture re
ognition and similar algorithms, like
omputations, are welldes
ribed with fun
tional programming, while input handling
alls for rea
tiveprogramming [5℄. Within the proposed model, it must be possible to build
om-ponents as di�erent as graphi
al obje
ts,
omputations, intera
tive behavioursor spee
h grammar rules, by taking any of these points of views.

Multiple granularities. Heterogeneity also exists in the granularity of
ompo-nents, as identi�ed in the previous se
tion. The model must therefore have a
omponent
on
ept that is the same at all s
ales, from basi
 instru
tions towhole appli
ations, like does fun
tional programming.Modularity. Not all user interfa
es are only graphi
al. Some have sound, spee
hre
ognition, or video
apture. Some even
hange over time: an appli
ation
ana
t as a voi
e server when you are away from the o�
e and laun
h a graphi
alinterfa
e when you use your
omputer. It is important that the parts of theframework that manage these modalities are as modular as dynami
 librariesare today, and that developers
an
hoose to use them or not.Behaviour
he
king. The model must provide support for
he
king
omponent
omposition, be
ause intera
tive software also has the issues of traditional soft-ware. It is parti
ularly important to
he
k the
ompatibility of
omponent be-haviours, and not only data types [6℄.De
larativeness. Some stakeholders in the development use purely graphi
altools. If they are to
ontribute e�
iently, they must be allowed to modify appli-
ations without the help of programmers. Therefore the model must support ade
larative style of
omposition, that is a style in whi
h the existen
e of a given
omponent at a given lo
ation fully determines its semanti
s.External
ontrol �ows. In user interfa
es, what triggers an a
tion is not a
on-trol �ow from the main program but an external
ondition: user's a
tion,
lo
ksignal, et
. Fun
tion
alls do not properly support this be
ause they require thatthe sour
e of the
ontrol �ow has information about the re
ipient and thus isdeveloped after it. It usually is developped before: devi
e drivers and intera
tive
omponents predate appli
ations. Fun
tion referen
es and
allba
ks, or the useof late binding for that purpose are workarounds that sometimes indu
e pro-grammers into mistakes [3℄. Events are more useful than fun
tions, espe
iallywith post-WIMP user interfa
es.Con
urren
y. Some intera
tive
omponents require
on
urrent semanti
s, forinstan
e when two users manipulate two menus on a tabletop interfa
e. Con
ur-ren
y also shows more subtly when two programmers subs
ribe two
omponentsto the same event without knowing about the other, and a third programmer
ombines their
omponents and expe
ts them to respe
t some sequen
ing prop-erties. Not only does the model need to support
on
urren
y, it also needs toprovide ways of reasoning about it and expressing ordering
onstraints.4 The I*
omponent modelTo address the above requirements we propose a hierar
hi
al
omponent modelnamed I*, that
ombines features of
omputer graphi
s s
ene graphs, intera
tive

software models, and
omponent models. Su

essive versions of it have beenimplemented in the IntuiKit model-oriented programming framework and usedin an industrial
ontext sin
e 2003. Its major features are its tree of elements,its event-based
ommuni
ation model, and its modular exe
ution model.4.1 The element treeIn the I* model, an appli
ation is a tree of elements. An element is made of:� a set of named properties, that store its state;� a set of named
hildren elements;� an interfa
e that exports the names of
ertain
hildren, properties and events,and manages internal operations on
hildren element and properties.Some elements,
alled atomi
, are built using the host language and theirinternals are not a

essible within the model. All others,
alled
omponents, arebuilt by assembling elements,
reating properties and de�ning interfa
es. The I*model
onsists of the des
ription of elements and operations on them, of a setof atomi
 elements that des
ribe
ontrol, and of their exe
ution semanti
s.Appli
ation stru
ture. The tree of elements not only represents the ar
hite
tureof the appli
ation, but also the logi
al stru
ture of its interfa
e. It provides areferen
e framework for all a
tors of the development. For instan
e, a
lassi
alimage editing program is made of a palette
omponent, a menu bar
omponent,a drawing area
omponent, and a few pop-up dialogue box
omponents. Thepalette
ontains buttons, and so on re
ursively. All intera
tors are
omponents,and their
hildren are
omponents (smaller intera
tors) or atomi
 elements.Atomi
 elements. In most user interfa
e models, intera
tors are atomi
. Here,atomi
 elements are smaller and more heterogeneous:
omputations, graphi
alobje
ts, spee
h rules, state ma
hines, event noti�
ations, property assignments.The model allows a mapping from obje
t-oriented
lasses to atomi
 elements, soas to fa
ilitate integration with the host language. To build an atomi
 elementone takes a
lass and turns an instan
e of it into an element, sele
ting some
lassmembers as exported properties and some methods as exported
hildren.Graphi
al obje
ts and graphi
al
ontext obje
ts (brushes, gradients, et
) areatomi
 elements. For instan
e, a re
tangle is an element, and thus forms a le-gitimate appli
ation; running it a
tually displays a re
tangle on the s
reen. The
ode below shows how this is done with the IntuiKit Perl programming interfa
e:
my $r = new GUI::Rectangle (-x => 0, -y => 0, -width => 100, -height => 100);

$r->run;The same prin
iple applies to other intera
tion media; for instan
e, the In-tuiKit environment also implements elements that represent 3D sounds andspee
h grammar rules. One of the
lassi
al te
hniques for des
ribing the be-haviour of intera
tors is the use of �nite state ma
hines. These, as well as data-�ow
onne
tions for
ontinuous behaviours and algorithms that re
ognise ges-tures from traje
tories, are also implemented as atomi
 elements.

Finally, an intera
tive appli
ation also
ontains
omputation
ode and ap-pli
ation domain obje
ts. These too are elements, and are
urrently most oftenimplemented as atomi
 elements by appli
ation programmers.Element aggregation. Components are built by assembling other elements. Some-times mere juxtaposition is enough, for instan
e when building a multimodaldialogue box by assembling a re
tangular frame, two buttons (Yes and No), anda spee
h grammar rule that re
ognises �yes� and �no�. More usually, elementsneed to be inter
onne
ted so as to ex
hange events or values, for instan
e when
oupling a writing zone, a gesture re
ognition element, and a text element thatshows what has been re
ognised; we will later see how event and data-�ow prop-agation are des
ribed through spe
ialised atomi
 elements.But in some
ases the
hildren elements are too �ne grain to have a signi�
antsemanti
s as su
h, and must be
ombined tightly to produ
e a signi�
ant e�e
t:the state of a state ma
hine has a meaning only if it is also the state of aper
eptible element. By extending the model to sub-intera
tor elements, we havelost the natural sharing of data between the two parts of an intera
tor. Usingevent
ommuni
ation would be a solution, but at the
ost of a poorly justi�edmemory overhead. To avoid it, a tight aggregation me
hanism
alled propertymerging is proposed, and managed in the parent
omponent's interfa
e. Theresult is that a memory slot for one property only is used, and this property isa

essible under di�erent names from the
hildren elements. Control propagationwhen the property
hanges o

urs as a spe
ial
ase of data-�ow.For instan
e, here is how one would des
ribe a button made of arbitrarygraphi
s for ea
h of its two states, with an element of type Swit
h that uses itsbran
h property to
hoose whi
h of its
hildren is a
tive at a given time:
$btn = new Component;

$sw = new Switch (-parent => $btn);

$on = load Element (-parent => $sw, -name => ’on’, -file => ’on.svg’);

$off = load Element (-parent => $sw, -name => ’off’, -file => ’off.svg’);

$fsm = load Element (-parent => $btn, -file => ’behaviour.xml’);

$btn->merge (-names => [$fsm->state, $sw->branch]);

$b->run;Be
ause it allows to delay the asso
iation of graphi
s (or any other per
ep-tive
hannel) and behaviour, merging is useful for managing heterogeneity in agroup of developers. On
e a
onvention has been established about the names ofelements and their properties, a programmer
an build a
omponent in whi
h heor she just names the
hildren and spe
i�es the merged properties, an intera
tiondesigner builds a state ma
hine that des
ribes how the user's input is managed,and a graphi
 designer builds a set of graphi
al obje
ts; the �nal
omponent isassembled in a
ompilation or linking phase, just prior to exe
uting the program.Information hiding The names given to
hildren elements and properties arevisible to all
hildren of a
omponent, as well as the events de�ned by
hildren.From this internal symbol table is built an external one, by de
iding what names

are visible; during that operation, renaming is also allowed. Note that mergingis also a manipulation of symbol tables within the
omponent's interfa
e.Name hiding is for
lassi
al software engineering purposes. Renaming is forintera
tive software ar
hite
ture purposes. Intera
tive
omponents are de�ned interms of intera
tion
on
epts; names su
h as 'button', 'i
on', '
li
k', 'press', or'drag' are used. At some point, they need to be
onne
ted to the fun
tional
orethat uses names su
h as '�le', 'appli
ation', 'laun
h', or 'ship', 'pro�le', 'mat
h'.This
onne
tion implies two operations. First, one needs to mat
h
on
epts;for instan
e, a ship is represented as an i
on, a pro�le as a button, and the'mat
h' operation is asso
iated to the 'press' event. Then, be
ause the names aredi�erent, one needs to translate them. This is
alled fun
tional
ore adaptation;in obje
t-oriented frameworks, it is implemented with
lasses whose only role isto glue obje
ts of in
ompatible types together. Here, renaming makes fun
tional
ore adaptation a framework-level feature, optimised out at
ompile time.Another pe
uliarity is that there are di�erent publi
s to hide informationfrom. Appli
ation programmers do not need to see the implementation details ofa button, but designers who
ustomise an appli
ation do need it; symmetri
allythey do not
are about the external interfa
e of the button. This is
urrentlyhandled at the implementation level only: name hiding applies to all program-ming interfa
es to the I* tree languages su
h as Perl, C++ or Java, and not tointerfa
es in languages for designers su
h as CSS.4.2 Communi
ation and
ontrolThe prevalent exe
ution model in user interfa
es, and parti
ularly post-WIMPuser interfa
es, is the rea
tive model. This model usually
oexists with the pro-
edural model brought by the programming language. To satisfy the uniformframework requirement, I* solely relies on event
ommuni
ation and a variant:data-�ow
ommuni
ation.Events. Some elements in the tree are able to emit events when
ertain
onditionsare met. A
lo
k emits events at regular intervals, a graphi
al obje
t emits eventswhen it is
li
ked on with the mouse, a �nite state ma
hine when it
hangesstate, an animation when it ends, a button when its state ma
hine
hangesstate. Fun
tional
ore elements
an also be sour
es: a plane emits an event whenit
hanges altitude or position, a �le when it
hanges size, and so on. Eventsubs
riptions are represented as Bindings, that is atomi
 elements that asso
iatea
tions to
onditions. A Binding is de�ned with:� a referen
e to a sour
e, that is a property or an element that may emit events;� an event spe
i�
ation, that is a sour
e-spe
i�
 expression that des
ribes whatevents are sele
ted;� a referen
e to an a
tion, that is an element that is exe
uted when a mat
hingevent is emitted.For instan
e, this
reates a re
tangle whenever a multitou
h surfa
e is tou
hed:

my $table = find Element (-uri => ’input:/intuiface’);

my $b = new Binding (-source => $table->pointers,

-spec => ’add’,

-action => "GUI::Rectangle (-x => %X, -y => %Y)");A �nite state ma
hine is an atomi
 element made of a set of bindings thatare only a
tive when the ma
hine is in a given state. Atomi
 a
tions namedNoti�
ation allow
omponent builders to emit their own events. Others namedAssignment set the values of properties. Callba
k fun
tions in the host language
an be en
apsulated as a
tions named NativeCode.The Binding elements make behaviour de
larative: one
reates a
ontrol �owjust by adding the appropriate Binding. It also helps to
reate state-dependentbehaviours, by making bindings or state ma
hines a
tive or not depending ona state, without having to introdu
e hierar
hi
al state ma
hines or State
harts:hierar
hy is represented by the I* tree.Data-�ow. Data-�ow is a spe
ial
ase of event
ommuni
ation. Properties areevent sour
es, and atomi
 elements
alled Conne
tors are Bindings de�ned fromtwo properties: they trigger an impli
it a
tion that
opies the value of the �rstproperty into the se
ond when it
hanges. For instan
e with the following
odea re
tangle follows the �nger on a tou
hs
reen.
my $t = find Element (-uri => ’input:/touchscreen’);

my $r = new GUI::Rectangle (-width => 10, -height => 10);

my $xc = new Connector (-in => $t->X, -out => $r->x);

my $yc = new Connector (-in => $t->Y, -out => $r->y);Atomi
 elements named Wat
hers are used within elements to bind a
tions to
hanges of their own properties. This allows to build data-�ow bri
ks su
h asthose des
ribed in [4℄ or [7℄, and produ
es the
ontrol �ows asso
iated to merging.This de�nition of data-�ow does not only provide a de
larative way of build-ing behaviours. It also allows to de�ne a
onsistent s
heduling for event anddata-�ow propagation, so that mixing them leads to predi
table results. Imple-mentations of I* in
lude a s
heduling algorithm based on properties,
omparableto those used in syn
hronous programming.5 Implementing element semanti
sWe have built two implementations of the I* model named IntuiKit Perl andIntuiKit C++. We now des
ribe what semanti
s they give to elements and howtheir ar
hite
ture helps ful�ll the initial requirements.5.1 A model-based implementationFor ea
h type of elements, an XML format has been de�ned. For instan
e, theSVG format is used for graphi
s. IntuiKit in
ludes parsers for these formats, inaddition to a programming interfa
e for instantiating elements,
loning them, or

reating
omponents. Developers
an thus build the appli
ation tree by loadingXML �les, instantiating elements from
ode, or both.Using XML �les has allowed to use IntuiKit in a resear
h proje
t as the �-nal exe
ution engine in a model transformation
hain. It also helps manage theheterogeneity of a
tors and the planning issues: graphi
 designers use their owntools to build graphi
s and export them as SVG. Programmers or intera
tiondesigners
an build the rest of the appli
ation in
ode or XML. Then one
an
hoose to load the XML �les at run time, thus delaying integration to the lastminute, or to generate
ode from them. Using XML also allows to migrate appli-
ation parts from one IntuiKit implementation to another. The typi
al intendeduse for this is to
arry out iterative prototyping with the Perl implementation,then export the graphi
s, behaviours, and stru
ture of the appli
ation tree inXML and reuse them in the �nal C++ development.The manipulation of part of the tree as data �les introdu
es preliminaryphases in the exe
ution of appli
ations: the loading or instantiation of elements,then their linking, prior to exe
uting the tree. So as to make the programminginterfa
es for instantiating elements
ompatible with element
reation in graph-i
al editors, instantiation has been de�ned along the lines of prototype-orientedlanguages: elements
an be
opied from others, then modi�ed.5.2 Modules and rendering enginesFollowing the
onstru
tion of the tree, IntuiKit takes
harge of exe
uting ('run-ning') it. The asso
iated semanti
s is that ea
h element represents an instru
tionfor a part of the exe
ution environment named a module: graphi
al obje
ts arerendered by a graphi
al engine, spee
h grammar rules are managed by a spee
hengine, bindings, a
tions and other behaviour-oriented elements are exe
uted bythe
ore module. This addresses the modularity requirement: ea
h module is in
harge of a set of element types.Ea
h module de�nes an XML namespa
e and implements the asso
iatedparser, provides a programming interfa
e for instantiating the elements it de�nes,and in
ludes a rendering engine for them. Leaving aside user-de�ned modulesthat
ontain user-assembled
omponents su
h as WIMP intera
tors (buttons,menus, dialogue boxes) or dials for
o
kpits, most modules introdu
e atomi
elements. The
ore module provides the
entral
on
epts of the model and afew types of
ontrol elements: bindings,
onne
tors, state ma
hines. Other mod-ules are used only when required: a GUI module for graphi
al obje
ts and basi
WIMP obje
ts su
h as windows, mouse and
ursors; an input module for atypi
alinput devi
es; an animation module for animation traje
tories; a spee
h re
og-nition module for grammar rules. Su
h modules are implemented by reusing anexisting rendering engine, either as a library or a server, and en
apsulating itsprimitives into the exe
ution methods of atomi
 elements.Using modules provides support for the management of
ross
utting
on
ernswhile preserving de
larativeness: to enri
h a
omponent with a new media, onejust needs to add a
hild element from the
orresponding module. All other
omplexity is hidden in the module internals. Furthermore, modules intera
t

ni
ely with the appli
ation ar
hite
ture,
reating a two-dimensional stru
ture:one dimension is the set of modules, the other is the appli
ation tree that drivesthe rendering in all modules. In our view, this is the key for providing an
learar
hite
ture for multimodal appli
ations.We have en
ountered two types of rendering engines with that regard. Some,su
h as OpenGL, do not store the obje
ts they render and need to be
alledperiodi
ally. In this
ase, the I* tree serves not only as the appli
ation stru
turebut also as the basis for rendering: on
e the tree is run, the graphi
al moduleperiodi
ally traverses the tree, updates its rendering
ontext or the engine's,and has graphi
al obje
ts rendered by the engine as it en
ounters them. In otherwords, the restri
tion of the tree to
ontainers and graphi
al elements has thesemanti
s of a graphi
al s
ene graph. Other rendering engines do manage theirown internal stru
ture. In that
ase the tree is only traversed on
e to
reate thisstru
ture, and the engine is then noti�ed of
hanges in the tree that
on
ern it;the engine a
ts as a server, and one
an interpret this as an extension of event
ommuni
ation to the rendering itself.6 Example appli
ationsIntuiLab and their partners have used IntuiKit during �ve years for developingdozens of intera
tive appli
ations as diverse as
ar dashboard and multimediadisplays, air tra�

ontrol tools, geographi
al information systems on tabletops,multimodal information query systems or lotto kiosks. We des
ribe here someexample uses that demonstrate the robustness of the I* model.
Fig. 1. An set of tabs for a
ar multimedia system6.1 Skinning a visual
omponentFigure 1 shows the tree stru
ture of a
omponent that was built for a
ar mul-timedia system. It has a stati
 ba
kground, four tabs that represent four partsof an appli
ation, a Swit
h element, and a �nite state ma
hine. The transitionsof the state ma
hine are bound to events from a set of keys lo
ated near thesteering wheel, and its state is merged with that of the Swit
h. Depending onthe SVG �le used for the graphi
al elements, the result looks as in Figure 2a orFigure 2b.

Fig. 2. a. With one graphi
s �le b. and another6.2 Building a multimodal dialogue boxThe following
ode shows how one builds a simple multimodal Yes/No dialoguebox from atomi
 elements: a re
tangular frame; two re
tangles and bindings onthem that emit Y (resp. N) events when they are pressed on; a spee
h grammar;two bindings on the re
ognition of words by the grammar. For
on
ision theparent
omponent does not appear here, nor the arguments that
reate theelements within this parent.
my $r = new GUI::Rectangle (-x => 0, -y => 0, -width => 200, -height => 100);

my $y = new GUI::Rectangle (-x => 20, -y => 30, -width => 60, -height => 40);

new Binding (-source => $y, -spec => ’ButtonPress’, -action => "notify(’Y’)");

my $n = new GUI::Rectangle (-x => 120, -y => 30, -width => 60, -height => 40);

new Binding (-source => $n, -spec => ’ButtonPress’, -action => "notify(’N’)");

my $g = new Speech::Grammar (-grammar => ’yes-no’);

new Binding (-source => $g, -spec => [command => ’yes’], -action => "notify(’Y’)");

new Binding (-source => $g, -spec => [command => ’no’], -action => "notify(’N’)");The same events are emitted by this dialogue box whether the mouse or voi
eis used. The spee
h grammar, sin
e it is a
hild element of the dialogue box, isonly a
tive when the box is a
tive; the same holds for the re
tangles and thebindings of
ourse.6.3 Appli
ation design and developmentFigure 3 illustrates the use of IntuiKit in a phase of the multidis
iplinary pro
essdes
ribed in the introdu
tion of this arti
le. The illustrated air tra�

ontrolproje
t involved �virtual paper�: obje
ts that felt like paper strips through a
ombination of visual e�e
ts, animation and gesture re
ognition. A �rst phaseof iterative design yielded a paper prototype that outlined the stru
ture and thebehaviour of the appli
ation. Designers and programmers used this prototypeto de�ne an I* tree and give names to elements to be produ
ed by designers.Then ea
h started to program, draw or otherwise build their elements and givethem the appropriate names. For test purposes, someone in the group qui
klyprodu
ed very
rude graphi
s, gave them the agreed names and saved them in a

SVG �le. This allowed programmers to test their work by loading these elementsfrom the SVG �le (left). When the �nal data management, behaviour, animationand graphi
al elements were ready, the programmers just had to put XML �lesdelivered by designers at the right pla
e, and test the appli
ation (right). Thisappli
ation later had several sets of graphi
s for di�erent
ustomers in Europe.Measurements
arried out on this
ase study (
omparison with a proje
t ofsimilar size and
omplexity, by the same team, using a linear pro
ess) showeda redu
tion of proje
t duration by about 50%, expenses by about 30%, and adramati
 de
rease of
oordination
osts (estimated number of phone
alls) [1℄.

Fig. 3. ATC appli
ation before and after �nal integration6.4 Transferring more tasks to designersIn the above example, graphi
 designers only produ
ed graphi
s. However, someare willing to take more tasks from programmers, and parti
ularly visual layoutand its adaptation to size
hanges. We have designed artisti
 resizing [9℄, a te
h-nique where graphi
 designers provide examples of graphi
al obje
ts at di�erentsizes, and the system interpolates their appearan
e for any
hosen size.Implementing the artisti
 resizing algorithm with IntuiKit was a simple appli-
ation of the I* model: we built a new atomi
 element that has properties widthand height, implements the artisti
 resizing algorithm, is de�ned by passingit the examples as
hildren elements, and then behaves as a single graphi
alelement. This new element
an then be pla
ed in the tree wherever a resiz-able graphi
 element is desired, and its properties
onne
ted to the size of theavailable window. From then on, the graphi
al obje
t adapts to the size of thewindow, respe
ting the designer's non-linear transformations.6.5 Input managementOne of the future
hallenges for intera
tive software is that when building anappli
ation, developers will not have a pre
ise idea of what input devi
es will beavailable at run time. We have been able to build an IntuiKit module to addressthis problem, by slightly extending the semanti
s of the I* model.

Input devi
es are event sour
es and hen
e
andidate tree elements, but theyare out of
ontrol of developers. It makes sense to de
ide that the appli
ationtree is just an element of a larger I* tree that
ontains the
omputer devi
es.Therefore, we just had to
reate a new element set and element dis
overy fun
-tions to allow programmers to test and use input devi
es [8℄. Using a te
hniqueused for
ommuni
ating dynami
 data
reation from the fun
tional
ore to theuser interfa
e, the hot-plugging of devi
es is reported as an event by the set ofinput devi
es, whi
h is an automati
ally managed
omponent that
ontains allinput devi
e elements. In that
ontext, multimodal fusion, that is the
ombi-nation of inputs from di�erent sour
es, be
omes a matter of
reating elementsthat subs
ribe to di�erent sour
es and implement one
ombination poli
y or theother: time windows, for instan
e.7 Resear
h dire
tionsThe I* model and its implementations have allowed us to turn innovation in userinterfa
es into a more industrial a
tivity. But questions remain to be addressed,to give the model more solid foundations and to
over issues
urrently not ad-dressed. First of all, the
ontrol stru
tures des
ribed above are insu�
ient forbuilding all of the fun
tional
ore; this for
es developers to build it as a set ofatomi
 elements, and breaks the requirement for a uniform model. Similarly,one needs to devise a data-passing s
heme that makes the implementation ofdata-�ow elements as easy as fun
tions in a fun
tional framework, as well as atyping system for
ontrolling bindings and
onne
tions. We may also need topropose a �servi
e
all�
ommuni
ation system on top of event
ommuni
ation,for the few
ases where the
aller is de�ned after the
allee.In another dire
tion, de�ning a formal semanti
s for the I* tree and its
om-muni
ations would provide developers with an unmbiguous understanding of howtheir
omponents behave, and help
ompare with more general frameworks. It
ould also serve as the basis for
ompiling
omponents rather than just interpret-ing them: whereas during exe
ution IntuiKit, even in Perl,
ompares favourablywith all ri
h graphi
s frameworks, interpretation times are not satisfa
tory.Finally, a strong similitude appears between elements and pro
esses in re-a
tive systems or other
on
urrent models, but the
onsequen
es of
hoosing agiven semanti
s need to be explored. In parti
ular, we must understand whatlevel of
ontrol programmers and designers need over the sequen
ing of theira
tions, and how it �ts in the available models of
on
urren
y.8 Related workMany
omposition s
enarios and requirements have been studied by user in-terfa
e software spe
ialists. The proposed solutions either have been high levelguidelines or patterns fo
used on a given requirement: for instan
e MVC orPAC [10℄ for separing the interfa
e from the fun
tional
ore; the use of a
tive

values (exampli�ed re
ently by Co
oa's bindings) then data �ows or one way
on-straints for des
ribing user input, layout or animation [4, 11℄; hierar
hies of visual
omponents as in Self [12℄; the Java sour
e/listener and Qt signal/slot patternsfor event
ommuni
ation. Most su
h patterns implement a rea
tive
ompositionmodel on top of an existing fun
tion-oriented language (using inheritan
e, for in-stan
e), thus not addressing the uniform framework requirement. None of thesehave explored the heterogeneity requirement.Re
ent produ
ts support the new development pro
esses. Flash allows graph-i
al designers to build
omplete appli
ations; programmers
an extend these us-ing a dedi
ated language or even a mainstream language. Other solutions forWeb appli
ations, su
h as SVG+Javas
ript or Mi
rosoft Silverlight, take a sim-ilar hybrid approa
h. However, su
h solutions are very spe
i�
 to graphi
s, anddo not propose a uni�ed framework for
omplex appli
ations: Flash has limiteden
apsulation features and the others fall in the hybrid model
ategory.Solutions for programming user interfa
es have been proposed for nearly ev-ery programming paradigm: obje
t-oriented programming of
ourse, but alsorea
tive programming [13℄, fun
tional programming [5℄, et
. Many of these ap-proa
hes, with the notable ex
eption of rea
tive programming and the Smalltalklanguage [14℄,
onsist in providing patterns that extend or alter the semanti
sof the original framework to support intera
tive
omponents.With the advent of large heterogeneous systems [15℄, resear
h on software ar-
hite
ture and software
omposition addresses requirements that are very similarto ours. The I* tree
an be
ompared to the hierar
hy of
omponents in the Fra
-tal framework [16℄;
omponent interfa
es, in
luding the experimental behaviourinspe
tion features, and some aspe
ts of internal
ontrol in I*
omponents notdes
ribed here
an be
ompared to Fra
tal membranes. The main di�eren
e isprobably that Fra
tal is servi
e-oriented while I* is event-oriented. Aspe
t pro-gramming [17℄ also shares requirements with I*, parti
ularly modularity (for han-dling
ross-
utting
on
erns) and external
ontrol. One
an interpret point-
utsand advi
es as the I* binding of a
tions to parti
ular sour
es, with a parti
ularevent spe
i�
ation language. The main di�eren
e is that this event
ommuni-
ation is the main
ontrol
onstru
tion in I* whereas aspe
t programming usesit only for parti
ular software engineering
ases. I*
an also be
onsidered asan ar
hite
ture des
ription language, but one that would aim at des
ribing theinternal ar
hite
ture of
omponents as well, down to the level of instru
tions.9 Con
lusionWe have analysed in this arti
le how the new multidis
iplinary pro
esses usedfor intera
tive software in�uen
e software ar
hite
ture and
omposition. They
reate a need for a
omponent model that uni�es the heterogeneous
on
eptsused by the various stakeholders, that
ombines with the more traditional re-quirements of user interfa
e software. We have des
ribed the main features ofthe I*
omponent model that addresses these issues. In parti
ular, the ability toapply late binding te
hniques to heterogeneous
omponents su
h as behaviours,

graphi
al obje
ts, spee
h rules or
omputations allows to implement
on
urrentdevelopment pro
esses. One of the main
hallenges now is to
ompare our modelwith more mainstream results in software engineering. Understanding the linksbetween intera
tive software and other heterogeneous systems may prove fer-tile, as well as
omparing I* with formal models for des
ribing
on
urren
y. Inthe long term, our obje
tive is to re
on
ile user interfa
e design with softwareengineering theories, pra
ti
es and tools.A
knowledgementsThis work was partly funded by the Fren
h government through the ITEAEmode proje
t and by Agen
e Nationale de la Re
her
he through the Digitableand Istar proje
ts. L. Bass, R. Kazman and S. Conversy provided useful advi
eon this arti
le. The anonymous reviewers helped a lot to improve it.Referen
es1. Chatty, S. et al: Revisiting visual interfa
e programming:
reating GUI tools fordesigners and programmers In: Pro
. of the ACM UIST, Addison-Wesley (2004)2. Myers, B.A.: Why are human-
omputer interfa
es di�
ult to design and imple-ment? Te
hni
al Report CMU-CS-93-183, Carnegie Mellon University (1993)3. Chatty, S.: Programs = data + algorithms + ar
hite
ture. In: Pro
. of the 2007
onferen
e on Engineering Intera
tive Systems. LNCS, Springer-Verlag (2008)4. Chatty, S.: De�ning the behaviour of animated interfa
es. In: Pro
eedings of theIFIP WG 2.7 working
onferen
e, North-Holland (1992) 95�1095. Elliott, C., Hudak, P.: Fun
tional rea
tive animation. In: International Conferen
eon Fun
tional Programming. (1997)6. A

ot, J. et al.: Formal transdu
ers: models of devi
es and building bri
ks for thedesign of highly intera
tive systems. In: Pro
. of DSVIS'97, Springer-Verlag (1997)7. Dragi
evi
, P., Fekete, J.D.: Support for input adaptability in the i
on toolkit. In:Pro
eedings of ICMI'04, ACM Press (2004) 212�2198. Chatty, S. et al.: Multiple input support in a model-based intera
tion framework.In: Pro
eedings of Tabletop 2007, IEEE
omputer so
iety (2007)9. Dragi
evi
, P. et al.: Artisti
 resizing: A te
hnique for ri
h s
ale-sensitive ve
torgraphi
s. In: Pro
eedings of the ACM UIST, Addison-Wesley (2005)10. Coutaz, J.: PAC, an implementation model for dialog design. In: Pro
eedings ofthe Intera
t'87 Conferen
e, North Holland (1987) 431�43611. Myers, B.: Separating appli
ation
ode from toolkits: Eliminating the spaghetti of
allba
ks. In: Pro
eedings of the ACM UIST, Addison-Wesley (1991)12. Smith, R.B. et al: The Self-4.0 User Interfa
e. In: OOPSLA'95
onferen
e pro-
eedings, Addison-Wesley 47�6013. Clement, D., In
erpi, J.: Programming the behavior of graphi
al obje
ts usingesterel. In: Pro
eedings of TAPSOFT'89, LNCS 352, Springer Verlag (1989)14. Kay, A.C.: The early history of Smalltalk. ACM SIGPLAN (3) (1993) 69�7515. Hardebolle, C. et al.: A generi
 exe
ution framework for models of
omputation.In: Pro
eedings of MOMPES 2007, IEEE Computer So
iety (2007) 45�5416. Bruneton, E. et al.: An open
omponent model and its support in Java. In:Pro
eedings of CBSE 2004. LNCS 3054, Springer-Verlag (2004)17. Ki
zales, G.: Aspe
t-oriented programming. ACM Comp. Surveys 28(4es) (1996)

