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ABSTRACT  
 
Under the 2004 Agreement on the Promotion, Provision, 
and Use of Galileo and GPS Satellite-Based Navigation 
Systems and Related Applications, the member states of 
the European Union and the United States agreed on 
working together, intensifying thus the cooperation on 
interoperability and compatibility issues between Galileo 
and GPS. Among other topics, one important focus was 
the E1/L1 frequency band, centred at 1575.42 MHz, 
where the Galileo E1 Open Service (OS) signal and the 
modernized GPS L1 civil (L1C) signal are going to be 
transmitted along with many other RNSS signals. Recent 
efforts made by US and European experts identified a 
common optimized Power Spectral Density (PSD) frame, 
known as Multiplexed BOC (MBOC), in which both the 
Galileo E1 OS and the GPS L1C signals would fit. This 
normalized MBOC PSD is actually formed by the sum of 
10/11 of the normalized BOC(1,1) PSD and 1/11 of the 
normalized BOC(6,1) PSD. Because the MBOC is 
defined in the frequency domain, the time representation 
cannot be uniquely defined, and at least two different 
implementations that would still comply with the MBOC 
spectrum exist: CBOC and TMBOC. Indeed, the latest 
developments indicate that the main Galileo E1 OS and 
GPS L1C candidates will exhibit different features [3],[4]: 
- The current GPS L1C main candidate will have a pure 

BOC(1,1) data channel gathering 25% of the total 
signal power while the pilot channel will use a Time-
Multiplexed BOC (TMBOC) modulation with 75% of 
the total civil signal power.. 

- The current Galileo E1 OS main candidate will 
equally share its power between its data and pilot 
channels, with the important difference with respect to 
TMBOC that in both channels a Composite BOC 
(CBOC) modulation with BOC(6,1) will be used. 

 
It is well-understood that the definition of a common PSD 
for the GPS and Galileo civil signals on E1/L1 calls for an 
increased interoperability and compatibility of these 
signals at the user level. However, to really promote the 
use of GPS/Galileo E1/L1 combined receivers, it is of 
greatest importance to find GPS L1C and Galileo E1 OS 
tracking architectures that minimize the receiver 
complexity while maintaining high quality measurements. 
This is particularly true since the main candidates for 
implementation of MBOC for GPS L1C and Galileo E1 
OS are already baseline of their respective systems [3]. 
 
The purpose of this article is to thoroughly investigate 
possible GPS/Galileo receiver architectures that could be 
adapted to CBOC, TMBOC or both waveforms and to 
assess their performance. The first step of the proposed 
analysis is to assess the interference that both GPS and 
Galileo signals will cause on each other. This step is 
necessary in order to evaluate the degradation that Galileo 
and GPS signals will cause on each other, and thus, to 

assess precisely the quality of the forthcoming tracking 
loops. In a second part, several CBOC/TMBOC tracking 
architectures meant to minimize the complexity of a 
combined GPS/Galileo receiver will be presented and 
their performances in terms of resistance to thermal noise 
and multipath, as well as their complexity, will be 
compared to optimal architectures dedicated to CBOC-
only or TMBOC-only receivers. This part aims at giving 
an insight on which key parameters can be modified to 
find a relevant trade-off between receiver complexity and 
performance for the general user. Finally, in the last 
section, different multipath mitigation techniques will be 
tested according to different receiver configurations – 
BOC(1,1) or MBOC receiver – and flexibility in the 
number of correlators available for each channel – pilot or 
data + pilot tracking. In particular, innovative multipath 
mitigation techniques based on a multi-correlator receiver 
are also investigated. 
 
INTRODUCTION 
 
After a long period of discussions, the Galileo Signal Plan 
has finally been frozen with the definitive decision of 
both GPS and Galileo to implement the MBOC 
(Multiplexed BOC) modulation for the Galileo E1 Open 
Service (OS) and the GPS L1 Civil (L1C) Signal in E1/L1 
([1], [2] and [3]). While the baseline of the rest of Galileo 
signals in E5 and E6 has been relatively stable along the 
past years, the E1/L1 band has been in continuous 
evolution. The most important reason for this is the severe 
degree of congestion that the E1/L1 band presents.  
 
MBOC(6,1,1/11) is the result of the desire to multiplex a 
wideband signal – the BOC(6,1) – with a narrow-band 
signal – the BOC(1,1) – in such a way that 1/11 of the 
power is allocated in average on the BOC(6,1) component 
[5]. The MBOC normalized Power Spectral Density 
(PSD) of the data and pilot components together, 
specified without the effect of band-limiting filters and 
payload imperfections, is given by 

( ) ( ) ( )fGfGfG BOCBOCMBOC )1,6()1,1()11/1,1,6( 11
1

11
10

+=   (1) 

 
Figure 1 shows all the existing and planned navigation 
signals of the four global navigation systems that are 
foreseen to play an important role in the future [4]. It can 
be seen that the MBOC succeeds in minimizing its 
overlap with other navigation signals in the E1/L1 band. 
Moreover, it also fulfills very well the requirements of 
mass-market users as it provides a signal with a narrow-
band component where most of the power is allocated. At 
the same time, MBOC also has a wide band component 
that is meant to provide future users with an additional 
potential to improve performance.  
 
As shown in [5], a variety of time waveforms can be used 
to produce the MBOC(6,1,1/11) PSD. Two fundamentally 
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different approaches, the Time-Multiplexed BOC 
(TMBOC) and the Composite BOC (CBOC) have been 
selected for the MBOC implementation of GPS and 
Galileo respectively. These are described in the next 
section 
 

 
Figure 1.  Spectra of GPS, Galileo, GLONASS and 

Compass Intended Signals in E1/L1 [4]  
 
PRESENTATION OF GALILEO E1 OS AND GPS 
L1C WAVEFORMS 
 
The Galileo E1 OS Signal 
The Galileo E1 Open Service (OS) will use a CBOC 
(Composite Binary Offset Carrier) modulation to 
implement the MBOC. The CBOC signal adopted for 
Galileo is based on the approach presented in [3], [4], [5] 
and [6], using a four-level sub-carrier formed by the 
weighted sum of BOC(1,1) and BOC(6,1) symbols on 
both data and pilot. The CBOC modulation is a particular 
case of the CBCS multiplexing scheme that was presented 
in [6] where the particular BCS sequence is in this case a 
BOC(6,1). Therefore, all the theory derived in [4] and [6] 
is also valid here to describe the CBOC case and one only 
has to substitute in the equations the generic BCS case by 
the particular BOC(6,1) sequence and the power of 1/11.  
 
The normalized base-band Galileo E1 OS composite 
signal model is given by: 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ⎭

⎬
⎫

⎩
⎨
⎧

−−
+

=
−

−−

tyQtxPte
tyQtxPtdte

ts
CE

BEBE
E

1

11
1 2

1  (2) 

where 
• ( )te BE −1  and ( )te CE −1  are the data and pilot 

spreading sequences respectively, 
• ( )td BE −1  is the Galileo E1-B navigation 

message, and 
• x  and y  are the sine-BOC(1,1) and sine-

BOC(6,1) sub-carriers respectively. 

It can be noted that both pilot and data components are 
modulated onto the same carrier component, with a power 
split of 50 percent.  
 
The parameters P  and Q  are chosen such that the power 
associated with the BOC(6,1) sub-carrier components 
equals 1/11 of the total power of the whole Galileo E1 OS 
signal (data + pilot). This yields: 

 
11
1   

11
10

== QP  (3) 

Figure 2 shows a generic view of the Galileo E1 OS 
generation scheme.  

 
Figure 2. Modulation Scheme of Galileo E1 Signals 

 
If we take a careful look at equation (2), it can be 
recognized that the CBOC modulation has the data and 
pilot sub-carriers in anti-phase (with respect to the 
BOC(6,1) component). This can be observed on the 
equivalent waveform of each channel, shown in Figure 3. 
 
As it was already mentioned in [4], [5], [13], and [16], 
and as a result of the slight differences in the data and 
pilot CBOC sub-carriers, slight differences are also 
observed in the relative performances of the data and pilot 
channels, especially for wide-band receivers. These 
differences favour indeed the performance of the pilot 
channel where BOC(1,1) and BOC(6,1) are subtracted. 
  

 
Figure 3.  Data (Left) and Pilot (Right) CBOC Sub-

Carriers 
 
The GPS L1C Signal 
TMBOC is the selected MBOC implementation of GPS 
[7] and is characterized by using a binary sub-carrier 
component that results from the time-multiplexing of the 
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BOC(1,1) and BOC(6,1) sub-carriers according to a 
deterministic pattern. The GPS L1C base-band signal can 
be written as: 

( )
( ) ( ) ( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧
+

=
−

−−

)33/4,1,6(2
1

1

11
1 TMBOCte

txtdte
ts

QCL

ICLICL
CL         (4) 

where 

• ( ) ( )
( )⎩

⎨
⎧

∈
∈

=
2

1),1,6(
Stifty
Stiftx

tpTMBOC  

• 1S  is the union of the segments of time when a 

BOC(1,1) sub-carrier is used, while 2S , the 

complement of 1S in the time domain, is the 
union of the segments of time when a BOC(6,1) 
sub-carrier is used.  

 
Figure 4 shows a generic view of a TMBOC modulation 
time series. Additionally, all the data channel is 
exclusively modulated by a BOC(1,1) sub-carrier, while 
the pilot channel is modulated by a TMBOC sub-carrier, 
where 29/33 chips of the spreading code are modulated by 
a BOC(1,1) sub-carrier and the remaining 4/33 chip are 
modulated by a BOC(6,1) sub-carrier. It is important to 
note that although all the BOC(6,1) sub-carrier is on the 
pilot channel, the average power is shown to fulfil 
Equation (1). 
 

 
Figure 4. Example of TMBOC(6,1,4/33) Spreading 

Time Series, with all BOC(6,1) Spreading Symbols in 
the 75% Pilot Power Component 

 
The exact locations of the BOC(6,1) spreading symbols 
obeys a rationale as shown in [3] and [8]. In fact, if the 
BOC(6,1) symbols are properly placed, the spreading 
codes’ auto and cross-correlation can be further improved. 
As seen in equation (4), the selected GPS implementation 
of TMBOC places 75% of the total power on the pilot 
channel while the other 25% is reserved for data. 
 
CBOC and TMBOC, Same Spectrum, Different 
Signals 
During the optimization of the E1/L1 Galileo and GPS 
signals, special care was put on designing a common 
signal structure, from a spectrum point of view, from 
which both GPS and Galileo could profit the most. The 
main idea behind was that in the future receivers will not 
only receive GPS or Galileo alone but will try to use both 
to exploit the geometry improvement brought by a dual 
constellation. The first step towards that is obviously that 

the receiver should be capable of processing both Galileo 
E1 OS and GPS L1C signals together.  
 
As we have seen in previous sections, Galileo E1 OS and 
GPS L1C are very similar signals in the sense that they 
have the same PSD and it has been shown that in average 
they perform the same. However, the CBOC and TMBOC 
modulations are quite different and an optimum combined 
receiver should account for the differences between both.  
 
CBOC is a four-level signal with data and pilot in anti-
phase. In addition, the power split between data and pilot 
is of 50/50 and both data and pilot have a narrow 
BOC(1,1) and a wide-band BOC(6,1) component with the 
same power. On the contrary, TMBOC is a binary signal 
with a data narrow-band channel consisting of only 
BOC(1,1) symbols while the pilot channel contains all the 
wide-band BOC(6,1) component of the signal. Moreover, 
75% of the total power concentrates on the pilot channel 
while only 25% is allocated to the data channel. Two 
signals, one spectrum, two different concepts. 
 
When considering future combined GPS/Galileo 
receivers, the first step is to investigate how both signals 
can interfere with each other and if this can be detrimental 
for the signal processing part. This is done in the next 
section 
 
ASSESSMENT OF CBOC/TMBOC SELF-
INTERFERENCE 
 
The main objective of this section is to show the 
degradation that a Galileo or GPS receiver is theoretically 
expected to suffer when other Galileo and GPS signals 
interfere with the useful signal. In order to measure this 
effect, the equivalent increase of the noise floor due to 
non-desired signals will be investigated at the prompt 
correlator output. It is well known that the equivalent 
noise floor at the correlator input when an interferer is 
present is the sum of: 

• the thermal noise floor, and 
• an additional noise floor that creates the same error 

variance at the correlator output as the interferer. 
 
In the present case, the interference can be due to the 
same system as is the situation of that interference coming 
from the desired signal (intra-system interference) or due 
to a different system (inter-system interference). Thus: 
 ( ) INTERINTRAeff IINN ++= 00  (5) 

The intra- and inter-system interference depends on the 
power of the interfering signals and a well known figure 
called Spectral Separation Coefficient (SSC). INTRAI  can 
generally be defined as [12]: 
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where 
 INTRAN  is the number of received signals belonging 

to the same system as the desired one, 
 jC  is the received power of signal j, 

 rβ is the receiver front-end-bandwidth, 
 tβ is the transmitter front-end-bandwidth, 

 ( )fGs  is the PSD of the desired signal s, 
 

sdopf  is the Doppler frequency offset of the desired 

signal s, 
 jsκ  is the SSC between signal j and the desired 

signal s, 
 jG  is the PSD of the non desired signal j, and 

 
jdopf  is the Doppler frequency offset of the non 

desired signal j 
 
The computation of the equivalent noise power density 
IINTER is identical to IINTRA in (6) with the only exception 
that the summation in the numerator has to be done for all 
signals that do not belong to the desired signal’s system. 
 
Due to the increasing number of GNSS satellites and thus 
signals, the inter- and intra-system interference has to be 
assessed thoroughly in order to make sure that it does not 
harm the acquisition and tracking operations. In 
particular, it is important to control that certain common 
assumptions used for the computation of the SSCs, such 
as the infinite spreading code length, are usable in order 
to minimize the risk of unforeseen interoperability 
problems. 
 
Computation of SSCs via simulations 
A generic model to compute the SSC, representing the 
typical correlation operation, is given in Figure 5. It must 
be noted that the input signal before the correlation is 
normalized to 1W of power according to (6). If the only 
interference is an Additive White Gaussian Noise 
(AWGN), and the front-end filter is assumed rectangular, 
the PSD of the product between the incoming signal and 
the reference signal is equal to: 

( ) ( )∫∫
−

∞+

∞−

−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

2

001 ddrect)(
r

r

ufuGNufuGuNfG ss
r

β

ββ
 (7)  

where 0N represents the noise floor.  
 

This PSD has a frequency occupancy significantly large 
compared to the I&D filter bandwidth. Consequently, the 
PSD of the correlator output can be approximated by: 

( ) ( ) ( )∫
−

=≈
2

2

2
0

2
12 d)0()(

r

r

ffGfHNfHGfG sIDID

β

β

    (8) 

where ( )fH ID  is the Integrate and Dump filter. 

 
Figure 5. SSC Model to measure the increase of noise 
floor due to CDMA noise from other non-desired 
signals 
 
The correlator output noise variance will then be: 

 ( )∫∫
−

∞+

∞−

=≈
2

2

0
2

2 dd)(
r

r

ffG
T
N

ffG s

β

β

σ   (9) 

where T  is the coherent integration of the interfering 
signal and the replica. 
 
But a more interesting case is that of non-white 
interference. Then, the variance of the correlator output 
noise is shown to be: 

( ) ( ) ( ) 1
2

1
2

2
1

2 dffHdufuGuG IDsk

r

r∫ ∫
∞

∞− −
−=

β

βσ  (10) 

Assuming that the multiplier output PSD is sufficiently 
flat across the I&D filter, which is true when a very long 
pseudorandom noise code is employed, the assumption of 

flatness of ( ) ( )∫
∞

∞−
− ufuGuG sk d1  can be used as it 

was done for the AWGN case. The SSC is then shown to 
be approximated by the following expression: 

 
( ) ( )

( )∫

∫

−

−
≈

2

2

2

2

d

d

r

r

r

r

ffG

ffGfG

s

sk

ks β

β

β

β

κ  (11) 

While this is true for very long codes, it has been shown 
in the literature ([8], [9], [10] and [11]) that for shorter 
codes important differences can be observed between the 
ideal flat SSC and that measured at the receiver. Indeed, it 
is well known that the PSD of CDMA signals using short 
codes is a line spectrum and thus cannot be considered as 
smoothed. In this case, the SSC can only be expressed as: 
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However, this expression is very difficult to assess. The 
most extreme case is that of the C/A code where due to its 
short code nature and its 20 repetitions within a data bit, 
the SSC can raise by nearly 12 dB in the worst case. It is 
then necessary to assess the SSCs values between GPS 
and Galileo MBOC signals through a series of tests that 
model exactly the correlator output model shown in 
Figure 5 using the true GPS and Galileo spreading codes. 
 
SSC Degradation of CBOC and TMBOC receivers 
using simulations 
It is obvious that the value of the equivalent noise floor 
will depend upon the power of each interferer. Thus it is 
of great importance to choose a scenario representing a 
worst case with the greatest fidelity.  That was done using 
the configuration of Table 1 for the interfering and 
desired signals. It represents a situation where the 
interfering signals (of the same system or from other 
systems) are raising the noise floor to the maximum level 
with respect to the power of the desired signal. In 
addition, it is also assumed to be representative of a 
situation where the spectral separation coefficients will 
also be worst case. However it must be noted that the 
increase in noise floor does not always correspond to the 
case where the SSC adopts its worst case, but could also 
be due to the high interfering power at that specific 
location and moment in the time. 
 

Table 1. Parameters of the SSC Simulations 
Interfering Signals 

PRN Doppler [Hz] Delay 
[ms] Power [dBW] 

31 +170.68 73.84 -155.39 
30 -751.33 71.25 -153.43 
5 +2993.33 75.58 -155.76 
6 +3286.90 77.00 -155.69 
2 +1232.49 71.26 -153.42 
4 -1498.58 72.13 -154.26 

20 -3246.60 80.59 -157.86 
23 +1567.92 76.16 -155.52 

Desired Signal 
13 +3258.75 81.18 -158.62 

It must be noted that the results would not differ 
significantly if other PRN codes were considered and 
therefore the results can be considered as representative of 
a typical worst case scenario. 
 
It is well known that phase tracking is less robust than 
code tracking. Consequently, it would be interesting to 
investigate the correlator output noise characteristics that 
would correspond to that used by the PLL. Two different 

families of receivers are considered herein that 
correspond to classical receiver configurations to receive 
an MBOC signal: 
 

• TMBOC or CBOC receivers optimized for both 
signal waveforms, and 

• BOC(1,1) receivers. 
 
In order to simplify the number of simulations, only the 
Galileo E1 data channel is considered. Simulations have 
shown that the inter and intra-system interference 
degradation due to the Galileo E1 OS pilot channel is 
comparable to that due to the data channel since the 
spectrum is also very similar. Thus in the following, 
CBOC will refer to the CBOC data signal only.  
 
For both receiver configurations, the same simulated 
strategy was employed. It follows a linear approach and 
the correlator output was assessed for all possible code 
phase offsets between the interfering normalized signal 
and the ideal replica in steps of 1/12 chips. That means 
that for the case of a Galileo receiver 4092x12 different 
code offsets flow into the statistic while for GPS we will 
have 10230x12 samples. 
 
Moreover, for all the simulations a dwell time of 20 ms 
was used for the receiver. This corresponds to the typical 
PLL integration time. Indeed, due to the receiver clock 
instability, the correlator that will feed the PLL 
discriminator will likely not use a very long integration. It 
seems that 20 ms, already used for GPS C/A, is a good 
duration. This means in other words that assuming a 
desired Galileo signal, the considered output is the sum of 
5 times 4 ms coherent integrations since the primary 
Galileo E1 OS code duration is 4 ms. In the same manner, 
since the length of the GPS L1C primary code is of 10 
ms, the considered output will consist of two samples 
resulting from a coherent integration of 10 ms. 
 
Figure 6 shows the output of a CBOC correlator when the 
interfering signals are  

• the data channel of Galileo E1 OS with its 
corresponding codes, or  

• the data channel of Galileo E1 OS spread with 
“random” codes.  

 
As it can be observed, the Galileo E1 OS codes deliver 
values slightly higher than those of an ideal random code, 
proving the interest of this analysis. 
 
Table 2 summarizes the results of all the analyzed cases 
(12 samples were used for each test case). As it can be 
seen, the SSCs obtained using the true Galileo and GPS 
codes are very similar (within 0.5 dBs) to the theoretical 
and simulated ones assuming a smooth PSD. An 
explanation for this is the fact that the data bits (or the 
secondary codes if the pilot channel is concerned) help in 
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making the spreading code “look longer”, and thus more 
random. It can be concluded from the simulations that the 
TMBOC and CBOC implementations of MBOC, in spite 
of being slightly different, will not interfere with each 
other significantly, and more importantly, can be very 
well approximated by the smooth spectrum approach. 
 

 
Figure 6. 20 ms CBOC Correlator Output Amplitude 
assuming an interferer formed by CBOC signals 
modulated with random and Galileo E1 OS codes 
 
Furthermore, the introduced additional degradation with 
respect to ideal spectrum SSC is measured by the 
following parameter: 

 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ

RND

CDMACDMA
RND σ

σ
σ  (13) 

As it can be seen in Table 2, this parameter is always 
lower than 0.5 dB and indeed falls within the accuracy of 
the realized simulations. In addition, it is also expected 
that more accurate simulations will further reduce the 
relative increase of the SSC. 
 
Since it has been shown that there was no major 
unforeseen threat from the GPS/Galileo self-interference, 

it is now important to look at the possible architectures 
that could be used in a combined GPS/Galileo E1/L1 
receiver.  
POSSIBLE COMMON CBOC/TMBOC TRACKING 
ARCHITECTURES AND PERFORMANCES 
 
As mentioned in the introductory part, the TMBOC and 
CBOC modulations, although based on the same two sub-
carriers and giving the same PSD, have a very different 
implementation in the time domain. Consequently, 
achieving a tracking platform that could be adapted to 
both modulations is a real challenge. 
One of the ideas, investigated in [13] and [16] for CBOC 
tracking, consisted in the restricted use of pure sub-
carriers in order to limit the receiver complexity. Indeed, 
by doing so, the receiver does not require the use of a 
multi-bit local replica to track a CBOC signal. Following 
that idea, two solutions were seen as very promising: the 
TM61 technique and the dual correlator technique. 
 
The TM61 Tracking Technique 
This technique was designed to restrict the tracking loop 
complexity to the lowest possible level, minimizing the 
number of correlators used. In that context, TM61 is 
based on the use of Early and Late (E and L) correlations 
between the incoming CBOC and a pure BOC(6,1) local 
replica and a Prompt (P) correlation between the 
incoming CBOC and a pure BOC(1,1). A Dot-Product 
(DP) discriminator is then formed using these correlators’ 
outputs. The idea behind is to use the steep BOC(6,1) 
autocorrelation slope to improve the synchronization (use 
of E-L) while using the power available in the incoming 
BOC(1,1) component of the CBOC (use of P) not to 
suffer from the high BOC(6,1)/CBOC correlation losses. 
This method is well documented in [13]. 

Table 2. Derived Spectral Separation Coefficients for different receiver and interference configurations. BOC refers 
to BOC(1,1) and CBOC to the data in-phase component. 

Interfering System 
and Signals 

Desired System and 
Signals 

CDMAσ
 RNDσ  CDMA

RNDσΔ  SSCCDMA SSCRND Ideal SSC 

Galileo CBOC Galileo CBOC 0.0088 0.0083 0.4671 -65.1 -65.6 -65.32 
GPS BOC Galileo BOC 0.0092 0.0088 0.4394 -64.7 -65.1 -64.87 
GPS TMBOC Galileo CBOC 0.0085 0.0081 0.4173 -65.4 -65.8 -65.63 

Galileo CBOC Galileo BOC 0.0089 0.0085 0.4549 -64.9 .65.4 -65.11 
Galileo CBOC GPS BOC 0.0056 0.0055 0.2673 -65.0 -65.2 -65.11 

GPS TMBOC Galileo BOC 0.0087 0.0083 0.4017 -65.2 -65.6 -65.42 
Galileo BOC GPS BOC 0.0058 0.0056 0.2523 -64.7 -65.0 -64.87 

GPS TMBOC GPS BOC 0.0055 0.0053 0.2437 -65.2 -65.5 -65.42 
GPS TMBOC GPS TMBOC 0.0052 0.0051 0.2697 -65.6 -65.9 -65.92 

Galileo CBOC GPS TMBOC 0.0054 0.0052 0.3115 -65.4 -65.7 -65.63 
Galileo BOC Galileo BOC 0.0092 0.0087 0.4577 -64.7 -65.2 -64.87 

GPS BOC GPS BOC 0.0058 0.0057 0.2616 -64.7 -65.0 -64.87 
GPS BOC Galileo CBOC 0.0090 0.0085 0.4596 -64.9 -65.4 -65.11 
GPS BOC GPS TMBOC 0.0055 0.0053 0.2915 -65.2 -65.5 -65.42 
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It can be shown that under thermal noise TM61 has a 
performance in terms of equivalent C/N0 that is 2.5 dBs 
worse than conventional CBOC tracking, but on the other 
hand 0.6 dBs better compared to pure BOC(1,1) tracking 
(assuming an incoming BOC(1,1) signal). This is very 
interesting because it means that even though the tracking 
technique is very simple, it still outperforms BOC(1,1) 
tracking, which was the previous Galileo/GPS E1/L1 
baseline modulation for open and civil signals. It was also 
shown that TM61 was offering an excellent multipath 
resistance, even better than the one inherent to the 
CBOC(6,1,1/11) modulation. 
 
The Dual Correlator Technique 
This technique was designed in order to realize two 
parallel correlations: one between the incoming CBOC 
and a pure local BOC(1,1) replica and one between the 
incoming CBOC and a pure local BOC(6,1) replica. The 
two outputs will be linearly added to form a composite 
correlator output using the linear property of the 
correlation operation: 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ttBOCtetsttBOCtets

ttBOCtBOCtets

II

I

T

CE

T

CE

T

CE

dd

d

1,6
0

11,1
0

1

1,61,1
0

1

∫∫

∫

−−

−

−

=−

βρ

βρ
 (14) 

This is done for the three E, L, P correlators. As one can 
recognize, this method poses a slightly higher complexity 
compared to TM61, but still uses binary local replicas. 
Initial work was conducted in [16] and proved to be 
extremely promising. 
 
Indeed, by choosing P=ρ  and Q=β , the dual 
correlator technique is strictly equivalent to realizing an 
optimal CBOC correlation. However, by simply changing 
the respective values of ρ  and β , which can be done in 
software when forming the discriminator function, it can 
be expected that more suitable tracking performances can 
be achieved according to the user priorities.  
 

Changing the values of ρ  and β  means, in a strictly 
equivalent sense, that the incoming CBOC(6,1,1/11) will 
be tracked using a different local 
CBOC(6,1, ( )222 βρβ + ). This means that different 
tracking strategies depending on whether we want to pay 
more or less attention to the BOC(6,1) component can be 
used. As an example, as shown in Figure 8 (using the 
Running Average Multipath Envelope figure of merit), 
using a local CBOC(6,1,p), with p>1/11 will help in 
mitigating multipath better than conventional 
CBOC(6,1,1/11) tracking because the multipath 
mitigation capacity of the BOC(6,1) is higher than that of 
the BOC(1,1) modulation. However, if p is chosen too 
high, this might also degrade significantly the resistance 
of the code tracking loop to thermal noise (due to the high 
correlation losses). For CBOC(6,1,1/11,’-‘) tracking, [16] 

recommends to use a ratio β
ρ  between 1.6 and 3.2 to 

have a good compromise between multipath rejection and 
tracking in white noise (these two values correspond to a 
local CBOC(6,1,p,’-‘) with p = 4/11 and p = 1/11 
respectively). The corresponding equivalent CBOC local 
replicas are shown in Figure 7.  
It is also possible, if a specific local CBOC waveform is 
found to fulfill the receiver manufacturer needs, to 
directly generate locally the CBOC waveform of interest.  

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Lo
ca

l W
av

ef
o

rm

 

 

Rho/Beta=3.2
Rho/Beta=1.6

 
Figure 7. Examples of Equivalent CBOC Local 
Replicas to Track an Incoming CBOC(6,1,1/11) Signal 
Using the Dual Correlator Technique 
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Figure 8. Dual correlator CBOC Multipath mitigation 
capability for different β

ρ  values  

In any case, it is suggested that, if a DP discriminator is 
used, the prompt correlator tries to gather as much useful 
power as possible since it is responsible for controlling 
the squaring losses.  
 
TMBOC Tracking  
The correlation degradation, assuming perfect 
synchronization and an infinite front-end bandwidth, 
between the TMBOC and a pure BOC(1,1) or BOC(6,1) 
replica is given by: 

( ) ( )
( ) 88.0033

29deg
1,1)33/4,1,6(1,1 / ≈= BOCTMBOCBOC R  (15) 

( ) ( )
( ) 12.0033

4deg
1,6)33/4,1,6(1,6 / ≈= BOCTMBOCBOC R  (16) 

Comparatively, the same degradation with an incoming 
CBOC(6,1,1/11) is: 

( ) ( )
( ) 95.0011

10deg
1,1)'',11

1,1,6(1,1 / ≈=
− BOCCBOCBOC R  (17) 

1537



( ) ( )
( ) 3.0011

10deg
1,6)'',11

1,1,6(1,6 / ≈=
− BOCCBOCBOC R  (18) 

The consequence is that the degradation is significantly 
stronger for the TMBOC modulation. In particular, the 
loss suffered from the TMBOC/BOC(6,1) component is 
too high to hope using the TM61 tracking technique. In 
the same way, it can be expected that the dual correlator 
method will be strongly degraded. 
 
Assuming, for instance, that the BOC(6,1)/TMBOC 
correlation is of interest, a well-known method against the 
aforementioned phenomenon is to generate locally a 
replica composed of the time-multiplexing of 0s where 
the BOC(1,1) sub-carrier is used in the incoming TMBOC 
and a BOC(6,1) sub-carrier the rest of the time. The same 
can be done for the BOC(1,1)/TMBOC correlation. This 
strongly reduces the correlation losses and puts them at 
the same level as the CBOC case. 
 
The resulting effect of using these time-multiplexed sub-
carriers (BOC(1,1) with 0s and BOC(6,1) with 0s) is that 
both the TM61 and the dual-correlator methods become 
relevant. In this case, the TM61 tracking technique 
applied to TMBOC leads to performances very similar to 
those obtained with the CBOC(6,1,1/11,’-‘) (actually 0.2 
dBs better in tracking and approximately the same 
multipath mitigation capability). 
 
The analysis of the dual correlator method is very 
interesting. Figure 9 shows the code tracking error 
variance degradation when using the dual correlator 
technique receiving a TMBOC(6,1,4/33) for different 
values of  β

ρ and assuming an infinite front-end filter. It 

can be seen that optimal tracking is obtained for 1=β
ρ , 

which is normal since this correspond to an equivalent 
local TMBOC(6,1,4/33) sub-carrier. It can also be seen 
that there is a small window below that optimal 

β
ρ  

value where the tracking degradation is smaller than 0.5 
dB. Choosing a value in this interesting window means a 
potential improvement of the multipath mitigation 
capability while not significantly reducing the code 
tracking error due to white noise. 
 
To fully analyze the transposition of the TM61 and dual 
correlator tracking techniques to TMBOC, it is important 
to underline certain limitations of that transposition: 
- For the TM61 technique, the use of a local replica that 
is a time-multiplexed signal made of a pure sub-carrier 
and 0s results in only a partial correlation since not all the 
spreading code chips are used. This could degrade the 
cross-correlation properties of the spreading codes. 
Although it might not be significant for the BOC(1,1) part 
(it has to be reminded that in this case there are still 29/33 
of 10230 chips that are used), it might be detrimental for 

the BOC(6,1) part. This is less of a problem for the dual 
correlator method since a TMBOC signal is recomposed 
after the linear summation, although because of the 
different recompositions there might be some losses of 
cross-correlation properties. 
- It might not be interesting, for TMBOC tracking, to 
replace the use of a local TMBOC replica by a local 
replica that is a time-multiplexing of a pure sub-carrier 
with 0s. Indeed, the gain in receiver complexity in this 
case is not as significant as for the CBOC case. Still, 
when looking at the dual correlation method, it might be 
interesting to have the possibility to modify the value of 

β
ρ  on-the-fly. 
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Figure 9. Code tracking degradation as a function of 

β
ρ  using the dual correlator approach 

HRC ARCHITECTURE AGAINST MULTIPATH 
 
The previous section looked, among other things, at the 
impact of multipath on different CBOC/TMBOC tracking 
techniques. When looking at the global approach against 
multipath, it is reasonable to investigate if well-known 
methods that were designed for the GPS C/A code can be 
easily adapted for CBOC and TMBOC tracking. A typical 
example of such multipath mitigation technique is the 
High Resolution Correlator (HRC) presented in [17]. The 
HRC uses 5 correlators (E2, E, P, L, L2) located at [-2d, -
d, 0, d, 2d] chips where 2d is the E-L spacing. The 
synthesized HRC E and L correlators can then be 
synthesized as: 
 ( ) ( )PEEEHRC +−= 22τ  

 ( ) ( )PLLLHRC +−= 22τ  (19) 

 ( ) ( ) ( ) ( )222 LELELE HRCHRC −−−=− ττ  
 
Figure 10 shows the multipath envelope associated to the 
use of the HRC method with a BOC(1,1)  receiver 
receiving a BOC(1,1) signal, a CBOC(6,1,1/11,’-‘)  
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receiver receiving a CBOC(6,1,1/11,’-‘) signal, and a 
BOC(1,1) receiver receiving a CBOC(6,1,1/11,’-‘) signal.  
 
It can be seen that the CBOC modulation does not seem 
to be very well adapted for the use of the HRC. Indeed, 
many bumps can be observed on the multipath error 
envelope, while these bumps are not present for the case 
of the BOC(1,1) signal. We can also recognize that to 
mitigate multipath with an incoming CBOC signal, the 
use of a BOC(1,1) receiver with HRC performs better 
than a CBOC receiver with HRC.  

0 0.2 0.4 0.6 0.8 1

-5

-2.5

0

2.5

5

7.5

10

Multipath Delay (Chips)

T
ra

ck
in

g
 E

rr
o

r 
E

nv
el

o
p

p
e 

(C
h

ip
s)

 

 

BOC(1,1)
BOC(1,1)
HRC - BOC(1,1)
HRC - BOC(1,1)
HRC - CBOC(6,1,1/11,'-')/BOC(1,1)
HRC - CBOC(6,1,1/11,'-')/BOC(1,1)
HRC - CBOC(6,1,1/11,'-')
HRC - CBOC(6,1,1/11,'-')

 
Figure 10 – Comparison of Multipath Envelope using 
HRC Applied to BOC(1,1), CBOC and TM61 with  
d=0.08 chips and a 24 MHz Front-End Filter 

This implies that a different tracking technique will have 
to be developed for the CBOC and TMBOC signals in 
order to achieve a multipath mitigation equivalent to that 
of GPS C/A code when the HRC is used. One way to 
achieve this is to use more than 5 correlators in order to 
synthesize a discriminator function that would achieve a 
desired multipath rejection. This is the scope of the 
following section.  
 
OPTIMUM S-CURVE SHAPING OF THE 
DIFFERENT MBOC IMPLEMENTATIONS 
 
In 2005 a new method to derive an optimum discriminator 
against code multipath mitigation was presented in [14] 
using a multi-correlator receiver. At that time, that work 
was applied to BPSK(1) and BOC(1,1) signals. In 2007, 
further work has been realized with the convenient 
modifications to take into account the different MBOC 
implementations. Detailed information on this multipath 
mitigation techniques is available in [15]. 
 
In [15] two different approaches are discussed.  We will 
concentrate on the first of the two in this paper. This is a 
conventional tracking loop structure where multiple 
correlators are employed. The coherent code phase 
discriminator is defined as a linear combination of the 
correlators output as follows: 

 ( ) ( )∑
=

Δ=Δ
N

i
ii RD

1

~ τατ  (20) 

where Δτ is the code tracking error, defined as the 
difference between the estimated code delay and the true 
code delay, and αi is the weight of each correlator. 
Furthermore, Ri(Δτ) is defined as: 

 ( ) ( ) ( )recsatjOFF
ii edRAR ϕϕττ −+Δ=Δ

2
 (21) 

This represents the band-limited autocorrelation function 
shifted by di

OFF. Finally, define the discriminator 
parameters so as di

OFF and αi to be properly chosen for 
each correlator.  
 
The idea behind this work is first to define an ideal S-
curve. The optimization process then consists in finding 
the parameters di

OFF and αI, for a given signal and a 
given receiver front-end bandwidth that would result in an 
S-curve fitting with the desired one.  
 
The typical characteristics of an ideal S-curve are: 
 

1. A wide linearity range around 0,  
2. An Unambiguous Tracking  Offset (UTO) value 

that results in no false tracking lock point 
3. A High-Cut S-Curve (HCS) value 

 
The ideal S-Curve used in the optimization work is 
depicted in Figure 11.  
 
As shown in figure 11, the introduction of the UTO value 
results in an S-Curve that has a non-zero value in the 
outside linear region. Note that this value, expressed in 
chips, is very little and has a different sign on the two 
sides of the S-Curve. The main reason to introduce this 
offset is that by doing so the code discriminator will have 
only one stable tracking point in the pull-in region. With 
respect to the HCS, as evident in figure 11, it limits the 
maximum and minimum values of the S-Curve. The price 
that we have to pay by introducing these two 
modifications is that we slightly deviate from the ideal, 
but the advantages in terms of performance brought by 
them reward by far this decision. 
 

 
Figure 11. Optimum S-Curve 
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The fitting process consists in approaching the ideal S-
Curve by a linear combination of shifted replicas of the 
autocorrelation function. It can be initiated after defining 
the number of correlators and their location di

OFF  within a 
predefined fitting range and with a certain resolution. The 
weights αi are then calculated, as done in [14], by 
minimizing the following cost function 

 ( ) ( )[ ]∑ Δ−Δ
2~~ ττ IDDD  (22) 

where IDD~  is the ideal coherent code phase discriminator.  
 
In [15] a realization of the introduced optimum code 
discriminator has been found for the four different MBOC 
implementations (CBOC Data and Pilot Channels and 
TMBOC Data and Pilot Channels) at two different values 
of bandwidth (14 MHz and 24 MHz). For each bandwidth 
value, a common optimum value of the resolution has 
been calculated for all the given signals and is presented 
in Table 6.  
 
Table 3. Common Optimum Code for MBOC Signals: 

main parameters 
 14 MHz 24 MHz 
Resolution [chip] 0.038 0.028 
Extension of S-Curve [chip] 0.05 0.05 
UTO [chip] 0.025 0.035 
HCS [chip] 0.01  0.01 

 
Two examples of the obtained fitted S-Curve are shown 
in Figure 12 and Figure 13.   

 
Figure 12. Example of obtained S-Curve 

 

 
Figure 13. Example of obtained S-Curve 

 

It can be seen that in both cases, the resulting 
discriminator output follows very well the ideal S-curve. 

Obviously a large number of correlators are necessary. 
However, similar results have also been obtained for all 
the other signals of interest not represented in the 
previous figures. The results for relatively short 
bandwidth are particularly impressive. In Figures 14 and 
15 the obtained multipath envelopes are depicted. 
 

 
Figure 14. Multipath Envelopes for a 

bandwidth of 14 MHz 

 
Figure 15. Multipath Envelopes for a 

bandwidth of 24 MHz 
It is important to underline that in both cases the 
multipath envelopes of the four analyzed signal are almost 
the same. This seems to be a clear sign that the values of 
the resolution that have been found for each value of 
bandwidth seem to be “optimal”, in the sense that the 
performance does not change when the studied signal 
differs.  
 
CONCLUSIONS 
 
The first paper has shown that the self-interference 
between the future Galileo E1 OS and GPS L1C, given 
their spreading codes and signal structure, will not bring a 
significant degradation. Moreover, the use of ideal 
smooth PSD envelopes is a relevant way to estimate their 
relative SSCs. 
 
The second part was dedicated to the investigation of two 
simple tracking techniques proposed to track both GPS 
L1C and Galileo E1 OS pilot channels. The first method, 
referred to as TM61 represents an ultra simple method to 
reduce the receiver complexity to a minimum while 
maintaining interesting performances in terms of CBOC 
tracking in white noise and multipath. It has been shown 
that this method only uses pure binary sub-carriers thus 
avoiding the local generation of a 4-level CBOC replica. 
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It has also been shown that the adaptation of TM61 for 
the TMBOC requires a more complex local sub-carrier 
and some associated problems such as the loss of some 
cross-correlation properties that have to be further 
investigated. 
 
The second method, the dual correlator tracking 
technique, uses twice as many correlators as the TM61, 
realizing once again correlations only between the 
incoming signal and pure sub-carriers (BOC(1,1) and 
BOC(6,1) separately). It can achieve optimal tracking 
performance against both thermal noise and multipath. It 
can also be easily configured in software to suit a 
particular user requirement (for instance if multipath is 
the main problem, if low C/N0 are expected, or if there is 
an interference located on the BOC(6,1) part). Once 
again, the use of this method for CBOC is easier 
compared than for TMBOC for which slight 
modifications are required in the form of the use of a 
time-multiplexed sub-carrier. Still it was shown to 
provide an extremely promising technique. 
 
Finally, in the last part of this paper, it was shown that a 
simple multipath mitigation technique commonly used in 
current GPS C/A receivers such as the HRC technique 
might not be optimal for CBOC or TMBOC tracking. 
However, another technique, based on the optimal use of  
multi-correlator outputs, was shown to provide excellent 
multipath mitigation capability for both MBOC 
implementations, pending a more complex receiver (but 
that should not be problematic in the long term when 
multi-correlator receivers could be the baseline). 
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