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ABSTRACT  
 
 GPS signal processing in geostationary 
environment is more difficult than for a classical receiver 
on Earth in normal conditions. There are numerous 
differences between the GPS signals that an Earth user 
receives and the signals that a geostationary satellite 
receives. The specific and main characteristics of the GPS 
signal received by a geostationary satellite are the 
following: high C/No values only for ray tangential to the 
earth, very important Doppler values (+/-15kHz), and 
poor Dilution Of Precision factor (usually higher than 5). 
A GPS/Galileo receiver onboard a geostationary satellite 
has to deal with these specific constraints.  
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Several acquisition strategies can be envisaged so as to 
produce a point position. To reduce the delay and Doppler 
uncertainty and to get the navigation data, we could for 
example choose a strategy where some of the data (such 
as ephemeris or almanacs) are downloaded from Earth, 
but this increases the complexity and the cost of the 
receiver and of its integration in the satellite. Our aim in 
this paper is to use acquisition techniques which work in a 
global autonomous acquisition strategy. So the receiver 
does not use "aiding data". In this case, the chosen 
acquisition technique must be really effective at least 
down to the demodulation threshold, and that threshold 
needs to be lowered to its minimum.  
The aim of this paper is to present 3 different unaided 
acquisition schemes and to compare their performances to 
process the GPS/Galileo signals in the particular context 
of a geostationary orbit. 
The first method consists in a classical FFT acquisition. 
This technique will be used as a reference to evaluate the 
performances of the other techniques.  
The second scheme called Half Bit Method (developed by 
M.Psiaki) is a method which allows long coherent 
integration time without knowing the data bit transition 
time. It avoids losses due to a bit transition occurring 
within the coherent integration time.  
The last acquisition technique studied is known as 
"double block zero padding" method. The main interest of 
this method is its rapidity and also, its low computational 
cost.  
The paper presents the test acquisition results over one 
standard day for a given geostationary orbit position. The 
work presented shows the statistics of successful 
acquisition as well as misdetection over one day for the 
three acquisition techniques. 
 The length of signal required to achieve a minimum 
successful detection rate is also investigated. Due to the 
weakness of the considered signals and the power 
difference between the different received signals inducing 
cross-correlation, it is often necessary to process more 
than 1 second sometimes around 2 or 3 seconds.  
In this paper, we focus on an autonomous acquisition 
strategy, so we consider the receiver does not use "aiding 
data" downloaded from an earth link. Then, so as to 
perform a precise positioning, we need to demodulate the 
navigation message to extract the previous data. This is 
also necessary in order to reduce the Doppler uncertainty 
and so, to reduce the processing time. Thus, the paper 
considers several data demodulation thresholds (from 
24dBHz to the usual 27dBHz value) and assesses the 
impact on the data demodulation and the consequence of 
a possible bit error on the final calculated position.  
Finally, we can compare the 3 acquisition methods in 
regards with their efficiency towards the different values 
when they are processed onboard a GEO satellite. 
 

INTRODUCTION 
  
There is a growing interest in achieving geostationary 
satellites localization by using GNSS signals. However, 
we recall the GPS signal received in a geostationary orbit 
is somewhat different from the signal that a classic earth 
user can encounter. The specific and main characteristics 
of the signal received by a geostationary satellite are the 
following: the C/No values are spread around 15dBHz-
20dBHz and roughly go up to 45dBHz; the Doppler 
values are very important (+/-15kHz), and the Dilution Of 
Precision factors are usually higher than 5. 
 A GNSS receiver onboard a geostationary satellite will 
have to deal with these specific constraints.  Several 
acquisition strategies can be used to cope with these 
constraints and to produce an accurate position. Our aim 
in this work is to use acquisition techniques which work 
in a global autonomous acquisition strategy. So the 
receiver does not use any "aiding data", such as GPS 
ephemeris or almanacs uploaded from the earth. Then, the 
complexity, the cost and the adaptability of the receiver is 
lowered. With these operating constraints, our aim in this 
paper is to compare the performance of three different 
acquisition techniques.   
The first part of this paper recalls the characteristics of 
GPS signal when processing it on a geostationary orbit. 
The problems we face in the geostationary orbit to 
develop an autonomous signal processing are also 
presented, notably the validity period of the ephemeris for 
each satellite. Indeed, to get the ephemeris of a GPS 
satellite, we must be able to demodulate its ephemeris at 
least once every four hours. Due to the C/No level and 
variation rate we face in the geostationary orbit, the task 
can be hard. Then, in a second part, we study several data 
demodulation thresholds so as to improve the number of 
satellites we can use with valid ephemeris data. If it uses a 
lower data demodulation threshold, the receiver is able to 
demodulate for longer period and more often because it 
can process signals with a lower C/No, and thus it extends 
the time the receiver can process these signals. 
After determining the Space Vehicule the GEO receiver 
can use to compute a point position, the third part of this 
paper presents the three acquisition techniques we want to 
compare in the geostationary environment: the first one is 
the classic FFT acquisition method, the second one is 
called the Half Bit method and the last one is called the 
Double Block Zero Padding method. The last part of the 
study presents the results for the three acquisition 
methods over an entire day. In particular, the position 
error along the day is estimated by using a classic least 
square estimation.  
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GPS SIGNAL CHARACTERISTICS FOR A 
GEOSTATIONARY ORBIT RECEIVER 
 
As denoted in several previous studies ([1],[2],[3]), the 
conditions for GPS signal processing are not optimal for a 
GEO receiver. As depicted in figure 1, the GEO orbit is 
around 42164km from the center of the earth. So GEO 
satellites are higher above the Earth than the GPS 
constellation orbit. Then, for most of the time, the GPS 
antenna does not point in the direction of the GEO 
satellite antenna.  
Besides, as in [1], the delay introduced by the crossing of 
the ionosphere for a signal tangent to the earth can 
fluctuate a lot and the delay can be as important as more 
than 100m. To protect ourselves from such a bias, we 
consider an earth masking for the following of the study, 
i.e we assume that the masking radius of the earth is the 
normal radius plus 1000km which stands for the 
ionosphere layer. The signals coming from that direction 
are not considered. 

 
Figure 1:Geostationary satellite visibility 

 
Let us denote zone 1the area covered by the main lobe of 
the GPS antenna and zone 2 the area covered by the side 
lobe of the GPS antenna. Due to the directivity of the GPS 
antenna and the GEO receiver antenna, the received 
signal strength quickly decreases if the GPS signal is not 
emitted through the main lobe of the GPS antenna. Thus, 
the signals have a better strength when they are emitted 
by satellites in zone1, at the opposite of the GEO satellite 
toward the earth. At each epoch, the number of GPS 
satellites located in this area is not large. So, in order to 
increase the number of visible satellite and their visibility 
duration, we also consider signals emitted through side 
lobes of the GPS antenna. Thus, we consider the satellites 
emitting from zone2. The received signal strength 
becomes far lower in this case while the elevation of the 
GPS satellite decreases. With the assumptions made in [1] 
(notably the GEO antenna gain pattern), we can compute 

the C/No of the received signals depending on the 
elevation of the GPS satellite toward the GEO as 
illustrated in figure 2.  
 

5 10 15 20 25 30 35 40
10

15

20

25

30

35

40

45

TETA GEO

C
/N

O
 (

dB
H

z)

C/NO WITH REGARDS TO THE ANGLE THE GPS SATELLITE IS SEEN 

 
Figure 2: Global C/No from the receiver point of view   

with GPS (L1) satellites  
 
Teta GEO is the off-boresight angle of the GEO antenna. 
The figure 2 shows that the C/No ranges from 45 dBHz to 
less than 15 dBHz when considering the side lobes 
signals. The signal strength really is weaker than for an 
Earth user in normal conditions. We can see that most of 
the received signals have strength between 20 and 25 
dBHz. So, to benefit from extra measurements, the 
acquisition techniques will have to work at least down to 
these values. In compensation to these low signal levels, 
the visibility duration of the GPS satellites is well 
improved. Indeed, in the case where we only consider the 
GPS satellite main lobe, the GEO satellite can only ‘see’ 
1 or 2 satellites for 58% of the time, 3 satellites for 9% of 
the time and no satellite for the rest of the time. The 
minimum of four satellites required to compute a point 
position measurement is not reached. The figure 3 depicts 
the number of satellites the GEO satellite can see with a 
C/No higher than 20 dBHz and 25 dBHz.  
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Figure 3:Probability to see at least N satellites with 
C/No>20 dBHz (left)  and C/No>25dBHz (right) 
 
By processing signals down to 20 dBHz, 5 satellites are 
always visible and more than 10 are visible for more than 
50% of the time. So, the receiver should be able to 
compute a point position. We note that the number of 
visible satellites significantly decreases when we want 
signals with a C/No higher than 25dBHz. It is only 
possible to see 2 satellites at almost any time. 

C/NO AS A FUNCTION OF THE  ANGLE THE GPS SATELLITE IS SEEN

Zone 2
Zone 1 
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Another important characteristic of the signals received in 
the geostationary environment is their Doppler frequency 
values. Indeed, the velocity of the GEO is around 4km/s 
and then, the rate of change of the distance between the 
GEO satellite and the GPS satellite can vary very fast in 
some configurations, faster than for an earth user. So, the 
Doppler frequency for a GEO satellite ranges from +/- 
15kHZ, which is 3 times higher than for an earth user. 
However, only the uncertainty on the Doppler frequency 
has a direct impact on the acquisition computation 
complexity. The number of Doppler bins to explore 
during the acquisition process depends on the Doppler 
uncertainty which is the deviation between the true 
Doppler and the predicted doppler. With such a Doppler 
uncertainty, the calculation would be too expensive in 
terms of time and energy consumption. So, we need to 
reduce the Doppler uncertainty. We remind that we want 
an autonomous receiver without any uplink from the 
Earth. One interesting solution to reduce the Doppler 
uncertainty is to know the almanacs or even better all the 
ephemeris data of the visible satellites. So, we consider 
that at least valid almanacs (not older than 1 week) are 
stored in the memory of the receiver. If it is the first ever 
start of the receiver, we consider that almanacs have been 
loaded before the geostationary satellite launching. If the 
receiver has already worked in live conditions, we 
consider the almanacs data have been demodulated during 
this last processing. Knowing the almanacs data and so an 
approximate position of the GPS satellites, the remaining 
Doppler uncertainty only depends on the uncertainty on 
the GEO receiver position and velocity, the uncertainty on 
the GPS time and the local oscillator drift (we assume a 1 
p.p.m oscillator bias). The Doppler uncertainty falls down 
to only +/-2000Hz with these assumptions, and it can be 
even lowered by a reduction of the local oscillator drift. 
Moreover, to be autonomous, the receiver must know 
enough valid ephemeris from visible satellite to compute 
its position thanks to the pseudorange measurements as 
we will see in the last section.  
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Figure 4:Duration of the C/No>27dBHz for the 24 

GPS satellites over one day 
 
The usual data demodulation threshold is set to 27dBHz 
for L1 C/A. The duration for each GPS satellite where 
their C/No is above this value is not long as shown in 
figure 4, where the total observation time is one day 
(1440 minutes).  

We expect to have long periods without the possibility to 
demodulate the data, and as a consequence, the ephemeris 
data exceed their 4hours validity period. So, we cannot 
use those satellites to compute the GEO position. Thus, 
we would like to ease the demodulation of the data. In the 
next section we study the impact of a modification of the 
data demodulation threshold. 
 
 
REDUCTION OF THE DATA DEMODULATION 
THRESHOLD  
 
 If we decrease the demodulation threshold, the 
period the receiver is able to demodulate the data will 
increase. As a consequence, the periods between two 
ephemeris demodulations will be shortened and we can 
expect we come close to a continuous availability of the 
ephemeris along a day, or at least, we should be able to 
get four or more GPS satellites with valid ephemeris to 
compute a point position at each epoch of the day.   
The data demodulation threshold depends on the 
probability of bit error we accept during the processing of 
the data (see figure 5). As in figure 4, the period where 
the C/No is under the demodulation threshold are 
important, by taking this threshold to 27dBHz. We can 
consider that we could choose a lower threshold. As a 
consequence, the BER will increase but we have to study 
until what BER value we can go without degrading the 
demodulation too much. 
The relationship between the BER and the C/No is given 
by the figure 5. The curve concerning the GPS L1 signal 
(uncoded BPSK modulation) is the right one. The 

relationship used in figure5 is:
TpNo

Eb
Tp

SNR
No
C 11

×=×=  

and 17)1log(10 =
Tp

 with Tp=20ms. 

 
 

Figure 4:BER for L5 convolutional codes using soft 
and hard viterbi decoding and BER for uncoded 
BPSK transmission
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As the slope of curve for the uncoded BPSK is not steep, 
a little decrease in the threshold implies a larger increase 
in the BER. We see on figure 5 that with the L5 
convolutional code, the configuration is more interesting. 
So we have to discuss the possible and acceptable value 
for the BER and then, study the availability of the GPS 
satellites for the corresponding C/No threshold. 
There are 300 bits in each of the subframe 2 and 3 where 
the ephemeris data are encoded. So, the message contains 
600 bits where we do not want any error to occur in order 
to get the right ephemeris parameters. We also need to 
demodulate the clock correction data which are encoded 
by 62 bits in the subframe 1. We do not want to do more 
than 1 error on these 662 bits. So, we choose to study the 
C/No corresponding to a BER until 10e-3. The 
corresponding C/No is 24dBHz.  
The correspondences between the C/No and the BER are 
the following (see figure5):  

Minimum C/No  
for the Data 

demodulation 
threshold 

 
Corrresponding  

BER 

Probability to 
demodulate the 

entire ephemeris 
with no error 
(1-BER)662 

26dBHz 5.10-5 0.967 
25dBHz 2.10-4 0.88 
24dBHz 10-3 0.52 

Figure 5: Different data demdulation threshold and 
the corresponding BER 

 
The risk that an error occurs during the demodulation of 
the ephemeris data with the threshold put to 24 dBHz is 
high. The probability that an error occurs is 0.48.  
 
The usual ephemeris validity period is 4 hours. The 
ephemeris data are valid from 2 hours before TOE to 2 
hours after TOE, where TOE is the Time Of Ephemeris. 
TOE is a value broadcast in the navigation message. The 
ephemeris are broadcast from around 2 hours before the 
TOE. The same ephemeris is then broadcast to the TOE 
time. After this switching time, a new set of ephemeris 
parameter are broadcast for two hours. 

 
Figure 7:Ephemeris validity and ephemeris switching 

   time 
According to that ephemeris renewal scheme, we compute 
the number of satellites which are visible and for which 
the receiver has valid ephemeris data at the same time. 
We choose to consider that the lower bound of the C/No  
where the receiver is able to make pseudorange 

measurements with is 20 dBHz. This is convenient as we 
see in figure 2 and 3 that most of the signals have strength 
between 20 and 25 dBHz.    
 

Data Demodulation Threshold: 26dBHz 

0 5 10 15 20 25
1

2

3

4

5

6

7

8

9

Time(h)

N
um

be
r 
of

 v
is

ib
le

 s
at

el
lit

e

 
Data Demodulation Threshold:25dBHz 

0 5 10 15 20 25
0

2

4

6

8

10

12

Time(h)

N
um

be
r 

of
 v

is
ib

le
 s

at
el

lit
e

 
Data Demodulation Threshold: 24dBHz 
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Figure 8:Number of visible PRN with valid ephemeris 

and C/No>20 for different data demodulation 
threshold 

In figure 8, the first two hours are considered as an 
intermediate state because we have no availability 
indication of the GPS satellites for the 2 hours before 0h 
where we could have downloaded an ephemeris. The 
figures show that the number of useable PRN increases 
when the data demodulation threshold decreases. More 
precisely, with the 26 dBHz Data Demodulation 
Threshold (DDT), we face many periods during the day 
where the GEO receiver can only use 2 or 3 satellites. So, 
during these periods, the receiver cannot produce a 
position estimate. These periods are shortened with the 24 
and 25 dBHz DDT and there are only short periods with 3 

TOE1 TOE2 

Validity period for ephemeris 
broadcasted with TOE1 

Validity period for ephemeris 
broadcasted with TOE2 

t t-2h t+2h t+4h 

Ephemeris 
broadcasted 
with TOE1 

Ephemeris 
broadcasted 
with TOE2 
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satellites.  However, we consider that the probability to 
demodulate the entire 600 bits ephemeris data with no 
error is too weak with DDT=24dBHz. So for the 
following of the study, the DDT is taken to 25 dBHz. This 
is a good trade off between the number of satellites we 
can use to compute a position with valid ephemeris and 
the probability to demodulate the entire ephemeris data 
with no error. If we had chosen to consider that the lower 
bound of the C/No the receiver is able to work with is 
reduced to 16 dBHz, the number of useable satellites 
would not really improve. 
With these results, we can compute the corresponding 
Dilution Of Precision factors.  
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Figure 9:GDOP (left) and PDOP (right) for GPS 
satellites with valid ephemeris; DDT=25dBHZ 
 
We compute the DOP for a receiver which works at 16 
dBHz and 20 dBHz as depicted in figure 9. In both cases, 
the values are really high and the position computation 
will be significantly affected by these poor DOP values. 
The mean value of the PDOP is 18.2 and the GDOP mean 
value is 23 for lower acquisition bound equal to 20 dBHz 
(green curve in figure9). The peaks above 40 correspond 
to the epochs where there are only 3 or 4 satellites 
useable. We note that there is not really improvement 
with a 16 dBHz threshold working (blue curve on figure 
9), so we keep this threshold to 20dBHz.  
 
In conclusion, the acquisition method which must be 
implemented in the GEO receiver has to work at least 
down to 20 dBHz with the Data Demodulation Threshold 
equals to 25 dBHz. 
 
 
ACQUISITION ALGORITHM 
 
In this section, we present the three acquisition methods 
used to compute the GEO satellite receiver position. 
 
1+1ms FFT acquisition method 
 
This method is used as a reference to compare the 
performances of the two other. 
The structure of the acquisition loop is presented in 
figure10. We assume that the signal has already been 
filtered by the RF front end filter and down-converted to 
the intermediate frequency If . 

 The signal has the following expression when it enters 
the acquisition loop: 
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with 
− d  : data transmitted trough the received GPS signal. 
− fc  : the filtered received spreading code. 

− τ  : group propagation delay. 
− θ  : received phase shift. 
− n  : white Gaussian thermal noise with PSD 20N  

dB W Hz-1. 

 
Figure 10:Acquisition loop structure 

 
Assuming the Doppler effect, so that the phase is time 
dependent, the in-phase correlator output is : 
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with 
− In  : centred Gaussian correlator output noise with 

power 
p

n T
N

I 4
02 =σ  

− cc f
R  : cross-correlation between the received filtered 

spreading code (which has been filtered by the RF 
front-end filter) and the local replica code. 

− τ̂  : estimation of the group propagation delay. 

− θ̂  : estimation of the received phase shift. 

− fΔ  : Doppler residual. dd fff ˆ−=Δ . 

− pT  : coherent integration time. 
The principle of the acquisition depicted in figure 10 is as 
follows: once Tp seconds of the signal have been 
correlated in the FFT correlator, it is squared, and then the 
magnitude is stored into memory. Another Tp seconds of 
signal enters the loop and is processed as previously 
described. The magnitude is added to the previous result. 
This process is repeated M times, M being the non-
coherent integration parameter. The whole process is 
repeated for each Doppler bin. The results of the 
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processing is the classic acqusition matrix, whose values 
are compared to a threshold to find the right [delay – 
Doppler] value which maximizes the acquisition matrix. 
 
The minimum Tp value is 1ms.  The process used in our 
algorithm differs a bit from the one described in figure 10. 
With Tp=1ms, the FFT correlation is made on 2ms of 
signal with 2ms of local code as shown in figure11: 

 
Figure 11: 1+1ms FFT correlation process 

 
The incoming signal samples are put into a 2 ms data 
buffer, half of which will be replaced in a first-in first-out 
manner every 1 ms. The FFT of the incoming signal 
samples over 2 ms is taken. The extended local code 
replica is formed by appending 1 ms of zeros after the 1 
ms of local code. The complex conjugate of the FFT of 
the extended replica is then computed.  
The next correlation process will be carried out with 
block B and block C which is the millisecond coming 
after the block B. 
This technique avoids the correlation losses that can 
happen if a bit transition data occurs inside the block A. 
Thanks to the 1ms zero padding, the FFT correlation over 
2ms is not affected by the data bit transition. The switch 
in the sign of the samples within block A after the bit 
transition and block B is compensated by the way the FFT 
correlation works. 
For coherent integration over longer periods such as 
Tp=5ms, Tp=10ms or Tp=Nms, we do not compute the 
FFT over 10ms of signal. To begin, a correlation is 
carried out over the first 1ms following the figure 11 
process. The output is stored in memory, and then the 
next 1ms of signal is correlated. The process is done till 
the N ms and then, the N outputs stored in memory are 
summed before being squared. Thereafter, the next Tp ms 
are processed. This method increases the computational 
speed. As the signal strength we deal with is weak, the 
number of coherent and noncoherent integrations will be 
large and the reduction of the computational time is very 
important. 
 
 
Half Bit acquisition method 
 
The second acquisition method we investigate is the half 
bit method which is developed in [4]. 

The basic idea is to get rid of the losses due to a data bit 
transition occurring during a coherent summation of the 
signal by performing summation over time intervals 
which are not affected by a data bit transition.  
As in the first method, the signal has the following 
expression when it enters the acquisition loop: 
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Let N be the number of samples within one PRN code. 
To compute the correlation of the Jth PRN code period, let 
us note  
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The non-coherent summation over M coherent 
summations is: 
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Each short summation interval spans L PRN code periods, 
and they start at the PRN code periods 1210 ,....,, −MJJJJ  
The idea of this method is to limit L to 10 and to try two 
different intervals. The second interval is delayed by 10 
milliseconds from the first.  

 
Figure 12:Construction of the 2 sets 

 
With this temporal cut out, we are sure that at least one of 
the two intervals does not contain a data bit transition 
because transitions are separated by multiples of 20 
milliseconds, the duration of a data bit. Thus, one of the 
two sets does not undergo losses due to the data bit 
transition. In figure 12, the set 2 is without any data bit 
transition. Moreover, the receiver does not need any 

Set 1 Set 1 Set 1 Set 2 Set 2 Set 2 

10ms 

Data Bittransition 

Block A : 
1ms of signal 

Block B : 
1ms of signal 

1ms of local code 1ms of zero 
padding 

FFT 

FFT 

IFFT

conj 

Block 0  Block C  

          Set1 :   Jo=0                         J1=20                        J2=40 

          Set2:  Jo=10                        J1=30                      J2=50 
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knowledge about the data bit transition time. As long as 
the synchro bit is not carried out, the acquisition process 
could face important losses due to coherent integration 
over a data bit transition time. Thanks to this method, one 
of the set is guaranteed to have no bit transitions in any of 
its presquaring summation intervals. 
Figure 13 and figure 14 show the matrix acquisition 
obtained with the set 1 and the set 2. Here the data bit 
transition occurs in the middle of the set 1. The true code 
delay is 756 chips and the true Doppler is -474 Hz. The 
peak is not detected with the set 1 whereas the peak 
detected with the acquisition matrix is the right one with 
the set 2. 

 
Figure 13: Acquisition matrix for the PRN13 set 1 

 
Figure 14: Acquisition matrix for the PRN13 set 2 
 
Obviously, since this method processes an acquisition 
scheme over two sets of signals, the computational cost is 
more important than for the first method. The calculation 
is almost done over twice more signal length than with the 
first method. 
 
Double Block Zero Padding Method 
 
Whereas the first two acquisition methods described in 
this section compute the classic acquisition matrix in 
order to find the right delay and the right Doppler 
frequency which affect the signal, in this method, the 
delay-doppler research is not achieved following that kind 
of time-frequency research with the double block zero 
padding algorithm. The algorithm does not deal with 

coherent acquisition nor non coherent acquisition. The 
method is described in [5] and [6]. 
The approach to achieve signal acquisition here is to split 
N milliseconds of data sample into M blocks. Then, 
partial correlations on the M block are made to find the 
delay and the Doppler. The correlation principle between 
the different blocks is explained by the following figure: 

 
Figure 15:Construction of the extended data blocks 

and C/A code blocks 
 

The grey blocks are blocks of zeros. For both the C/A 
code and the data, we create extended blocks of 2m points 
made of two blocks of m points. The C/A extended code 
is obtained by combining a m-points block of code and a 
m-points blocks of zeros. Then, each 2m-points blocks of 
the extended data and the corresponding extended code 
are FFT-correlated as shown on figure 16. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 16: FFT Block correlation and FFT 
transformation 

We only interest in the first m-points of the correlation 
result of each block correlation (blocks in grey in 
figure16). The blocks we now work with are M blocks of 
m-points. 
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The search of the delay and Doppler is done as follow: we 
apply an FFT to the first point of each M blocks as shown 
on figure 16. It results in M point vector. This process is 
repeated for the second point of each block, the third,… 
till the mth point. 
Then, the correlation process start again but another order 
of the C/A code is used. The C/A code blocks are circular 
permutated: the Mth block becomes the first, the first 
block becomes the second…The new C/A code block is 
extended as before the correlation process. We can make 
M permutations like this. Finally, we obtain M×m 
vectors of M points. The delay and Doppler are found by 
searching the maximum over these M×m vectors. 
To give an idea of the number of subdivision we must 
make, an example is the easiest thing to understand: The 
size of the sub-division is based on the total Doppler 
coverage. Let’s assume our Doppler coverage is ±15 kHz 
and the integration time is 10 ms. Therefore, the Doppler 
resolution is 100Hz, the total Doppler bins are M=300, 
and the total number of sub-division is also M=300. For 
M=300 and N=600,000 being the number of samples 
within the 10 ms, the size of the sub-division is 
N/M=K=2000 points. The corresponding locally 
generated N-points of sampled C/A-code (10x1023 chips) 
is also divided into M-blocks. M blocks of the C/A-code 
are block-by-block correlated with M blocks of data. 
 
The performances of the three acquisition methods 
described in this section are evaluated in the next section 
for a geostationary orbit, notably the position error is 
computed thanks to a least square algorithm. 
 
 
GEOSTATIONARY ACQUISITION RESULTS 
 
The simulations are conducted over 24 hours. The GPS 
signals are simulated under MATLAB.  
The simulated data carry the characteristics the GPS 
signals should have if they were processed by a real 
receiver on a geostationary orbit. For each epoch, the 
elevations of the GPS satellites as well as their distances 
with the GEO satellite are used to compute the C/No of 
the signals reaching the receiver.  The Doppler and the 
transmission delay are also obtained by simulating the 
GEO orbit and the GPS satellites orbits. 
We set the lowest acceptable signal strength to process 
the GPS signals. This threshold is taken at 20 dBHz. With 
a predicted C/No under that threshold, we will not try to 
acquire the corresponding satellite. As we had seen in the 
second section, this threshold is convenient with our 
requirements in term of number of useable satellites.  
The Probability of false alarm is set to 510− for the three 
acquisition techniques 
The acquisition of all visible PRN with valid ephemeris 
and with a C/No>20 dBHz is performed every 10 minutes 
during the 24 hours of simulation. At each epoch, thanks 
to the delay measured by the acquisition process, we 

compute the estimated position of the user and we can 
calculate the positioning error. 
 
To achieve the performances described after, the duration 
of the signal we use can be as long as 3 seconds. 
Depending on the C/No the receiver should get the signal 
coming from a PRN, we define the number of coherent 
and non-coherent integration carried on during the 
acquisition process for the first two method. We remind 
that the double block zero padding method does not use 
coherent nor non-coherent integration. 
 

• 1+1ms FFT acquisition method 
 

Signal strength 
 

Coherent 
acquisition 

(ms) 

Non-
Coherent 

acquisition 

Signal 
Duration 

(s) 
C/No>30 1 50 0.05 

30>C/No>26.5 1 200 0.2 
26.5>C/No>24 5 200 1 
24>C/No>22 10 150 1.5 

C/No<22 10 280 2.8 
 

• Half Bit acquisition method 
 

Signal strength 
 

Coherent 
acquisition 

(ms) 

Non-
Coherent 

acquisition 

Total Signal 
Duration (s)/ 

Signal set 
duration 

C/No>30 10 5 0.05/0.025 
30>C/No>26.5 10 50 0.5/0.25 
26.5>C/No>24 10 150 1.5/0.75 
24>C/No>22 10 300 2.5/1.5 

C/No<22 10 350 3.5/1.75 
 

• Double Block Zero Padding Method 
Signal strength 

 
Signal Duration 

(ms) 
C/No>30 100 

30>C/No>26 500 
26>C/No>22 1000 

C/No<22 1500 
 
For each epoch, the three algorithms compute the code 
delay for each visible satellite with valid ephemeris data. 
With these information, we compute the pseudo ranges 
measurements. We can compute them because we make 
the assumption that the GEO position is known with the 
uncertainty of less than 300km (which is the distance 
covered by 1ms of signal). Since the GEO satellite is on 
orbit and that orbit does not fluctuate fast, we consider 
our assumption to be realistic. The computed delays 
represent the estimated position within a 300km 
uncertainty. 
The GEO position is estimated thanks to a classic Least 
Square method which is described in [7]. For the three 
methods, we obtain the following figures. 
For the study, the location of the GEO satellite is set to: 
[0 42164176  0] 
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1st  Method  
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Figure17:Error between estimated position and true 
position 
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Figure18: Position and clock error calculated with 
every satellite with C/No>20dBHz 
 
The computed positions remain between +/-500 meters 
along track and cross track as it is shown in figure 17, 18 
and 19. However, the error is much more significant 
along the radial track (top right figure in figure 18): the 
error reaches more than 2500 meters in this case at some 
epoch. This is due to the configuration of the GPS 
satellites. They are all usually located in front of the GEO 
satellite, inside a little area, so that the accuracy of the 
measurements is not good along the radial track. The 
different GPS satellites do not provide enough 
informations to compute a position with a good accuracy 
along this axis. The receiver compute its position for 
92.7% of the time when using satellites with 
C/No>20dBHz. 
The average position error is: - 105m along track 

    - 588 m radial track 
    - 68 m cross track 

-500 -400 -300 -200 -100 0 100 200 300 400 500

-400

-300

-200

-100

0

100

200

300

400

ALONG TRACK ERROR

C
R

O
S

S
 T

R
A

C
K

 E
R

R
O

R

ALONG AND CROSS TRACK ERROR

-500 -400 -300 -200 -100 0 100 200 300 400 500
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

ALONG TRACK ERROR

R
A

D
IA

L 
T

R
A

C
K

 E
R

R
O

R

ALONG AND RADIAL TRACK ERROR

 
Figure19: Along and cross track error (left); 

along and radial track error (right)  

0 5 10 15 20 25
-500

0

500

TIME(H)

E
R

R
O

R
(M

)

ERROR along X-AXIS

0 5 10 15 20 25
-4000

-2000

0

2000

4000

TIME(H)

E
R

R
O

R
(M

)

ERROR along Y-AXIS

0 5 10 15 20 25
-500

0

500

TIME(H)

E
R

R
O

R
(M

)

ERROR along Z-AXIS

0 5 10 15 20 25
-4000

-2000

0

2000

4000

TIME(H)

E
R

R
O

R
(M

)

CLOCK ERROR

 
Figure 20:Position and clock error calculated with 
every satellite with C/No>20dBHz and valid ephemeris 
 
The accuracy and the availability of the measurements 
decrease when the receiver only uses GPS satellites with 
valid ephemeris data. In figure 19, the dots equal to zero 
represent the epochs where the receiver cannot compute 
its position because the number of satellites which have 
been successfully acquired is below 4 satellites.  When 
the receiver only uses satellites with valid ephemeris, the 
epochs where this phenomenon appears are numerous. 
Here, the receiver is able to compute its position for only 
58% of the time. 
 
2nd Method  
 
The results are similar with the Half Bit method. The 
error along the radial track is bigger than the two other 
due to the GPS satellite configuration s for the first 
method. The time proportion where the receiver is able to 
compute its position represents 99% of the day. 
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Figure21:Position and clock error calculated with  
every satellite with C/No>20dBHz 
 
The mean position error is: - 105 m along track 

-  767 m radial track 
-  75 m cross track 
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Figure22:Position and clock error calculated with 

every satellite with C/No>20dBHz and valid ephemeris 
  
With this method, the use of GPS satellites with valid 
ephemeris data only does not affect the availability of the 
measurements as it does for the first method. 
The duration where the receiver is able to compute its 
position represents 77% of the day. So it is 20% more 
than the first method. The second method seems more 
interesting in this case. Its accuracy is lower but it is more 
interesting to be able to compute the position more often. 
  
3rd Method  
 
With this method, the receiver can compute its position 
for 78% of the time by using all visible satellites with 
C/No>20dBHz and for 50% of the time by using only 
GPS satellites with valid ephemeris data as shown on 
figure 23 and 24. It is the worst performance of the three 
acquisitions techniques. It is only 8% less than the first 

acquisition method when we use satellites with valid 
ephemeris.   
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Figure23: Position and clock error calculated with 

every satellite with C/No>20dBHz 
 

The average position error is: - 133 m along track 
    -  1008 m radial track 
    -  214 m cross track 

This method is the less accurate among the three. 
However, it requires less signal to achieve the positioning. 
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Figure 24:Position and clock error calculated with 

every satellite with C/No>20dBHz and valid ephemeris 
 
The computational cost of the 3 methods has not been 
investigated but the first two are really time and power 
consuming. This last method runs more than 10 time 
faster than the two other method under Matlab. With  the 
Double Block Zero Padding acquisition method the 
performances are less interesting because there are too 
many epochs where the receiver is not able to compute its 
position. However, for a real low cost, low consumption 
receiver with low requirements in terms of position 
computation availability, this method can be a good trade 
off. 
 
The probability of misdetection is analysed prosecuted for 
each acquisition method. Here, the probability of 
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misdetection encompasses the detections missed (no 
signal detected) and the false detection (the acquisition 
process find a value above the threshold but not at the 
right place). Pmd have the following values for the three 
acquisition methods: 

Probability of 
misdetection 

Pmd with all visible 
satellite 

Pmd with satellites 
with valid ephemeris 

1st method 0.26 0.31 
2nd method 0.26 0.30 
3rd method 0.40 0.44 

 
The Double Block Zero Padding method has a Pmd 
higher than the two other. In this method, weak signals 
are more sensitive to a strong signal than in the two other 
one methods. So, the number of successful acquisitions 
with a low C/No is very weak for this method as we see in 
the next table. 
The performances of the three methods can be assessed 
by studying the percentage of successful and unsuccessful 
acquisitions depending on the C/No of the received 
signal. The following table presents the number and the 
percentage of successful acquisitions for several signal 
strength. 

 C/No>30 30>C/No>26 26>C/No>24 24>C/No>22 22>C/No>20 

 
1st 
method 

76/94= 
 
81% 
 

75/100= 
 
75% 

176/279= 
 
63% 

43/67= 
 
64% 

74/103= 
 
71% 

 
2nd 
method 
 

84/94= 
 
89% 

82/100= 
 
82% 
 

137/279= 
 
49% 

43/67= 
 
64% 

54/103= 
 
52% 

 
3rd 
method 

76/94= 
 
80% 

53/100= 
 
53% 

198/279= 
 
70% 

32/67= 
 
47% 

38/103 
 
36% 

 
The second method works better than the first one. 
Surprisingly, the percentage of successful acquisition is 
low for a C/No between 24 and 26 dBHz. The minimum 
duration of the signal for that kind of signal strength may 
have been under evaluated. The unsuccessful acquisition 
become important when C/No is below 22 dBHz. In this 
case, the signal strength difference between the strongest 
satellite in acquisition and the weak satellites (with 
C/No<24dBHz) may be larger than the Gold code 
isolation which is 24 dB. Then, the receiver has to deal 
with strong crosscorrelations and so, the weak signals are 
not easy to acquire.  

  
Average number 

of visible sats 
with 

C/No>20dBHz 
 

 
Average number of 

visible sats with valid 
ephemeris and 
C/No>20dBHz 

 
Average number 

of successful 
acquisition with 

every sat 
 

 
Average number of 

successful 
acquisition with 
valid ephemeris 

only 
 

 
1st Method 

 

 
10.13 

 
6.62 

 
7.45  

 
4.58 

 
2nd Method 

 

 
10.13  

 
6.62 

 
7.71  

 
4.91 

 
3rd Method 

 

 
10.13 

 
6.62 

 
5.65 

 
4.05 

 
This table shows the average number of satellites for the 
four conditions of our study. 

The first line is the average number of satellite the 
receiver sees with a C/No>20 dBhz. The second line show 
the average number of satellites with both a 
C/No>20dBHz  and valid ephemeris. 
The last two lines show the average number of satellite 
with successful acquisition in the two previous cases.  
When considering satellites with both valid ephemeris 
and C/No>20dBHz, the average value is less than 5 for 
the 3 methods. So, there are many epochs where the 
receiver cannot process more than 4 satellites to compute 
its position  
 
CONCLUSION 
 
Three acquisition techniques have been presented in this 
study and their performances have been estimated in the 
special case of a geostationary orbit autonomous receiver. 
The accuracy of the position as well as the availability of 
the position computation have been investigated. The first 
two methods present better results in terms of accuracy 
and availability but they have a much more significant 
computational cost. 
We considered in this work the acquisition of GNSS 
signals without aiding or broadcast data. So, we tried, by 
lowering the data demodulation threshold, to improve the 
number of visible satellite with valid ephemeris along the 
day. Despite the reduction of the data demodulation 
threshold by 2 dB (25dBHz compared to the classical 27 
dBHz for GPS L1) which increases the number of useable 
satellites with valid ephemeris, it remains many epochs 
where the number of useable (valid ephemeris and 
C/No>20dBHz) and successfully acquired satellites is not 
enough to compute the receiver position. This happens 
with all the three methods. The Half Bit method is more 
robust in this case, and for more than 75% of the time, the 
receiver is still able to compute its position.  
To solve this problem for the remaining time with less 
than 3 satellites, the use of an orbital filter could be really 
interesting. Indeed, it should allow the receiver to 
compute its position with less than four successfully 
acquired satellites, because in orbit, the path of a 
geostationary satellite is well known.  
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