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ABSTRACT 
 

 The dramatic increase of Location Based 
Services and other location and navigation applications 
gives rise to a crucial need to improve positioning 
solutions. Currently, the American GPS is the only 
operational satellite based positioning system as the 
European Galileo system will be operational by 2010. 
Hence, this paper only deals with GPS receivers. The 
Time To First Fix (TTFF) and the sensitivity are the key 
drivers for their performance evaluation. The TTFF is the 
time needed for a GPS receiver to provide a first position. 
The sensitivity is the ability of a GPS receiver to acquire 
weak signals. For commercial solutions, an efficient 
receiver is a receiver with a reduced TTFF and high 
sensitivity. But generally, enhancing the sensitivity results 
in an increased TTFF and vice versa. In this paper, a use 
case will be defined which proposes an optimized solution 
to be applied in each type of GPS terrestrial 
environments, namely rural, urban and indoor 
environments.   
 
I. INTRODUCTION 
 

Navigation solutions are being more and more 
integrated in our daily life. From the American E911 and 
the European E112 mandates, to Location Based Services 
(LBS), the need for positioning is henceforth absolutely 
justified.  

 
These LBS positioning applications involve 

many types of working environments which 
characteristics are very different from each other. These 
environments may be generally classified as: 
 
- Rural environments: They refer to unobstructed 
environments with very good satellites visibility. In such 
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environments many direct Line Of Sight (LOS) satellite 
signals are generally available at the receiver level. This 
means that the received signal is strong enough to be 
easily acquired and tracked. Hence the final position is 
computed quite accurately.  
 
- Urban environments: In these environments a LOS 
satellite signal is not always available. The signal 
generally reaches the receiver after multiple reflections or 
after going through foliage for example, giving rise to 
multipaths and shadowing phenomena. This causes the 
signal to be attenuated compared to the theoretical LOS 
signal. Furthermore, the presence of non-LOS signals 
leads to inaccurate solutions, since they have different 
delays, or are very attenuated, compared to the original 
signal. Cross-correlations may also appear if two signals 
have different strength.  
 
- Indoor environments: These environments refer to in-
building sites, where a LOS is not likely to be available at 
the receiver. In most cases the signal must cross one or 
several concrete walls and ceilings to reach the receiver. 
This implies an important attenuation of the signal power, 
depending on the building materials. Note that cross-
correlation problems may also arise in the case of two 
signals with very different signal strengths (with one 
reaching the receiver through a wall, and the other one 
going through a window for example) reach the receiver. 
Thus generally speaking, the urban and indoor 
environments have practically the same problems, but 
these problems are much more significant in indoor 
environments. 
 

The main goal of satellite positioning is primarily 
to provide a worldwide solution in all kinds of 
environments. This solution is subject to precision and 
computation speed requirements, especially when dealing 
with real time commercial applications. These parameters 
are determined by the receiver sensitivity and TTFF.  
 

This paper aims at developing a "Use Case" 
solution: it consists in describing multiple optimized GPS 
acquisition signal processing techniques. For rural 
environments the main objective is rather the reduction of 
the TTFF, since there are no sensitivity problems. Thus 
the corresponding solution essentially reduces the TTFF, 
but introduces some losses which are tolerable in such 
environments where the signals are received with strong 
power. For urban and indoor environments, the solution 
proposed attempts to find the best compromise between 
the TTFF and GPS sensitivity, thus providing a fast 
solution with equal or enhanced sensitivity. The 
sensitivity or the TTFF will be respectively privileged 
according to the studied environment. When no 
sufficiently strong signal is available, the algorithm 
mainly enhances the sensitivity at the expense of the 

TTFF. One of the proposed algorithms is the Sum Of 
Replicas (SOR) algorithm that was presented at the ION 
NTM 2006 [El Natour et al. 2006]. This algorithm 
enhances the TTFF by computing more than one satellite 
at once. This is done by correlating the received signal 
with a sum of locally generated replicas rather than 
correlating it with only one. The other algorithms are all 
sequential algorithms, meaning that the satellites are 
sequentially searched for, but they involve enhancements 
compared to the classical algorithm, namely the TTFF, 
determined by the algorithm complexity, with no or 
negligible loss in sensitivity. The main idea for these 
algorithms complexity reduction is to carry out coherent 
integration by rather summing 1ms correlation results. 
The transverse FFT algorithm further considers the signal 
phase to be constant over a period of 1ms and for small 
Doppler shifts. The SOR is further optimized by applying 
the transverse FFT algorithm as acquisition process. 

 
All of these algorithms are based on the Assisted 

GPS concept to improve its false detection ability. That is, 
Assistance Data (AD) from the GSM network is used to 
calculate approximate values of the Doppler frequency 
and code delay for each satellite, and provides a raw user 
position within a GSM cell [LaMance 2002]. Thus the 
GPS receiver is supposed to be introduced into a cellular 
mobile phone. Consequently, the AD disseminated by the 
telecommunication channel is used by the receiver in 
order to improve its sensitivity and to decrease the TTFF. 
Typically in cold start, the AD set required is composed 
of: 

 
• The reference time 
• The reference location 
• The navigation model (Ephemeris) 
• The ionosphere correction 
 
 The reference time is known with an uncertainty 
of ±2s due to the signal transfer through the 
unsynchronised GSM network. The uncertainty on the 
reference location is equal to the considered GSM cell 
size (cell ID method used to find a coarse location using 
the GSM network).  

Using this information allows for a coarse 
estimation of each satellite code delay and doppler. Then 
once a first satellite is acquired this uncertainty can be 
removed and no doppler search is necessary for the 
subsequent satellites. This principle will be applied in 
what follows. For the first satellite, a doppler range of 
2KHz is tested. 
 

The paper is organized as follows: First the 
studied algorithms are described. The subsequent section 
reports on a set of experiments conducted to compare 
these algorithms with each other. In conclusion, a use 
case solution is defined with a paper summary following.  
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II. ALGORITHMS BRIEF DESCRIPTION 
 

II.1 The sum after correlation algorithm  
 

This method allows for using longer coherent 
integrations, for enhanced sensitivity [Van Diggelen 
2001], without increasing the signal block size. In fact 
only ms1  signal blocks are treated at once, and the 
coherent integration is performed by summing these 
blocks. 

Suppose that the received signal is (without loss 
of generality, the carrier initial phase is considered to be 
null): 

]).(2[ 1).().(.)( tfLi detctdAts +−−= πττ  
with A the signal amplitude, )(td  the data bits, )(tc  the 

C/A code chips, τ  the signal delay, 1L  the carrier 

frequency, and df  the Doppler frequency. 

 
For a coherent integration over msTp 10=  for 

example, the Doppler bins tested are of Hz
T p

50
2

1 =  

[Kaplan, 1996]. The correlation is represented by: 
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Where: )(ts  is a ms10  section of the signal. The same 

goes for )(tc . τ̂  and df̂  are the estimated code delay 

and Doppler frequency respectively.  
 
This function is calculated repeatedly for all the 

possible values of the code delay (over one code period of 
1023 chips). 
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  In this equation )(ts  and )(tc  are ms1  blocks 
of the received signal and the code replica respectively. 
Globally, N points are used to calculate this correlation 
for each value of the code delay. 
 

Using the Fast Fourier Transform (FFT), the 
expression of the correlation becomes: 
 

[ ] [ ][ ]{ }tffi
d

detcFFTtsFFTIFFTfR )ˆ(2 0).(.)()ˆ( += π  

With )(ts  and )(tc  having a duration of ms10 .  
 

The correlation can also be written as: 

[ ] [ ][ ]{ }�
=

+=
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1

)ˆ(2 0).(.)()ˆ(
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kkd

kdetcFFTtsFFTIFFTfR π  

Where )( kts  is the thk  ms1  section of signal. 

 
The advantage of this algorithm [D. Akopian 

2005, Mark C. 2001] is that it is faster than the classical 
one since computing a Fourier Transform with N points, 
as in the classical case, is much slower than computing k 
Fourier Transforms with kN  points. Indeed, an FFT 
with N points requires NN log  additions and NN log2

 

multiplications, whereas k FFT with 10N  points each 

one for example will require kNN log  additions and 

kNN log2  multiplications. This reduction in 
computation complexity is done twice, first when 
converting to the frequency domain using FFT, and when 
converting back to the time domain using IFFT. 

 
On the other hand, such algorithm allows for the 

implementation of a sensitivity improvement technique by 
avoiding an possible phase jump or shift due to bits 
transitions for the correlation result within ms1 . This is 
done by performing a linear correlation rather than a 
circular correlation between the signal and the code 
imposed by the FFT algorithm. In fact, 2ms of signal are 
considered rather than 1ms for a ms1  correlation result, it 
is then correlated with a zero padded version of the code; 
the resulting correlation function is truncated to ms1 . This 
is not possible in the classical case since it introduces a 
large computation charge. This optimization is considered 
in this paper in all of the following algorithms. However 
this technique does not prevent energy loss due to data bit 
transitions occurring within a long total coherent 
integration time.  
 
II.2 The sum before correlation algorithm 

 
The principle of this method is the same as that 

of the previous one. The difference here is that the 
coherent integration is performed before converting to the 
frequency domain. The summation is carried out after 
removing the signal Doppler: msTp

 of the signal are 

summed together then converted to the frequency domain. 
The subsequent steps are the same as in the previous 
method. But this time, the correlation can be written as: 

[ ] [ ]
�
�
�

�
�
�

	



�
�


�= � + )(.).()ˆ( 1
)ˆ(2 0 tcFFTetsFFTIFFTfR

k

tffi
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kdπ

  
This algorithm allows for reducing the number of 

FFT performed by a factor depending on the coherent 
integration duration needed (a factor of 4 for a coherent 
integration over 4ms). However, theoretically some losses 
may appear due to code doppler which is not accurately 
compensated during the pre-integration phase, because 
the total signal is summed into a ms1  block, and therefore 
the local code replica is only ms1  long.  
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II.3 The transverse FFT algorithm 
 

With the transverse FFT, the frequency domain 
is first divided into large steps of Hz500  which 
correspond to msTp 1=  . Then, small doppler bins, 

according to the coherent duration needed, are defined 
within the large bins. Therefore, the frequency bins are 
defined as: fjfjif id δ*),( +=  , where 500*1 iff i +=   

and 1f   the first frequency to be tested. if  sweeps all the 

large bins to be tested, and   fj δ*  sweeps the small bins 
to be tested within each large bin. 

Here again, the coherent integration is 
accomplished by summing msTp

 of signal after FFT-

IFFT, as already mentioned.  
This method would have been equivalent to the 

classical algorithm if the signal phase was constant over  
ms1  steps. But this is not the case in real GPS signals.  

The classical GPS signal expression is: 
[ ]ftjitffi eetctdAts i δππττ 2]).(2[ .).().(.)( 0 +−−=

  
The correlation result is expressed as: 

[ ] [ ]{ }�
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This correlation must be computed for each frequency 
bin.  
 With the transverse FFT the phase [ ]tfj ˆ2 δπ  is 
supposed to be constant over one code period of ms1  and 
the signal is approximated by: 

( )[ ]mstfloorfjitffi eetctdAts i 12]).(2[ .).().(.)( 0 ⋅+−−= δππττ
 Thus the local counterpart is generated such that 
the phase is constant over ms1  steps. The correlation 
becomes: 

( )[ ] [ ] [ ]{ }�
=

+⋅=⋅+
10
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]).(2[1ˆ2 0.)(.)(.)ˆ(
k

tffi
kk

mstfloorfji
i

ietcFFTtsFFTIFFTefjfR πδπδ

 
This way, the correlation is computed only for large bins 
and the results corresponding to smaller bins are obtained 
by multiplying the correlation by complex exponential as 
in the former equation.  

The advantage of this algorithm is to further 
reduce the TTFF, since it reduces the number of FFTs and 
IFFTs needed to be performed compared to a classical 
FFT algorithm. For a coherent integration of 10ms for 
example, the Doppler resolution is of 50Hz. If a Doppler 
range of 2KHz needs to be tested, the number of FFT-
IFFTs carried out is 40050/2000*10 = , whereas with 
the transverse FFT algorithm we only need 

40500/2000*10 =  FFT-IFFTs couples. 
However, some losses may occur due to 

assumption of a constant phase over ms1  steps and for 
small doppler residuals. 

 

II.4 The SOR algorithm 
 
The general principle is to correlate the incoming 

signal with the sum of C/A code replicas rather than 
correlating it with only one replica. This yields to a 
parallel search for all visible satellites rather than 
searching for them sequentially. The acquisition process 
is obviously speeded up. Visible satellites PRN are known 
a priori thanks to the AGPS AD.  
 

The acquisition is realized according to the 
scheme presented in figure 3: 
 

 
Figure 1: SOR algorithm principle 

 
Each satellite PRN code has its own delay, and 

hence corresponds to one of the acquisition peaks 
detected in the correlation function. At this stage, the 
issue is to determine the proper correspondence between 
satellite PRNs and acquisition peaks. This correspondence 
is done first by trying to locate each acquisition peak 
within a code delay window. Indeed assuming that the 
reference location, the reference time and the navigation 
model are known thanks to AD, the receiver can compute 
the differential time of arrival between the satellites and 
this information can be used to identify the correlation 
peak pattern. The correspondence is then possible since 
each code delay window is already assigned to a satellite 
PRN code as it is shown in figure 5 below.  
 

 
Figure 2: Satellites identification process using the 
code delay ranges function (red plot) estimated by the 
AD. The blue plot corresponds to the acquisition code 
delay positions 
 

However, this identification process is not 
possible if for example, two or more satellites have the 
same or close code delays. Thus a discrimination process 
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should first be undertaken. A classification in groups of 
the visible satellites according to their respective expected 
code delay is realized to avoid correlation peak collisions. 
Obviously, the accuracy of the provided code delay is 
tremendously important and the wider the code delay 
windows, the fewer satellites per group. 
 

This way of searching for a peak within a 
predetermined range may also be used in the case of the 
other algorithms. It enables to eliminate cross-correlation 
peaks which are not included in any code delay range.  
As explained in [El Natour et al. 2006], the more satellites 
per group, the greater is the complexity reduction with 
respect to a standard algorithm. But having too many 
satellites per group may affect the receiver sensitivity. 
 
 Note that the acquisition process used here is 
based on the sum after correlation algorithm. 
 
II.5 The optimized SOR algorithm 
 

As explained before, the SOR can be further 
optimized by introducing the transverse FFT algorithm as 
the acquisition method. This significantly enhances its 
performances compared to the classical SOR algorithm. 
No other enhancements could be introduced in this 
algorithm (sum before correlation for example).  

 
The simulation results presented in this paper only 

deal with the optimized SOR. 
 

III. ALGORITHM PERFORMANCE COMPARISON 
 
The algorithms performance depend on many 

parameters: The duration of the coherent integration (
pT ), 

the number of non-coherent accumulations ( M ), the 
incoming signal 0NC value, the Doppler frequency bins 

to be tested, the uncertainty on the receiver position 
(determined by the considered cell size).  
 

The sequential search for the visible satellites is 
carried out after sorting them based on their elevation 
angles, from the highest to the lowest. This is a way to 
increase the probability of having the strongest signals 
being processed at first to guarantee a faster solution 
availability. 

The first test will consider similar conditions for 
all of the algorithms to compare their performance, 
computation time and sensitivity, with equal parameters. 
The signals used were generated using a SPirent STR4500 
GPS signal generator and an NI-6534 acquisition card. 
The signals have all the same 

0NC  ratio, with each one 

comprising 9 to 10 visible satellites. The receiver is static 
throughout the simulation. In this experiment, 3 signals 
with different 

0NC  will be studied: dBHz17,27,42 . 

For each 
0NC , values for 

pT  and M are chosen such 

that all of the satellites can be successfully acquired, and 
kept the same for all of the algorithms.  

 
Two parameters are essentially compared 

throughout the simulation results: The time needed to 
acquire using a matlab implementation, and the C/N0 
estimated with each algorithm. A signal is said to be 
successfully acquired if the correlation maximum 
corresponds to the right code delay and doppler values. 
According to each test, all or a certain number of satellites 
are needed to be acquired in order to be able to compute a 
more or less precise position. 

 
Table 1 shows the values chosen for each 

0NC .  

Accordingly a value of the cell size was also chosen. The 
considered values for the 

0NC  are characteristic of 

different environments: rural, urban and indoor 
environments respectively. The user position uncertainty 
( x∆ ) reflecting the cell size is accordingly chosen.  
 

0NC  ( dBHz ) 42 27 

pT  )(ms  4 10 

M  5 15 
x∆  (Km) 30 10 

Table 1: parameters used for test A 
 

The second test will consider the same signals 
with three characteristic 

0NC  ratios. This test focuses on 

the minimum time needed for each algorithm to 
successfully acquire a signal with a given 

0NC . The 

coherent integration duration will be the same for all of 
the algorithms, in order to insure that the number of 
frequency bins tested is the same. It is mainly the number 
of non-coherent integration M  which will be optimized. 
The minimum required M  will be searched for each 
satellite in the case of the sequential algorithms. The final 
value held for M  is the one that insures a successful 
acquisition for a certain number of satellites. The 
uncertainty on the user position is again chosen according 
to the considered 

0NC . The parameters used for this test 

are illustrated in table 2 below 
 

0NC  ( dBHz ) 42 27 17 

pT  )(ms  1 4 10 

M  Variable Variable Variable 
x∆  (Km) 30 10 1 

number of satellites 
successfully acquired 

10/10 7/10 4/10 

Table 2: parameters used for test B 
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The next sections report on the tests conducted 
with the results obtained in each case. 

 
III.1 Test A-1: dBHzNC 420 ≅ , msTp 4= , 

5=M , Kmx 30=∆  
 

Test A: Tp=4ms, M=5, C/N0=42dBHz, delta_x=30Km
Acquisition time ratio of the different algorithms compared to the 

classical one

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

class sum after
correlation

sum before
correlation

Transverse FFT SOR opt (3
sats/gr)

SOR opt(4
sats/gr)

 
Figure 3: Acquisition time ratio of the different 
algorithms compared to the classical one for a signal 
of 42dBHz, with fixed M and Tp 
 

Test A: Tp=4ms, M=5, C/N0=42dBHz, delta_x=30Km
Estimated C/N0s
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38

39
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41
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class sum after
correlation

sum before
correlation

Transverse FFT SOR opt (3
sats/gr)

SOR opt(4
sats/gr)

 
Figure 4: Estimated C/N0s for a signal of 42dBHz, 
with fixed M and Tp  
 

Figures 3 and 4 show that the sum before 
correlation and the FFT transverse algorithms are faster 
than the classical one, with ratios of 0.87 and 0.58 
respectively. In terms of sensitivity, the sum after 
correlation, sum before correlation and transverse FFT 
algorithms have approximately the same performance as 
that of the classical algorithm (The small increase in 
sensitivity noticed in the case of the sum before 
correlation and the transverse FFT algorithms is due to 
estimation unaccuracy because the signal used for this 
estimation is very short). 

 
As for the optimized SOR algorithm with groups 

of 3 satellites, it is faster than the transverse FFT with a 
0.38 ratio compared to the classical algorithm. This ratio 
is approximately the same for groups of 4 satellites (0.4). 
But in terms of sensitivity, it introduces a significant loss 

in the estimated 
0NC  which increases with the number 

of satellites per group, as expected.  
 

Test A, with a signal at dBHz27  will be 
presented next. 

 
III.2 Test A-2: dBHzNC 270 ≅ , msTp 10= , 

15=M , Kmx 10=∆  
 

Test A: Tp=10ms, M=15, C/N0=27dBHz, delta_x=10Km
Acquisition time ratio of the different algorithms compared to the 

classical one

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

class sum after
correlation

sum before
correlation

Transverse
FFT

SOR opt (3
sats/gr)

SOR opt (4
sats/gr)

SOR opt(5
sats/gr)

 
Figure 5: Acquisition time ratio of the different 
algorithms compared to the classical one for a signal 
of 27dBHz, with fixed M and Tp 
 

Test A: Tp=10ms, M=15, C/N0=27dBHz, delta_x=10Km
Estimated C/N0s

0

5

10

15

20

25

30

class sum after
correlation

sum before
correlation

Transverse
FFT

SOR opt (3
sats/gr)

SOR opt (4
sats/gr)

SOR opt(5
sats/gr)

 
Figure 6: Estimated C/N0s for a signal of 27dBHz, 
with fixed M and Tp 
 

It can be noticed here that number of satellites 
tested per group is greater than in the previous test. In 
fact, for a lower uncertainty on the user position more 
satellites can be grouped together since the code delay 
windows estimated using the AD are narrower and more 
satellites can be treated at once without intersection 
between these windows. This is why groups of 5 satellites 
can be tested.  

The results of this test meet with those of the 
previous test in that the transverse FFT and the SOR 
algorithm are faster than the classical one. However, the 
acquisition time ratios of the sum before correlation and 
the transverse FFT algorithms are lower than in the 
previous test: 0.6 and 0.36 respectively against 0.87 and 
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0.58 before. This is because the coherent integration used 
for this test is ms10  rather than the ms4  used in the 
previous test. In fact, the classical algorithm complexity 
increases with the coherent integration duration, since the 
number of samples submitted to the FFT-IFFT couple, is 
greater. This is not the case for the other algorithms since 
they all process only ms1  of signal at once. This explains 
the differences in complexities noticed in this test.   
On the other hand, the optimized SOR is comparable to 
the transverse FFT algorithm and is no more faster. 
Losses in 

0NC  ratio also increase with the number of 

satellites per group.  
 

Gathered results of test A show that in similar 
conditions, the transverse FFT and the optimized SOR 
algorithms are much faster than the other algorithms. 
However losses in sensitivity are observed for the SOR 
while no losses are noticed with the tansverse FFT 
algorithm. One way to compensate for these losses is to 
process longer blocks of signal. But this may increase the 
acquisition time needed for successful acquisition. Thus 
the following tests compare the minimum time needed for 
each of these algorithms to successfully acquire a signal 
with a given 

0NC .   

 
III.3 Test B-1: dBHzNC 420 ≅ , msTp 1= , 

Kmx 30=∆  
 

In this experiment, the minimum M needed to 
successfully acquire 10 satellites out of 10 is searched for. 
Since M will be different from one algorithm to another in 
this test, the signal duration used for acquisition will also 
be different; hence, the signal observation time will be 
further considered with the acquisition time.  
The results are depicted in figures 7 and 8. 
 

Test B: Tp=1ms, C/N0=42dBHz, delta_x=30Km
Acquisition time ratio of the different algorithms compared to the 

classical one

0

0,2
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class sum after correlation sum before
correlation

Transverse FFT SOR opt (3 sats/gr)

 
Figure 7: Acquisition time ratio of the different 
algorithms compared to the classical one for a signal 
of 42dBHz, with fixed Tp 
 
 

Test B: Tp=1ms, C/N0=42dBHz, delta_x=30Km
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Figure 8: Estimated C/N0s for a signal of 42dBHz, 
with fixed Tp 
 

The first thing to be mentioned here is that the 
sequential algorithms are more comparable to the 
classical one, with ratios of 0.9 and 0.8 compared to 0.87 
and 0.58. This is obvious since the former are optimised 
to speed up the coherent integration process. Thus for a 
coherent integration over ms1  their complexities are 
comparable to the classical algorithm or even worse.  

The SOR is not interesting in this case, since it is 
much slower than the classical algorithm. This is because 
the loss in the C/N0 could not be compensated by longer 
integrations without increasing the overall time needed.  

In terms of sensitivity, the results are comparable 
to those obtained previously. 
 
III.4 Test B-2: dBHzNC 270 ≅ , msTp 4= , 

Kmx 10=∆  
 

This test has been conducted with the assumption 
that only 7 satellites out of 10 are needed to be 
successfully acquired. Thus, the minimum value of M 
retained is that corresponding to a successful acquisition 
of the first satellites. The results are illustrated in figures 9 
and 10. 
 

Test B: Tp=4ms, C/N0=27dBHz, delta_x=10Km
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Figure 9: Acquisition time ratio of the different 
algorithms compared to the classical one for a signal 
of 27dBHz, with fixed Tp 
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Test B: Tp=4ms, C/N0=27dBHz, delta_x=10Km

Estimated C/N0s

22

23

24

25

26

27

28

29

class sum after correlation sum before correlation Transverse FFT SOR opt (3 sats/gr)

 
Figure 10: Estimated C/N0s for a signal of 27dBHz, 
with fixed Tp 
 

In this experiment the sequential algorithms are 
faster than the classical one, except for the sum after 
correlation. The optimized SOR needs more time when 
the number of satellites per group increases, and is slower 
than the sequential algorithms. The transverse FFT is still 
the most interesting in speed and sensitivity 
performances. 

 
III.5 Test B-3: dBHzNC 170 ≅ , 

msT p 10= , Kmx 1=∆  
 

Test B: Tp=10ms, C/N0=17dBHz, delta_x=1Km
Acquisition time ratio of the different algorithms compared to the classical one
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Figure 11: Acquisition time ratio of the different 
algorithms compared to the classical one for a signal 
of 17dBHz, with fixed Tp 
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Figure 12: Estimated C/N0s for a signal of 17dBHz, 
with fixed Tp 
 

In this experiment also the SOR needs more time 
then the transverse FFT which once again has the best 
speed and sensitivity performance. 
 
IV. CONCLUSION 
 

The tests conducted lead to many conclusions:  
 In similar conditions, for strong signals (42 
dBHz), a coherent integration of ms1  is largely sufficient 
for a successful acquisition. In this case, the algorithms 
which search for the satellites one by one are not 
interesting except for the transverse FFT and the 
optimized SOR are faster.  

For weaker signals (27 dBHz), the transverse 
FFT and the SOR are still faster, although the SOR 
introduces significant loss in sensitivity.  

 
For fixed Tp and C/N0, but variable M, when a 

strong signal is received, the sum before and the 
transverse FFT are more interesting than the other 
algorithms. The optimized SOR is not interesting since it 
needs much more time than the others to compensate for 
the loss it introduces. The same results were obtained for 
weaker signals.  
 
 In summary, the sequential algorithms sensitivity 
performance is comparable, but the transverse FFT is the 
most interesting in terms of acquisition time. The current 
version of the SOR algorithm is not interesting, unless the 
receiver uses a fixed total integration time (M*Tp). If that 
total integration time is kept fixed for the SOR to be 
efficient that time needs some how to be over estimated. 
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