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ABSTRACT  
 

With the development of Galileo and modernized GPS 
and the increase in performance of the associated signals 
(ALTBOC, MBOC, BOCcos...), various contributors, 
often neglected, may become essential factors in the 
payload design to better characterize the navigation 
signals and to asses their best achievable performance. In 
navigation systems these contributors could be: 
� the phase noise introduced by the satellite and 

receiver clocks oscillators, 
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� the signal distortions due to payload amplifier, 
 
The aim of this paper is to analyze and optimize, 

thanks to simulations, the phase noise and the signal 
distortions introduced by the payload amplification unit. 
These distortions will be compared to the distortions due 
to the clock unit phase noise and their impact at different 
stages of the payload will be evaluated for a signal similar 
to the signals used in navigation systems.  
 

The first part of this paper will present the payload 
model chosen for the simulations and particularly the 
amplification unit. The clock phase noise model and the 
amplifier characterization will also be exposed. Then, the 
simulated navigation signal will be defined. 

Afterwards using Matlab simulations, the influence, 
on the receiver performance, of clock phase noise and 
amplifier non-linearities will be studied. Moreover, the 
influence of the filters position and bandwidth in the 
payload and the influence of the value of the amplifier 
input back-off (IBO) will be examined.  

To conclude, the suitable operating point of the 
payload amplifier and the best payload configuration will 
be determined.  
 
I. INTRODUCTION  
 

At the beginning of the year the first Galileo satellite, 
called GIOVE-A, has begun transmitting. The various 
Galileo signal modes are currently generated using the 
GIOVE-A payload chain. Even if the characterization of 
the Galileo payload performance has already started with 
this launch, studies are still carried out to analyze possible 
distortions on the signals at the satellite payload level. 
Indeed the identification of these distortions is necessary 
since they could limit the absolute precision of the 
satellite positioning system. Moreover the distortions 
identification permits to evaluate all options and 
parameters influence on the generation quality. 

 
At the payload level, the main signals distortions are 

due to the atomic clocks and the amplifier unit. Indeed the 
atomic clocks, even if they are very stable, suffer from 
instabilities, which create phase noise. This phase noise, 
introduced on the signal during the up-conversion, could 
distort it and consequently reduce its inherent 
performance when processed by the receiver. As for the 
amplifier unit, it is composed of a non-linear amplifier, 
which could introduce signal impairments because of its 
non-constant Amplitude-Modulation to Phase-Modulation 
(AM/PM) characteristics. 

 
The aim of this paper is to characterize the influence 

of payload phase noise and amplifier non-linearities on 
the signal generation and on the receiver performance. 

First the payload model chosen for this study will be 
presented. The different payload units and the distortions 

that they introduce during the signal generation will be set 
out.  

Then the simulated navigation signals will be 
presented. In the chosen case study, the E5 signal has 
been chosen for its innovative characteristics. it uses a 
constant envelope modulation, known as AltBOC(15,10), 
while having an extremely wide emission bandwidth (92 
MHz). It is thus considered that the payload filter 
bandwidth will be a key parameter since the signal 
emission bandwidth is close to the amplifier maximum 
allowable bandwidth.  

Afterwards thanks to simulations, the influence, on the 
receiver performance, of the clock phase noise and 
amplifier non-linearities will be investigated. The receiver 
performance will be evaluated according to typical code 
and phase tracking figures of merit: 
• for code tracking, the distortions on the 

autocorrelation function and the power spectral 
density functions are studied, 

• for phase tracking, the computation of the 1-� phase 
tracking error, available once the phase noise PSD is 
estimated, will be used. 

The modulation phase diagram will also be investigated to 
evaluate the distortion induced by the amplifier on the 
signal constant envelope. The influence of the amplifier 
phase noise will also be compared to the influence of the 
atomic clocks phase noise on the phase error estimation in 
the receiver Phase Lock Loop. The simulations will de 
done considering different amplifier IBO to find the most 
suitable amplifier operating point. 

To finish the simulations results will be compared to 
determine the best payload configuration. 
 
II. PAYLOAD MODEL 
 

The payload considered in this study is similar to the 
Galileo payload, presented on the European Space 
Agency website (Figure 1). It is composed of several sub-
systems: a clock unit, a Navigation Signal Generation 
Unit (NSGU), a Frequency Generation and Modulation 
Unit (FGMU), an amplifier unit and an Output MUltipleX 
unit (OMUX). 
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Figure1: Galileo generic payload 

 
The Clock Unit 
 

The satellites will carry a clock ensemble, composed 
of atomic clocks: Passive Hydrogen Maser (PHM) and 
Rubidium Atomic Frequency Sources (RAFS) that 
provide the time reference for the generation of the 
navigation signal. The atomic reference is selected from 
one of the atomic clocks and converted to the Master 
Timing Reference (MTR) of 10.23 MHz by the Clock 
Monitoring and Control Unit (CMCU). Even if they are 
very stable the atomic clocks are disturbed by 
unavoidable processes such as random noise, which create 
phase noise [IEEE Std. 1139-1988]. Consequently, the 
MTR delivered by the CMCU will suffer from phase 
noise. 

The power spectral density of the inherent phase noise 
of the 10.23 MHz signal at the output of the CMCU 
([Moreno Carrillo et al., 2005]) is represented on Figure 
2: 

Power Spectral Density of the CMCU phase noise
 [Moreno Carrillo, 2005]
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 Figure 2: Power Spectral Density of the clock unit phase 

noise 
 

The Navigation Signal Generation Unit 
 

The NSGU generates the navigation signal and 
modulates it in the different emission bands. It is 
composed of a modulation circuit, called modulator and a 
numerical filter. The NSGU modulator generates several 
numerical modulated base-band signals, one for each 
frequency bands. After that the modulator, according 
mostly to the signal bandwidth, can: 
� put the base-band signals around a numerical 

intermediate frequency to avoid the problems linked to 
the setting and ageing of the analog mixer. This could 
be, for instance, used for Galileo E1 signals. Or 

� transmit the base-band signals’ in-phase and 
quadrature components because their transmission 
around an intermediate frequency is not possible 
owing to their large bandwidth, which would impose a 
sampling frequencies not currently realistic. This 
could be, for instance, used for the Galileo E5 signals. 
 
After being modulated, the signals are filtered by a 

numerical filter, which bandwidth is at least equal to the 
transmitted signals bandwidth, to respect out-of-band 
rejection and avoid aliasing that could appear during the 
FGMU processes. It has to be noted that the choice of the 
filter bandwidth is important (and this is true for every 
payload module using filtering operations), since it will 
cut the useful signal spectrum and, if not properly chosen, 
could destroy the desirable constant envelope property of 
the signals. 

 
The Frequency Generation and Modulation Unit 
 

The FGMU structure is shown in Figure 3. It has been 
described in details in [Rebeyrol et al., 2006]. The FGMU 
is composed of a digital-to-analog (DAC) converter 
followed by large band filters and several frequency 
synthesizers which use the reference time delivered by the 
clock unit to generate the intermediate frequencies, used 
for the signals up-conversion.  

 

 
 

Figure 3: FGMU generic scheme 
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The DAC converter generates an analog signal from 

the digital signal coming from the NSGU. According to 
[Rebeyrol et al., 2006], the phase noise introduced by the 
DAC is low compared to the phase noise introduced 
during the up-conversion and the amplification 
operations; consequently it will be neglected in this study. 

After being converted to analog, the navigation signals 
are up-converted in one or more up-conversion stages. 
Each frequency used to realize the up-conversion comes 
from a frequency synthesizer, based on a simple single-
loop phase lock loop (PLL) and described in [Rebeyrol et 
al., 2006]. Figure 4 represents the generic block diagram 
of a FGMU frequency synthesizer [Robins, 1982]: 

 

 
 

Figure 4: Frequency synthesizer generic scheme 
 

The frequency synthesizer uses the reference 
frequency delivered by the clock unit to generate a higher 
frequency which permits to realize the up-conversion. As 
calculated in [Rebeyrol et al., 2006], the PSD of the phase 
noise at the frequency synthesizer’s output, using the 
model shown in Figure 4, is determined by: 
 

( ) ( ) ( ) ( ) ( ) 222 1 fHfSfHNfSfS vcoCUout −⋅+⋅⋅=   

 
where  CUS  is the power spectrum density of the clock 

unit phase noise,  
vcoS  is the power spectrum density of the 

payload VCO phase noise, and  
H  is the PLL closed loop transfer function 
equal to:  
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with  F  the transfer function of the loop filter, and 
VCOK  and PDK  are the gains of the VCO and of 

the phase detector. 
 

Consequently, if the up-conversion is realized in one 
stage, the phase noise added to the navigation signal 
during the down-conversion is perfectly characterized by 
Sout(f). But if the up-conversion is realized in several 
stages, the phase noise added on the signal is 
characterized by: 

 
( ) ( ) ( ) ( )fSfSfSfS

nout φφφ +++= ...
21

 

 
where n represents the up-conversion stages number, and 
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An optimal value of n could be calculated to minimize the 
global phase noise introduced on the signal. However, to 
simplify the calculation, the worst case will be considered 
in this study, which means when the up-conversion is 
realized in only one stage. In this case, N depends only on 
the signal central frequency. 

 
In the Galileo case, the phase noise added to the 

navigation signals during the up-conversion is shown in 
Figure 5. It can be seen that the L1 signal, due to its 
higher carrier frequency, will undergo higher phase noise. 

 

 
Figure 5: Power Spectrum Densities of phase noise added 

during the up-conversion 
 

After the up-conversion, the signals are then filtered 
by a large band filter to avoid, as after the DAC, the out-
of-band emission and to eliminate the frequency 
harmonics. 
 
The Amplifier Unit 
 

After the propagation through the FGMU, the signal 
is amplified thanks to a non-linear amplifier. In this study, 
a Solid State Power Amplifier (SSPA) is considered, as in 
the Galileo payload according to [Coromina et al., 2004]. 
To characterize a non-linear amplifier as the SSPA, the 
AM/AM and AM/PM curves (AM: amplitude 
modulation, PM: phase modulation) are used. Figure 6 
and Figure 7 present the AM/AM and AM/PM curves of 
the considered amplifier. 
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Figure 6: Considered SSPA AM/AM characteristic 
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Figure 7: Considered SSPA AM/PM characteristic 
 
It can be seen that the considered SSPAS saturation 

point corresponds to an input power of 16.9 dBm and an 
output power of  30.1 dBm. 

The AM/PM curve shows that the amplifier phase 
output is not constant according to the input signal power. 
Thus, a signal with a non-constant envelope will entail 
phase distortion. These distortions could affect the 
modulation constellation plot and thus lead to errors on 
measurements. 
 
The Output Multiplexer 
 

At the payload output, before the antenna subsystem, 
an Output Multiplexer (OMUX) is required to combine, 
before emission, the output signals from the SSPAs, each 
at close-spaced frequencies.  

The OMUX is generally considered to be close to a 
sixth-order Butterworth filters whose bandwidths are 
equal to the specified navigation signals emission 
bandwidths. 

The multiplexers, on top of the signals combination, 
permit to eliminate the intermodulation products and the 
secondary lobes recoveries due to the amplifier unit. 

 
Conclusion 
 

The navigation signals are generated and filtered in 
the NSGU before being up-converted in the FGMU. 
During this up-conversion, phase noise due to the clock 
unit instabilities could be introduced on the signals. 
Afterwards the signals are amplified by SSPAs, which 
could distort them due to their non-linearities. Then they 
are filtered by OMUXs before being transmitted by the 
antenna. 

Considering the payload model presented above, 
simulations will be carried out to evaluate the 
impairments introduced by the different units. The signal 
considered for these simulations, the E5 signal, is 
presented in the next section. 

 
II. SIGNAL MODEL 
 

The signal considered for this study is the constant 
envelope Alternate Binary Offset Carrier (ALTBOC) 
signal. It has a large bandwidth close to the maximum 
acceptable bandwidth for the amplifier. Consequently the 
payload NSGU generates it in base-band to avoid the 
problem of a too high sampling frequency. 

An ALTBOC(15,10) is simulated to match the signal 
proposed to transmit the Galileo E5 band signal. This 
signal can be defined, for instance, in the following way 
[Soellner and Erhard, 2003]: 
 

( )

( )

( )
( )�
�
�
�
�

�

�
�
�
�
�

�

�

�
�

�
	



�
�


�
�
�

� −⋅+⋅⋅+

+�
�

�
	



�
�


�
�
�

� −⋅−⋅⋅+

+�
�

�
	



�
�


�
�
�

� −⋅+⋅⋅+

+�
�

�
	



�
�


�
�
�

� −⋅−⋅⋅+

=

4
)(

4
)(

4
)(

4
)(

)(

'

'

'

'

_

Ts
tscjtsccjc

Ts
tscjtsccjc

Ts
tscjtsccjc

Ts
tscjtsccjc

tx

apapUU

apapLL

asasUU

asasLL

BOCALT

 

 
with cu is the data upper (E5b) code, cu’ the pilot upper 
(E5b) code, cL the data lower (E5a) code and cL’ the pilot 
lower (E5a) code. 
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Its modulation constellation and its spectrum are 
represented on Figure 8 and Figure 9. 
 

 
Figure 8: Constant Envelope ALTBOC(15,10) 

Modulation Constellation 
 

 
Figure 9: Constant Envelope ALTBOC(15,10) Power 

Spectrum Density 
 

The E5 emission bandwidth is considered to be equal to 
90*1.023 MHz, to be in accordance with [GJU, 2005].  
 

The AltBOC can also be more simply generated and 
defined. Surprisingly, this rather complex modulation 
scheme can be easily implemented using simple look-up 
tables for the phase assignments. As seen above, the 
ALTBOC features a 8-PSK constellation. The idea is here 
to allocate any of the 4 codes and 8 sub-carrier phases 
combinations to a phase spot in the constellation, using a 
look-up table, and then to generate the corresponding I 
and Q signals prior to digital-to-analog conversion. The 
value of the constellation spot is a function of the value of 
the 4 codes [-1 or +1], and the carrier period is divided 
into 8 time bins: the time bin into which (t mod Ts) falls. 
There are 4 binary codes, resulting in 16 (24) code 
combinations: this means that there are a total of 128 

different phase plots, whose value may vary between 1 
and 8. The following figure presents a simple ALTBOC 
generation diagram and the table 1 the look-up tables 
associated [Ries et al, 2003 ]. 

 

 
 

Figure 10: Simple E5 ALTBOC 8PSK generation diagram 
 

Manipulating the 8PSK-ALTBOC expressions, the 
following look-up table can be produced: 
 

 
 

 
 

Table 1: Example of ALTBOC Look-up table 
 
 
III. SIMULATIONS RESULTS 

 
The objective of the simulations is to evaluate the 

influence of the payload clock unit phase noise and 
amplifier non-linearities on the signal generation. These 
simulations will show the signal distortions induced by 
these payload units.  

 
Figures of merit 

 
Different figures of merit are used to evaluate the 

signal distortions on performance: 
� the correlation function, in order to evaluate 

phase noise and non-linearities influence on the code 
tracking performance thanks to the observation of the 
correlation peak (correlation loss and  peak sharpness), 

� the power spectrum density to notice a possible 
spectrum distortion or a side lobe rise, which could lead 
to interferences with other signals, 

� the modulation constellation to examine the 
variation of the signal constant envelope 
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� the phase error estimation to assess the error 
induced by the clocks phase noise and amplifier non-
linearities as seen by a typical receiver PLL. 

 
The PLL phase error is estimated thanks to the 

following equation [Irsigler and Eisfeller, 2002; Rebeyrol 
et al., 2006]: 

( )�
∞

⋅−⋅=
0

22 1)( dfjfHfS
eNσ    

where  
eNS  is the single-sideband power spectrum 

density of the incoming phase noise, and 
H  is the transfer function of the PLL. 

 
In this study, a third-order PLL is considered, since it 
represents the most common order used in receivers. 
Consequently the following model can be used [Irsigler 
and Eisfeller, 2002]: 

 

66

6
2)(1

ff

f
jfH

L +
=−  

 

where LL Bf *2.1*2π= , and 

LB  is the loop noise bandwidth. 
 

This equation has been validated through extensive 
simulations using a PLL loop tracking the generated 
ALTBOC(15,10) signal only distorted by the above-
mentioned phase noise error. This validation step also 
allowed us to be confident in the estimation of the phase 
noise power spectrum density and thus to use this method 
to investigate the phase noise characteristics at different 
stages of the payload. 

 
The four introduced figures of merit will be plotted or 

calculated at different points in the payload chain to be 
able to compare the influence of each unit on the 
generated signal. 
 
Results 
 

The first test was to verify the justification for 
choosing a constant envelope signal. Assuming no signal 
filtering, and the presence of the phase noise inherent the 
aforementioned clock unit, two signals (one with and one 
without constant envelope properties) are passed through 
the specified SSPA. A PLL is then used at the output of 
the SSPA to assess the resulting phase error. It can be 
noticed from Figure 10 that the SSPA does not introduce 
phase noise on a constant envelope signal whereas it 
strongly distorts the phase of a non constant envelope 
signal. That is the reason why our study is focused on the 
signal with a constant envelope. 

 
Figure 11: SSPA Impact on Phase Noise for a Constant 

and Non-Constant Envelope Signal (BL=10 Hz) 
 

Figure 12 represents the modulation constellation of a 
constant envelope ALTBOC(15,10), and the distortion 
induced by the up-conversion and amplification units. It 
can be seen that the phase noise introduced by the up-
conversion stage has an impact on the modulation plot, 
but the constant envelope property remains.  

 

 Figure 12: ALTBOC(15,10) Modulation Constellation 
 
The resulting phase error, shown in Figure 13, shows that 
a constant envelope signal is then only slightly distort by 
an amplifier (no filtering is considered in the chains). 

 

  
 
 
 

 
Figure 13: Up-Conversion and SSPA Impact on Phase 

Noise for a Constant and Non-Constant Envelope Signal 
(BL=10 Hz) 

 
Moreover the simulations prove that in the case of a 

constant envelope the up-conversion distorts more the 
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modulation constellation than the amplification.  It is the 
contrary with a non-constant envelope signal. 

 
However, the ALTBOC(15,10) signal will not enter in 

the amplification unit with a constant envelope because of 
the NSGU numerical filter which has been initially 
considered with a 92 MHz bandwidth in our payload 
model (restricted to allowed emission bandwidth). This 
filtering process will distort the signal envelope, and 
particularly will reduce the constant envelope property of 
the signal. This can be seen in Figure 14. It is then 
understood that keeping an NSGU filter bandwidth of 92 
MHz will significantly distort the signal at the output of 
the SSPA.  

 
Figure 14: ALTBOC(15,10) Modulation Constellation 

After Filtering using a 92 MHz Bandwidth 
 

Consequently the distortions introduced by the 
amplifier will be higher than the phase noise introduced 
by the up-conversion, as shown in Figure 15. It can be 
seen that there is, in this configuration, no advantage in 
generating a constant envelope signal. 

 

 
 
 
 

 
Figure 15: Up-Conversion and SSPA Impact on Phase 

Noise for a Constant and Non-Constant Envelope Signal 
Using a 92 MHz Filter (BL=10 Hz) 

 
It was thus decided to maximize the NSGU bandwidth 

as much as possible, since the OMUX will anyway filter 
the signal to its specified emission bandwidth. However, 
there is a limitation on the SSPA input bandwidth 

considered equal to 100 MHz. Thus, this bandwidth was 
chosen for the NSGU filter, resulting in the modulation 
plot shown in Figure 16. The plot is still strongly 
modified and the signal envelope is still not constant. 
 

 
Figure 16: ALTBOC(15,10) Modulation Constellation 

After Filtering using a 100 MHz Bandwidth 
 
So, it will be interesting to calculate the values 

obtained for the equivalent PLL phase error for different 
loop bandwidths at several payload stages, considering a 
100 MHz NSGU filter. To evaluate these errors, the 
calculation of the phase noise power spectrum densities of 
the signal after the up-conversion and after the 
amplification is required. Figure 17 represents these 
single side band spectrums and the following table 
summarizes the results found for two different loop 
bandwidths. It can be seen that the amplifier adds noise in 
the high frequency components. 

 

 
 
Figure 17: Constant Envelope ALTBOC Single Side Band 
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PLL phase error 

[°] BL = 2 Hz BL = 10 Hz 

�1 0.27 0.06 

�2 0.3 0.11 
 

Table 2: Estimated Phase Error at the Up-converter 
and SSPA Outputs 

 
Figure 17 and Table 2 show that the phase noise 

introduces by the amplifier non-linearities, if a 100 MHz 
NSGU filter is considered, is significantly smaller than 
with a 92 MHz filter. Still, the phase noise introduced by 
the SSPA is higher than the phase noise due to atomic 
clocks and introduced on the signal during the up-
conversion. This is particularly true when high PLL 
bandwidth are used (since as already mentioned, mostly 
high frequency phase noise is added by the SSPA) 

 
The next simulations show the impact of the NSGU 

filter, of the up-conversion and of the amplifier on the 
signal correlation function and spectrum. 

 
The correlation functions, on Figure 18 and Figure 19, 

show that the main correlation losses are due to the 
NSGU filter. Indeed, after the NSGU filter, the 
correlation peak is larger compared to the autocorrelation 
of the signal and a correlation loss equal to 0.1 dB is 
observed.  

The correlation of the signal after the up-conversion is 
similar to the correlation observed after the NSGU filter, 
no correlation loss is introduced.  

The correlation function observed after the amplifier 
show that the amplifier does not introduce correlation loss 
but it introduces a slight distortion of the correlation peak. 

The amplifier has more influence on the correlation 
function than the up-conversion. 

 
Figure 18: Correlation Functions: from NSGU to 

Amplification Unit 
 

 
Figure 19: Zoom on Correlation Functions 

 
On Figure 20, the constant envelope ALTBOC power 

spectrum densities before and after the NSGU filter are 
plotted.  

 

 
 

Figure 20: Power Spectrum Densities: before and after 
the NSGU filter 

NSGU 
Filter 

Up-
conversion 

SSPA OMUX 

�2  �1  
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Figure 21 represents the signal spectra after the up-
conversion and after the amplification. It can be noticed 
that the up-conversion does not add noise on the spectrum 
contrary to the amplifier. Indeed the amplifier introduces 
a rise of the side-lobes at the spectrum extremities. This 
explains the slight modification of the correlation function 
shown in Figure 19. 

 
 
Figure 21: Power Spectrum Densities: from amplification 

unit to OMUX output 
 

Thanks to its 92 MHz filter, the OMUX permits to 
eliminate the distortions introduced by the amplifier on 
the spectrum (shown in Figure 21) and allows avoiding 
possible interference with other signals or systems. 
 

 
Figure 22: OMUX effect on amplified signal spectrum 

 
All the simulations have been made considering that 

the amplifier operates at its saturation point. That means 
that the SSPA amplifies the signal with an Input Back-Off 
(IBO) equal to 0 dB. The saturation point is the optimal 
operating point of the amplifier when the signal is 
considered with a constant envelope. However it has been 
seen that the NSGU filter makes the signal envelope non 
constant, consequently it will be interesting to evaluate 

the phase error due to the amplifier for several classical 
IBOs. Table 3 summarizes the results.  

 
IBO (dB) 0 1 2 

PLL phase error  
(BL = 10 Hz) 0.11° 0.19° 0.33° 

 
Table 3: PLL phase error in function of IBO for a 100 

MHz bandwidth ALTBOC 
 

This table shows that the best amplifier operating 
point is in fact the saturation point even though the signal 
envelope is not constant because of the NSGU filter. 
 
IV. CONCLUSION 

 
To conclude, the simulations have shown that the 

NSGU filter destroys the advantage of the constant 
envelope of the signal if its bandwidth is too narrow. This 
is the case on E5 if the NSGU filter bandwidth is the E5 
emission bandwidth (92 MHz).  Thus its bandwidth 
should be slightly smaller than the maximum acceptable 
bandwidth at the amplifier input. A value of 100 MHz 
was used in this paper as an example.  

The simulations have also shown that the noise 
introduced on the signal phase by the amplifier is higher 
than the phase noise due to the atomic clocks and 
introduced on the signal during the up-conversion, if an 
acceptable bandwidth is found for the NSGU filter. It was 
also demonstrated that the saturation point is the best 
operating point of the amplifier from the point of view of 
the phase affected a PLL. 

Moreover further studies should be done to 
consolidate these results. It would also be interesting to 
realize the same study considering a non-constant 
envelope signal or a signal with a smaller bandwidth, such 
as the Galileo L1 signals. Finally, the results obtained 
should also be compared to experimental in real 
conditions. 
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