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ABSTRACT  
 
Conventional snapshot Receiver Autonomous Integrity 
Monitoring (RAIM) algorithms, which use a single set of 
measurements collected simultaneously, have limited 
performances to check the integrity of GNSS in safety-
critical civil aviation applications when vertical guidance 
requirements are applied. 
 
In this context, snapshot and sequential RAIM FDE 
algorithms based on the constrained Generalized 
Likelihood Ratio (GLR) test have been proposed. These 
techniques, described in this paper, are based on a 
formalized definition of a horizontal or vertical error that 
must be considered as a positioning failure and consist in 
computing for each epoch and for each satellite channel a 
minimal additional pseudo range bias that leads to such 
situations. Proceeding like this allows partially 
compensating the lack of availability of conventional 
methods. As such, sequential technique is particularly 
attractive. Indeed this algorithm takes into account history 
of measurements to make its decision and moreover the 
pseudo range correlation is directly integrated through an 
autoregressive (AR) model. 
 
The purpose of our study is to benefit fully from these 
improvements by targeting more complex fault profiles. A 
sequential constrained GLR is designed to detect 
combined step ramp pseudo range errors. Our goal is to 
protect ourselves from faults that only depend on two 
parameters: initial position (amplitude of the step) and 
speed (rate of the slope) and that tend to lead to a 
positioning failure within an observation window tΔ . 
 
A first evaluation of this advanced RAIM performances is 
presented in this paper. The robustness of this method is 
assessed for several profiles of additional error through a 
comparison of detection rates. The impact of the 
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constellation geometry on our RAIM availability targeting 
at APV (APproach with Vertical guidance) requirements 
is also studied.  
 
The results obtained show that the robustness of the 
existing techniques has been improved by our method. 
For a combined constellation GPS + Galileo, this first 
performance evaluation is quite encouraging, before a 
complete study on a world wide case. 
 
INTRODUCTION 
 
Receiver Autonomous Integrity Monitoring (RAIM) is 
nowadays a standard solution to check the integrity of 
GNSS in safety-critical civil aviation applications. 
Unfortunately, the conventional snapshot Least Square-
based RAIM algorithms, which use a single set of GPS 
measurements collected simultaneously, have a limited 
performance when the civil aviation vertical guidance 
requirements are applied. This is why sequential 
techniques are attractive. Because they take into account 
the history of measurements, they should provide better 
detection availability. Currently, sequential RAIM 
algorithms are designed to detect step error profiles. But if 
to benefit fully from their performances and to address the 
largest class of error behaviours, it could be interesting to 
adapt sequential RAIM to combined step ramp detection. 
 
New RAIM algorithms have been already built by using 
the constrained GLR test based on the current (snapshot) 
or all past and current sets of GPS measurements 
(sequential) and the LS-residual pre-filtering technique 
[1]. Their potential to detect stepwise fault has been 
already demonstrated [2]. The goal of this study is to 
present the adaptation of this sequential method in order 
to detect combined step-ramp pseudo range biases. This 
work focuses on design and performance evaluation of 
this algorithm. During all the study it will be assumed that 
only one individual satellite channel fault is possible at a 
time. 
 
The paper is organized as follows: first International Civil 
Aviation Organization requirements concerning integrity 
of GNSS for various phases of flight are briefly recalled. 
Then, the principle of our advanced RAIM based on the 
constrained Generalised Likelihood Ratio Test, including 
the definition of the detection/exclusion criterion and the 
computation of the smallest bias that leads to a 
positioning failure, is described. Next the constrained 
GLRT based RAIM FDE algorithm is designed for a more 
complex fault profile including two parameters: initial 
position (amplitude of the step) and speed (rate of the 
slope). The concept of a minimal positioning failure, that 
is to say the “minimum speed” and the “minimum 
amplitude of the step” that lead to a positioning failure is 
redefined. Finally the robustness of the advanced RAIM 

FDE against these more complex range failures will be 
tested using a simulation model. 
 
 
I- PRINCIPLE OF THE ALGORITHMS 
 
According to [3], the detection function of a RAIM FDE 
algorithm is defined to be available when the constellation 
of satellites provides a geometry for which the missed 
alert and false alert requirement can be met on all 
satellites being used for the applicable alert limit and time 
to alert. Corresponding civil aviation requirements for 
different modes of flight are represented by those typical 
values:  
 

Mode of 
flight 

HAL / VAL Integrity 
risk 

Time to 
alert 

Terminal 1 NM 10-7/h 15 s 
NPA 0.3 NM 10-7/h 10 s 
APV I 40m/50m 2.10-7/150s 10 s 
APV II 40m/20m 2.10-7/150s   6 s 

 
Our algorithm will be considered as available if it can 
detect/exclude for each pseudo range the smallest bias 
that will lead to a positioning failure, that is to say 
Horizontal Error > HAL or Vertical Error > VAL, with a 
probability equal to the integrity risk, during the time to 
alert. This is why the objective is first to define for each 
satellite channel these smallest biases which correspond to 
the worst case detection/exclusion situations. 
 
In a few words, the steps of such an advanced RAIM are: 

- For a given user position and a given moment, 
identification of visible satellites 

- Computation for each single satellite channel of 
the smallest bias that leads to a positioning failure with a 
probability equal to the integrity risk 

- Simulation of nominal measurments and 
injection of this eventual additional bias 

- Calculation of detection rates 
 
First, let us define our detection and exclusion criterion. 
 
In contrast to the traditional (unconstrained) snapshot or 
sequential RAIM schemes, constrained GLR test directly 
analyses the impact of each single satellite channel fault 
on the positioning accuracy. They are designed to detect 
and/or exclude only such faults which lead to a 
positioning failure. 
 
The navigation equation, relating range measurements 
from several satellites with known locations to a user, 
gives us:  ( ) BXhY ++= ξ  
where B is an eventual bias and ( )Σ,0~ Nξ  with 
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For [ ]ni ,1∈  the variance 2
iσ  are defined as function of 

the elevation angle. 
By linearizing this pseudo range equation with respect to 
the vector X around the working point 0X : 
 

( ) ( ) BXXHXhY ++−+= ξ00  
 

Defining 0XXX −=Δ  and ( )0XhYY −=Δ : 
BXHY ++Δ=Δ ξ  

 
And by normalizing with 2/1−Σ=N : 
 

normnormnormnorm BXHY ++Δ=Δ ξ  
 
The matrix W is built such as 0=normWH . This matrix 

( )41,...., −= n
T wwW  of size ( )4−× nn  is composed of 

the eigenvectors 1w ,…, 4−nw  of the projection matrix HP : 

( ) t
normnorm

t
normnormnH HHHHIP

1−
−=  

W satisfies the following conditions: H
t PWW =  and 

4−= n
t IWW . 

 
The parity vector is defined by normYWZ Δ= . 
 
Since W satisfies 0=normWH , transformation by W 
removes the interference of the parameter XΔ such as: 

 
( )( )normnormnorm BWYWZ +=Δ= ξ  

 
where [ ]0,...,0,/,0,....0 iinorm vB σ= , ni ,...,1=  if there 
is an additional bias on the pseudo range i.. Different 
statistical tests will be applied on this parity vector. 
 
Considering the residual vector YPe HΔ=  and denoting 
for [ ]ni ,1∈ , iW  the ith column of W  and 

( ) iiH PiiP ,, = :    normHnorm
tt YPYWWZW Δ=Δ=  

i

iiit
i

eP
ZW

σ
,=  

In fact, the GLR tests are strongly based on the following 
idea: the magnitude of the fault [ ] normWBZE =  in the 
parity space is unknown and has to be estimated by the 
detector. 
 

II- SNAPSHOT RAIM ALGORITHM BASED ON 
THE CONSTRAINED GLR 
 
The constrained GLR algorithm has to choose between 
different hypotheses: 
 
- { }0,10 j

n
j HH == U  

where ( ){ }jjjj avIBWNZH ≤= ,,~~0,  

 
- ( ){ }llnll bvIBWNZH ≥= − ,,~~ 4  for nl ,...,1=  
 
The parameters ll ba ≤≤0 , nl ,...,1=  define the 
selectivity of the test with respect to each pseudo range 
bias lv . For nl ,...,1= , lb  will be the smallest bias on 

the channel l that will lead to a positioning failure and la  
the smallest bias that has to be consider, this allows the 
algorithm to be robust against insignificant additional 
pseudo range biases. During all the study it is assumed 
that 0=la . 
 
The test is given by the following equation: 

( )
⎪
⎩

⎪
⎨

⎧
=

lH

H
Y

0~δ  

if

if
 

( )
( )

( )
( ) h
Zf
Zf

v

h
Zf
Zf

l

nl

l

nl

≥=

<

≤≤

≤≤

0
1

0
1

maxarg

max
 

 
If we have a geometric interpretation of the decision rule 
we can re-write the equation this way: 
 
- ( ) 0

~ HY =δ  if : 

hvWZvWZ
l

l
lbv

i

i
iavninl llii

<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−

≥≤≤≤≤≤

2

2

2

2
11

minminminmax
σσ

 

- ( ) vHY =~δ  if  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≥−−−=

≥≤≤≤≤≤
hvWZvWZv

l

l
lbv

i

i
iavninl llii

2

2

2

2
11

minminminmaxarg
σσ

 where: 

- ( )
2

2
0, min,

i

i
iavi

v
WZHZd

ii σ
−=

≤
 is the distance from 

the observation Z to the partial null hypothesis 0,iH  

- ( ) ( )0,1

2

2
10 ,minminmin, ini

i

i
iavni

HZd
v

WZHZd
ii ≤≤≤≤≤

=−=
σ

 is 

the distance from Z to 0H  
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- ( )
2

2

min,
l

l
lbvl

v
WZHZd

ll σ
−=

≥
, nl ,...,1=  are the 

distance from Z to each alternatives hypothesis lH  
 
In order to test the alternatives lH  for nl ,...,1=  against 

the null hypothesis 0H , the differences 

( ) ( )lHZdHZd ,, 0 −  are computed and the index that 
maximise them is identified. Thus for ni ,...,1=  two 
functions are defined: 

- 
2

2
0 min),(

i

i
iav

v
WZieS

ii σ
−=

≤
 which represents the 

probability that there is no fault or no significant fault on 
the pseudo range i. 

- 
2

2
1 min),(

i

i
ibv

v
WZieS

ii σ
−=

≥
 which represents the  

probability that there is a bias on the channel i that will 
lead to a positioning failure. 
 

2

2
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2

2

2

2

2
i

i
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t
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v
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22
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i

i
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≤ σ
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Using the least square residual vector PYe =  to 
represent these values, PWW t = , and for ni ,...,1= : 
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Similarly, if ii bv >ˆ , ( )ivfieS ˆ),(1 =  and if ii bv ≤ˆ , 

( )ibfieS =),(1 . 
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The alarm time and exclusion function of 
detection/exclusion algorithm is based on the decision 
rule given by the following equation: 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥⎟
⎠
⎞⎜

⎝
⎛ −≥=

≤≤≤≤
hleSjeStN ttnjnl

,,minmax:1inf 1011
 

and ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ −=

≤≤≤≤
leSjeS ttnjnl

,,minmaxarg 1011
ν  

 
This algorithm needs several parameters to be 
implemented: the threshold h that will be compared to the 
statistic test and two size n vectors a and b. a is the vector 
of maximum acceptable bias and b the vector of minimum 
biases which are considered as positioning failures. The 
computation of the smallest bias that will lead to a 
positioning failure and the choice of the threshold will be 
detailed later in appendices. 
 
An example of the behaviour of the test when an 
additional bias that leads to a positioning failure is 
injected on a pseudo range (figure 1): 

0 20 40 60 80 100 120 140 160 180 200
-300
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Figure1: Snapshot constrained GLR test 

 
III- SEQUENTIAL RAIM ALGORITHM BASED ON 
THE CONSTRAINED GLR 
 
Here the pseudo range correlation is directly integrated in 
the constrained GLR algorithm through an AR model and 
the last m observations 1Z ,…, mZ  are considered. 

Test 

Threshold 

Additional 
 error 
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The test is given by the following equation: 
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Assuming that the additive pseudo range noise ξ  is 
represented by the following first autoregressive model: 

kkk a ζξξ 2
1 1−+=+  with kζ ~ ( )Σ,0N  and 

1ξ ~ ( )Σ,0N  or 1ξ ~ ( )Σ,BN  and considering the 
standardised vector of the pseudo range bias ξξ Nnorm = : 

normknormknormk a ,
2

,,1 1 ςξξ −+=+  

where normk ,ζ ~ ( )nIN ,0  and norm,1ξ ~ ( )nIN ,0  or 

norm,1ξ ~ ( )nnorm IBN ,  with an eventual bias. 
 
If we want to have a geometric interpretation of the 
decision rule, 1Z ~ ( )4,~

−nIBWN  has to be to compared 

with 
i

i
i

v
W

σ
. But for 2≥k  it is the random variable 

[ ]121
1

−−
−

kk aZZ
a

 which follows a normal 

distribution with the covariance matrix 4−nI  and that is to 

be compared with ( )
i

i
i

v
W

a

a
σ21

1

−

−  for ni ,...,1= . 

 
Thus considering the m last observations, the following 
expression has to be minimised: 
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Let us define the function: 
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We derive it and obtain its minimum: 
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If ii av ≤ˆ , ( ) ( )iiav

vfvfieS
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ˆmin),(0 ==
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 and if ii av >ˆ , 

( ) ( )iiav
afvf
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=
≤

min . Using the least square residual 

vector PYe = , PWW t = , we get for ni ,...,1= : 
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( ) ( ) ( )
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+−+−≤≤ ⎥⎦
⎤

⎢⎣
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,,...,,,...,min, 11101
 

 
The stopping time for the channel l is: 
 

( ) ( ) ( )[ ]{ }jlkknlj
hjglgklN ,1

min:1inf ≥−≥=
≤≠≤

 

and the channel to exclude is ( ){ }lN
nl≤≤

=
1
minargν  

 
Our statistical test for this algorithm will be: 

( ) ( )( )⎥
⎦

⎤
⎢
⎣

⎡
−=

≤≠≤≤≤ nlj
kknl

jglgT
11

maxmax  

 
m is chosen such that the satellites in view at the epochs t-
m+1, …, t are the same and our technique comes down to 
work with a weighted mean of the last m observations: 
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and its associated distances for ni ,...,1= : 

( )
2

2
0, min,

i

i
iavi

vWZHZd
ii σ

−=
≤

. 

 
Figure 2 shows an example of the behaviour of this test 
when the same additional bias as previously is injected on 
a pseudo range. The impact of this error on the sequential 
test has considerably increased comparing with the 
snapshot one  
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Figure2: Sequential constrained GLR test 

 
IV- SEQUENTIAL RAIM ALGORITHM BASED ON 
THE CONSTRAINED GLR: ADAPTATION TO 
COMBINED STEP RAMP PSEUDO RANGE 
ERRORS 
 
The objective here is to target more complex fault profiles 
but we must determine what kinds of error have to be 
detected. 
 
The case where faults only depend on two parameters: the 
initial position (amplitude of the step) and the speed (rate 
of the slope) is considered. For this an observation 
window tΔ , which can correspond to an approach 
duration for example, is set. 
 
Let ib  be the minimal bias in meters on the ith pseudo 
range that leads to a positioning failure, ib  is assumed to 
be a constant on the observation window. 
 

For each pseudo range, every “error couple” ( )ii vv &,  with 

iv  and iv&  constants such as [ ]tt Δ∈∃ ,0 , iii bvtv ≥+ &  
have to be detected. In fact we want to protect ourselves 
from situations that can lead to a positioning in the 150 
future seconds. 
 
The criterion will be designed in the same way as 
previously, that is to say comparing a weighted mean of 
parity vectors with several hypothetic increasing errors on 
different channels. 
Having a geometric interpretation of the decision rule, 
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To work with the m last observations and the random 

variables [ ]121

1
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−
kk aZZ

a
 (which follow a normal 

distribution with the covariance matrix 4−nI ), the 
following expression is to be minimised: 
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Let us define a function of two variables not considering 
constant terms and using the least square residual vector. 
As previously, two cumulative sums are used: 
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After simplifications, we finally obtain: 
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And for ni ,...,1= : 

Test 

Threshold 

Additional 
 error 
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The method will be a little bit more complicated since a 
recursive function of two variables has to minimize under 
more complex constraints. 
 
Simplification of the constraint criteria 
 
Under the assumption iv&  constant: 
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A couple (a constant step iv  and a constant slope iv& ) will 

be considered as faulty if ( )iii bvtv >Δ+ &  or if 

( )ii bv >  as shows the following figure: 
 

 
  : ( )ii bv > , faulty 

: ( )iii bvtv >Δ+ & , faulty 

  :
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but iv&  is not a constant and this case is not taken into 
account 
 

( ) ] ]{ }iiiiiii bvtvttbvvvA ≥+Δ∈∃<= && ,,0,/,  

( ){ }iiiiiii bvtvbvvv ≥Δ+<= && ,/,  

 
and the likelihood function has to be minimized on: 
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Thus the likelihood function is first minimized under the 
constraint ( )ii bv >  and then under the constraint 

( )iii bvtv >Δ+ & . The minimum of these two 

minimizations will be finally chosen. This way ( )ii vv &,  
the most likely couple considering the m last observations 
and under the constraint [ ]tt Δ∈∃ ,0 , ( )iii bvtv >+ &  is 
obtained. 
 
Computation of the GLR test 
 
The minimum of the function g can be found by 
computing its gradient and finding its zeros. Effectively, 
numerical values of the polynomial coefficients are such 
that this function reaches a minimum and not a maximum. 
 
Re writing it this way: 
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which results in solving a simple linear system of two 
equations and two unknowns: 
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under the constraint 02 ≠− abc  
 
Nevertheless, if the absolute minimum of this likelihood 
function is not in the constraint domain, we will carry out 
another way. 
 
Minimizing ( ) eydxcxybyaxyxg 222, 22 −−++=  under 
the constraint ibtyx ≥Δ+  results, considering function 
g properties (monotonous, regular), in minimizing under 
the constraint ibtyx =Δ+  that is to say to consider the 
limits of the constraint domain. This is due to the fact that 
( )yxg ,  forms a paraboloid. 

 
ibtyx =Δ+  and ibtyx −=Δ+  are successively set, 

which results in considering the functions: 
 

( ) ( ) ( ) ( ) eytybdytybcbytybayg iii +Δ−−Δ−++Δ−= 2222  or 

( ) ( ) ( ) ( ) eytybdytybcbytybayg iii +Δ−−−Δ−−++Δ−−= 2222  
 

0t  

ib  

ib−  

tt Δ+0  
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Thus two « constrained » minimums are obtained: 

tcbta
etdcbtab

y ii

Δ−+Δ
+Δ−−Δ

= 21 , 11 .ytbx i Δ−=  and 

tcbta
etdcbtab

y ii

Δ−+Δ
+Δ−+Δ−

= 22 , 11 .ytbx i Δ−=  

 
Likewise minimizing ( ) dxcxybyaxyxg 22, 22 −++= ey2−  
under the constraint ibx ≥  results, considering function 
g properties (monotonous, regular), in minimizing under 
the constraints ibx = , that is to say two cases: ibx =  

and ibx −= . 
 
If the memory has been reset ( )1=m  the likelihood 
function is ( ) dxaxxg 22 −=  and its absolute minimum 

a
dx = . In the same way, if this absolute minimum does 

not respond to the constraints, the algorithm has to choose 
between the limits of the domain ibx −=  or ibx =  to 
find the “constrained” minimum. 
 
Behaviour of the test facing different profiles of error 
 
Let us visualise the effect on the statistical test of the 
injection at time stt 150=Δ= of an error on the 
pseudo range corresponding to PRN 24 of an optimized 
GPS constellation. 
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Figures 3 &4: Adaptated sequential constrained GLR test 

injection of a slope 
 
Fist a bias is added on the ith pseudo range measure with a 

profile 
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 where ( )tbi  is at 

the instant t the smallest additional bias on the ith pseudo 
range (figure 3)  
 
This additional error will become a “dangerous” one at 

tt Δ= 2 . The algorithm detects it in advance that is to 
say about 60 seconds after the beginning of the failure but 
90 seconds before it becomes dangerous (figure 4). This 
can also be used to monitor the evolution of an error and 
provide warning when it becomes dangerous. 
 
Then we consider an additional bias with a profile 
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, see figure 5. 

( )tbi  
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Figures 5 & 6: Adapted sequential constrained GLR test: 

injection of combined step-ramp pseudo-range bias 
The studied algorithm performs better here since it detects 
this type of error quite instantaneously (figure 6). 
 
Finally for an additional bias with a profile: 
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the algorithm detects it immediately (figure 7 &8). 
 

0 50 100 150 200 250 300
-10

0

10

20

30

40

50

60

70

80

Time

E
rr

or

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

11

Time

T
es

t

 
Figures 7 & 8: Adapted sequential constrained GLR test: 

injection of constant pseudo-range bias 
 
V- PERFORMANCES EVALUATION 
 
The snapshot and sequential RAIM based on the 
constrained GLRT detection and exclusion functions 
availabilities have been computed for a user grid points 
parameterized in latitude and longitude spread over the 
earth surface for all configurations of reference 
constellations. The improvement obtained due to the 
constrained GLR technique is about a few percent 
availability gain in most of the cases tested [2], in case 
where the feared event is a step error. 
 
Here is presented a first performance evaluation of the 
sequential RAIM based on the constrained GLR test 
designed to detect step ramp pseudo range errors. First the 
robustness of this method has been tested for several 
profiles of additional error. A nominal GPS constellation 
has been considered. The measurements available from 
each satellite are dual frequency L1/L5 corrected by 
SBAS. The rate of detection of our algorithm has been 
computed through a 24 hours simulation by injecting 

( )tbi  
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successively on each available pseudo range 
measurements the kind of errors that have been described 
formerly. Requirements that have bee applied were APV I 
requirements. We have considered only one user position: 
Toulouse (France). 

 
Denoting 0t  the instant when the error is added on the 
pseudo range and failuret  the instant when this fault is 
larger than the corresponding smallest bias that lead to a 
positioning failure, the following profile of additional 

error, ( ) ( )0)( tt
t
tb

tb i −
Δ

=  if [ ]tttt Δ+∈ 00 , , is injected 

successively on each available pseudo range i. 
 
Figure 9 shows that the availability of the detection 
function of our algorithm logically depends on the 
amplitude of the average bias that has to be detected. This 
amplitude is also linked to the number of visible satellites. 
 

 
Figure 9: GPS (SBAS L1/L5) injection of a slope 

 
  Average number of visible satellites 
  Average smallest bias to detect 
  Rate of detection at failuret + 8 seconds 
 

Now a profile of error supposed easier to detect: 
( ) ( ) ( )022

)( tt
t
tbtb

tb ii −
Δ

+= , if [ ]tttt Δ+∈ 00 ,  is injected 

on our different pseudo range. But in fact, as figure 10 
shows, the average availability that it is computed from 
the detection rate at failuret + 8 seconds is about the same 
throught a day simulation. The algorithm will detect 
earlier this second type of failure but at the end the 
availability periods are the same. 

 
Figure10: GPS(SBASL1/L5), injection of step-ramp error 

 
Figure 11 which represents the average availability for an 
error profile ( )tbtb i=)( if [ ]tttt Δ+∈ 00 ,  shows better 
results. Nevertheless the detection rate is about the same 
for the three cases, that is positive for the robustness of 
our algorithm which at the end performs the same way for 
different profiles of errors. 
 

 
Figure 11: GPS/SBAS L1/L5, injection of a bias 

 
The amplitude of the biases that have to be detected, 
which depends on the constellation geometry, has a 
strongest impact on our algorithm availability. It is logical 
since the more satellites we have the less they individually 
impact on the user position, the bigger their corresponding 
additional smallest bias that leads to a positioning failure 
is, the easier it is to detect. This is why we test our 
algorithm availability for a same period, a same profile of 
error but for different constellations: a nominal GPS 
(SBAS L1/L5) constellation (figure 10), a Galileo E1/E5 
constellation (figure 12) and a combined GPS (SBAS 
L1/L5) + Galileo E1/E5 constellation (figure 13). 
 
The availability of our algorithm to detect combined step 
ramp pseudo range errors has been seriously improved by 
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the great number of available satellites, as figure 13 
shows. 

Figure 12: Galileo E1/E5, injection of step-ramp error 
 

 
Figure13: Combined constellation GPS L1/L5 Galileo 

E1/E5, injection of step-ramp error 
 
CONCLUSION 
 
Thanks to a sequential RAIM built to detect only 
hazardous faults, we have managed to design a RAIM to 
detect step ramp errors. We have seen that the detection 
capability of this new algorithm is better in any case (step 
only, ramp only and combined step ramp) than the one 
designed to detect step errors and thus the robustness of 
the existing technique has been improved. 
 
Detecting step ramp error for APV with GPS only or 
Galileo only is difficult but the results obtained for a 
combined constellation GPS + Galileo are quite 
encouraging. Now more analysis need to be made on a 
wide world basis. The high detection capability of this 
RAIM for APV I phases enables the algorithm to detect 
step ramp error that can be dangerous in the in the 150 
future seconds. This can be used to monitor the evolution 
of an error and provide warning only when it is necessary. 

 
During all the study we have supposed that only one 
individual satellite channel fault was possible at a time. 
This simplification can be optimistic for a double 
constellation and this is why the multiple failures case has 
to be investigated. 
 
APPENDIX A: POSITIONING FAILURE 
 
Definition of a positioning failure 
 
A fault γ  is considered as a horizontal positioning failure 
if its impact violates the integrity risk: 
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A fault γ  is considered as a vertical positioning failure if 
its impact violates the integrity risk: 
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where fp is the probability of failure of one satellite, 0P  

designed the fault free case, γP  the faulty case, HAL and 
VAL are the horizontal and vertical alert limits 
 
Minimum biases that lead to a positioning failure 
 
The purpose is to compute the parameters ib  for 

{ }ni ,1∈ . For each satellite channel they represent the 
bias on the pseudo range that will lead to a positioning 
failure with a probability equal to the integrity risk. 
 
The error in the position domain is: 

( ) ( )BHHH tt
WGSpos +ΣΣ= −−− ξε 111

84,  
and projecting this error in thee local geographic frame: 

84,, . WGSpos
t

locallocalpos n εε =  where  
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Let us define the matrix ( ) 111. −−− ΣΣ= ttt
local HHHnM  

in order to make the projection in the local geographic 
frame such as ( )BMlocalpos += ξε ,  
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In the fault free case ( )0=B , the covariance matrix of 
the error such as ( )CNlocalpos ,0~ 14, ×ε  is : 

[ ] ( ) local
tt

local
t

localposlocalpos nHHnEC 11
,, .. −−Σ== εε  

 
First we look at the computation of the probability that a 
given error in the horizontal plane leads to a positioning 
failure. 
 
If we are not in the fault free case and thus in a more 
general way, the horizontal positioning error is a two 
dimensions vector which follows a gaussian bi-
dimensional law of mean impact× r and of covariance 
matrix HC . Its density function is: 
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Considering this in the space of singular values 
decomposition of HC  and denoting 1λ  and 2λ  the two 
eigenvalues of this covariance matrix: 
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coordinates. 
 
The probability that a couple ( )yx,  be such that 

222 HALyx ≤+  considering its distribution is: 
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 denoting D the domain such as 222 HALyx ≤+ . 
 
Let’s make a change of coordinates such as we could have 
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boundaries of the integration domain becomes:  
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Solving this equation, two roots ( )θ1r  and ( )θ2r  for 

[ ]πθ ,0∈  are obtained such as: 
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The jacobian of this transformation is computed to make 
our change of coordinates 21λλrJ = , and: 
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Considering properties of second order polynomials: 
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and this last integral is computed numerically. 
 
Thus the probability that the point ( )yx,  is out of the 
circle of radius HAL is: 
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In order to pass from a bias b on a given pseudo range to 
an error vector in the local horizontal plane , projections 
are made using slopes variables. Denoting 

( ) TT HHHA 1−
=  and AHB .= , we define for 

[ ]Ni ,1∈ : ( ) ( )iii BAiHslopeN −= 12
1  

and   ( ) ( )iii BAiHslopeE −= 12
2   

 
An equivalent analysis of the vertical risk (which is easier 
in one dimension) must also be done. Then by comparing 
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successively the obtained probabilities with the integrity 
risk for different bias amplitudes, the minimum bias 
which leads to a positioning failure with a probability 
equal to the integrity risk is finally obtained.  
 
APPENDIX B: THRESHOLDS 
 
The thresholds of RAIM algorithms as function of the 
number of visible satellites are depicted here: 
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A class of threshold h will correspond to a false alarm 
rate. Choosing an index is equal to tuning our 
detection/exclusion algorithm. 
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