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ABSTRACT  
 
Civil Aviation standardization bodies (ICAO, RTCA, 
EUROCAE) aim at standardizing GNSS (Global 
Navigation Satellite Systems) for aircraft navigation. For 
safety reasons, on-board receivers must guarantee 
integrity and accuracy performance within the specified 
environment. The corresponding requirements are stated 

in the SARPS and MOPS (Minimum Operational 
Performance Specification), published by the quoted 
standardization bodies. Future use of Galileo E5a (or GPS 
L5) band raises among others interference issues. Indeed, 
pre-existent RF systems emit in this band, thus interfering 
with the E5a/L5 signals. The main threat was identified as 
being DME/TACAN ground beacons. These systems 
disturb the operation of on-board GNSS receivers in a non 
bearable manner if no mitigation is implemented. Two 
interference mitigation techniques (IMT) are proposed to 
fight this threat, and their performances are studied in the 
following. First, a baseline technique called temporal 
blanker is used as a reference. Its performances had 
already been assessed in [Bastide, 2004] and were shown 
to be compatible with civil aviation requirements. The 
idea is to detect and remove pulsed interference by 
looking at the signal’s power. Taking into account that the 
input signal (in absence of interference) should be 
equivalent to a Gaussian noise, the user can assume with 
low false detection rate that if the incoming signal’s 
power is relatively high, it is corrupted by an interference. 
Then, an innovative technique called Frequency Domain 
Adaptive Filtering (FDAF) is investigated, and is 
expected to provide better performance than the baseline 
technique. The idea is to detect and remove pulsed 
interference in the frequency domain by looking at the 
amplitude of the signal’s Fourier transform because the 
frequency spectrum may be less distorted than the 
temporal signal. Nevertheless, the second technique is 
highly constrained by implementation issues, while the 
first one is not. Hence, its performance and the possible 
benefits brought by the technique will be presented as a 
function of the technique’s design. 

 
INTRODUCTION  
 
The future use of the Galileo E5 and GPS L5 bands raise 
new issues, notably concerning interference. These bands 
suffer concomitants radio frequency emissions from DME 
(Distance Measurement Equipment), TACAN (TACtical 
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Air Navigation) and JTIDS/MIDS systems. These 
interferences disturb GNSS receivers operation for civil 
aviation applications, and need to be mitigated. In order to 
be used onboard aircrafts, the system has to show reliable 
performances. In the following, the study will focus on 
the E5a/L5 band, as this band is more impacted by pulsed 
interference than the E5b one. The objective is to test a 
technique by assessing its performance taking into 
account the worst case scenarios for the DME/TACAN 
and JTIDS/MIDS interference environment described 
below. 
The European hot spot is defined as the place in Europe 
where the influence of DME/TACAN signals is the 
largest on the victim GNSS receivers. This scenario takes 
into account the emission powers and the carrier 
frequencies of each visible DME/TACAN ground station. 
The Pulse Repetition Frequencies (PRF) of each 
DME/TACAN emitter is considered to be set at its 
maximum (2700 pulse pair per second for DME and 3600 
ppps for TACAN). It is supposed that from the airplane 
point of view, the incoming interference arrival times 
follow a Poisson law. 
The IGEB case VIII scenario is the worst case reference 
scenario concerning JTIDS/MIDS signals. It does not 
depend on the receiver location. 
The objective is to build a GNSS receiver tolerating this 
worst case scenarios. In this matter, two interference 
mitigation techniques are developed:  

- The temporal blanker, whose performance was 
presented in previous studies. This technique is 
reused here and its performances are assessed in 
the same conditions as for FDAF.  

- A frequency based technique called FDAF is 
proposed. Its performance are assessed and 
compared to the temporal blanker ones. 

The Temporal Blanker performance assessment can be 
found in [Bastide, 2004]. It shows that GNSS receivers 
using the technique should comply with ICAO 
requirements: using the technique, no loss of lock is 
experienced and the C/N0 ratio stays above the minimum 
requirements. 
Nevertheless, the number of correlators required to re-
acquire the signal in case of tracking loss is very high and 
costly [Bastide, 2004]. Then, implementing a technique 
guaranteeing a higher minimum C/N0 at tracking loops 
input should allow to decrease the number of correlators. 
Hence, FDAF is proposed as an algorithm that would 
guarantee higher C/N0 levels in presence of interference. 
Its performance is not known yet, so that there is a need to 
assess it, first through simulations and then, if possible, 
through field test. 
The current paper therefore describes the interference 
threats before the two proposed techniques: the reference 
one or Temporal Blanker, and the proposed one or FDAF. 
Then, the implementation constraints limiting the FDAF 
performance will be detailed and then taken into account 
in the proposed simulations. Then the performances of 

both techniques are compared. Finally, these have to be 
compared with the induced gain in the signal processing 
complexity. 
 
THREAT DESCRIPTION 
 
The threat has been observed as being DME/TACAN 
ground beacons + JTIDS/MIDS. Their emissions interfere 
with the E5a/L5 GNSS signals, and prevent the receivers 
from acquiring and tracking satellites. The quoted 
beacons emit pulse pairs, each pulse being a Gaussian 
curve modulated by a cosine [Monnerat, 2000]. 
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Where: 

- P is the DME/TACAN peak power at receiver 
antenna level (W), 

- { }kt  is the set of pulse pairs arrival times, 

- If  is the frequency of the received DME/TACAN 
signal (Hz),and 

- Iθ  is DME/TACAN signal carrier phase at the 
GNSS receiver antenna port. 
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Figure 1: DME signal pattern 

 
Figure 1 represents a DME/TACAN pulse pair. The 
ground stations emit up to 2700 (DME)/3600 (TACAN) 
pulse pairs per second (ppps). These emission rates are 
proper to each station. 
Concerning onboard receivers, the operational 
environment is a combination of beacons emitting 
DME/TACAN + JTIDS/MIDS signals with different 
powers, carrier frequencies and pulse pair repetition rate. 
In addition, depending on the location and the Flight 
Level (FL) of the aircraft, each signal will suffer varying 
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power loss, thus will be received with different 
amplitudes. The exact interference configuration chosen 
to test the algorithm is described in the following. 
 
TEMPORAL BLANKER DESCRIPTION 
 
The digital temporal blanker is a simple technique, which 
has been studied by RTCA and EUROCAE working 
groups as a reference technique. It operates right after the 
AGC/ADC block. It assesses the power of the incoming 
signal and compares it to a pre-defined threshold. All the 
samples that exceed the threshold are considered as 
corrupted, and their value is set to zero (the information is 
removed). Figure 2 represents the transformation of a 
signal composed of noise and interference passed through 
a temporal blanker.  
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Figure 2: Temporal Blanker Functioning 

 
[Bastide, 2004] assessed its performance against pulsed 
interference over hot spots (Europe, USA), using a 
simulation tool (named PULSAR) developed for the 
technical service of the French Civil Aviation Authority 
(DTI). The main criterion chosen to investigate pulsed 
interference mitigation techniques performance is the 
post-correlation Signal to Noise Ratio (SNR) degradation, 
as it is a common quality indicator for data demodulation, 
signal acquisition and tracking. The interference scenario 
was chosen to be the one described in the introduction of 
this paper for both DME/TACAN and JTIDS/MIDS 
signals. 

[Bastide, 2004] showed that, in optimal configuration at 
the European hot spot, the maximum SNR degradation for 
L5/E5 signals using temporal blanking was around 8.9 dB 
in presence of DME/TACAN and JTIDS/MIDS signals, 
which results in a minimum post-correlation SNR very 
close to ICAO requirements. The technique’s 
performance varies with the threshold setting. 
The following results were extracted from [Bastide, 
2004], and take into account DME/TACAN signals. It 
assessed the C/N0 degradations due to interference using 
the temporal blanker. These results were derived from a 
theoretical formula, and used to estimate the optimal 
threshold to use. 
 

Table 1: Temporal Blanker Performance 
Blanking 

Threshold (dBW) -120 -118.4 -117.1 -115.9 

Degradation (dB) -8.9 -8.6 -8.1 -8.9 
 
Table 1 results shows that the threshold setting can be 
optimized. Figure 3 shows the degradations suffered by 
an onboard GNSS receiver which would be flying at FL 
400 (40.000 feet high over the European hot spot) using a 
temporal blanker and setting the threshold to its 
theoretical optimal value determined above.  
 

 
Figure 3: Temporal Blanker against Pulsed 

Interference over Europe at FL 400 
 
Then, adding JTIDS/MIDS signal, it appears that the 
optimal threshold value is the same. Using the optimal 
value in presence of DME/TACAN and JTIDS/MIDS 
interference, the degradation is assessed to be equal to 8.9 
dB. 
 
FDAF DESCRIPTION 
 
The FDAF technique is a pulsed interference removal 
technique working on the frequency domain, firstly 
proposed in [Monnerat, 2001]. The technique works in the 
same place as the temporal blanker, after the ADC 
(Analog to Digital Converter). Therefore the input of the 
algorithm is a quantized and sampled signal. It performs 
an estimation of the incoming signal’s Fourier transform, 
by operating a Fast Fourier Transform (FFT) on a pre-

Temporal Blanker 
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INVERSE FFT 

INTERFERENCE REMOVAL 

FFT COMPUTATION 

defined number of samples (N). It then compares the 
amplitude of each point of the signal’s Fourier 
representation to a certain threshold. Note that since the 
incoming signal is, without disturbances, dominated by 
thermal noise, the FFT representation of the incoming 
signal should ideally be flat (white). This assumption 
allows the determination of a threshold that would 
represent the usual noise level, with a certain false alarm 
rate. If certain points of the incoming signal’s Fourier 
transform exceed this threshold, they are considered 
corrupted by an interference and set to zero. Finally, the 
inverse FFT of the manipulated incoming signal is 
performed so as to obtain the signal back in the time 
domain to feed the acquisition/tracking modules. The 
relative narrow frequency representation of 
DME/TACAN signals (~1 MHz) compared to the E5/L5 
GPS and Galileo signals (~20 MHz wide) allows this 
targeted blanking. However, note that this method might 
not be usable with narrow-band GNSS signals such as 
CW (Continuous Wave) or NBI (Narrow Band 
Interference) interference due to its lack of resolution.  

In order not to be a computation burden, the Fourier 
analysis requires the incoming signal to be split into 
pieces composed of a determined number of samples. A 
large number of samples will increase the frequency 
resolution of the Fourier transform and would likely result 
into a more relevant blanking technique. However, it will 
also induce an increase in the computation load (FFT on 
an increased number of points). A trade-off between 
performance and computation load has then to be found. 

Figure 4 details the functioning of the technique. An 
example of a piece of signal corrupted by a DME is 
passed through the FDAF. 
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Figure 4: FDAF Functioning Scheme 

 
DECISIVE PARAMETERS SUMMARY 
 
The following list identifies the parameters that impact 
the techniques’ performance, would they be constrained 
by implementation or not. 

INPUT SIGNAL 

OUTPUT SIGNAL 

TRUNCATURE 

CONCATENATION 

FDAF 
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- The sampling frequency and the number of 
samples used to compute the Fourier Transform 
estimation (N). These two parameters can not be 
separated as they determine the amount of time 
represented by the piece of signal processed by 
FDAF and the width of each channel estimated. In 
addition, this couple of values also determines the 
complexity of the technique. The number of points 
used to compute an FFT determines the number of 
operations required for its calculus, which is 
constrained by hardware implementation. 

- The AGC/ADC block overall design. This is not 
intrinsic to the mitigation methods, but it modifies 
the processed signal, and its effects may worsen 
the techniques’ functioning. 

- The Temporal Blanker’s and the FDAF threshold 
determination. The operation is not constrained by 
implementation issues, but in order to detect 
interference wisely, the threshold has to be above 
the noise floor, which is the condition to avoid 
false alarms. In addition, it should not be set to a 
very high value, in order to avoid missed 
detections. 

 
SAMPLING FREQUENCY AND FFT WINDOW 
SIZE (N) 
 
General parameters such as the sampling frequency 
choice can not be driven by the proposed methods 
interests, as it impacts the entire signal processing 
channel. Hence, in the following it has been set to 100 
MHz, as it is quite close to what could be used in future 
Galileo receivers. 
The resolution of the estimation is determined by N and 
the sampling frequency. Indeed, the frequency range of 
the estimated Fourier Transform is constant (

⎥⎦
⎤

⎢⎣
⎡−

2
;

2
ss ff ), 

so the resolution is: 
 

)(  Hz
N
ff s=Δ    (2) 

 
It represents the frequency spacing between two FFT 
channels. If the frequency interval represented by one 
channel is too large compared to the pulsed interference 
theoretical Fourier Transform, the evaluation points will 
not be “judicious”, and the Fourier Transform may miss 
some interference. This is illustrated in Figure 5. 
 

 
Figure 5: FFT's Resolution and Distortion Issues 

(Fs=100 MHz) 
 
The blue curve represents the theoretical Fourier 
Transform of a DME signal, which power is -115 dBW 
(typical value over the hot spot). In order to guarantee the 
detection of interference with a power limit, a maximum 
resolution can be determined. In practice, the number of 
points in the FFT window should guarantee at least one 
point in the DME bandwidth. In the here-above example, 
the user could wish to detect all the interference which 
FFT amplitude is bigger than -30 dB, what requires the 
resolution to be roughly thinner than 1 MHz (considering 
the theoretical DME frequency representation).  
In the application it is not the ideal Fourier Transform that 
is observed, but the Discrete Fourier Transform with a 
limited number of points. It induces two drawbacks: 

- Only a few points of the Fourier Transform 
represent the DME, because of the low resolution, 

- The ideal curve is strongly distorted. Indeed, the 
Fourier transform maximum value significantly 
decreases and might not allow detecting pulsed 
interference. This is due to the averaging of the 
DME power contained in the frequency band 
represented by a Fourier transform channel.  

 
The top figure shows that the resolution limit can not be 
defined easily, as the interference’s FFT level depends on 
the number of samples used. In addition, the lower plot 
shows that if the interference carrier frequency is not 
exactly synchronised with the Frequency vector 
represented by the FFT, which will likely be the case in 
real conditions, the interference will be even more 
difficult to detect. 
 
Note that the use of a rectangular window for the FFT 
computation will result into an estimation of each FFT 
frequency peak convoluted by a sinc function. This 
implies that the sinc side-lobes will increase the adjacent 
FFT channels’ level and could result in their corruption. 
Thus it could be interesting to investigate the use of 
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different type of windowing to improve the FDAF 
performance. 
  
This paragraph showed that it is not easy to determine the 
lowest resolution, because of the multiple distortions the 
Fourier Transform is affected by. The suffered distortions 
are unavoidable, but some improvements can be brought: 

- The use of weighting windows before the FFT 
calculation would help minimizing distortions, 
though implying additional complexity. 

- The distortions decrease when the number of 
points used to compute the FFT increases. 
Obviously, it induces additional complexity too, so 
a trade-off between performance and complexity is 
to be discussed. 

 
 
SNR DEGRADATION AS A FUNCTION OF N 
 
The previous paragraphs introduced the problems that are 
encountered when using the technique. Hence, the 
number of samples used in the FFT calculation is very 
important in terms of performance. The following 
approach tries to assess how the window size impacts the 
performance, looking at its interference removal 
efficiency. In the tests, a MATLAB routine generated a 
signal composed of a DME pulse pair and white Gaussian 
noise, using a 100 MHz sampling frequency. A complete 
FDAF algorithm is used on this signal, and the output 
signal is analysed. Two test-cases are simulated to see 
typical FDAF behaviour in simple environment: a strong 
interference (high interference to noise ratio) and a much 
more weak interference are successively considered. 
 
The observed performance criterion, the post correlation 
SNR degradation, can not be theoretically determined. 
Indeed, the method impacts all the signal components: 

- A small part of useful signal is removed. It induces 
information loss. 

- Thermal noise is removed too. It is not the 
objective of the technique but it brings benefits. 

- Some of the interference is not removed. 
The theoretical formula giving the degradation from the 
interference and the threshold used is not available. In 
order to roughly study the influence of increasing N, two 
informations are observed: the number of channels set to 
zero by the technique and the amount of interference that 
is not removed by the technique.  
The interference used in the tests has a power of -102 
dBW (peak power – after antenna), which is the 
maximum power visible over the hot spot, while the noise 
floor density equals -205 dBW/Hz. The threshold has 
been set to -118 dBW, which is just above the noise floor. 
Figure 6 represents, depending on time, the band filtered 
by the system, in Hertz. The title represents the size of the 
window used in samples.  
 

 
Figure 6 : FDAF Performance Depending on the 

Window Size with High Interference Power 
 
Figure 6 shows that using small windows induces that the 
signal is much more filtered. This is mainly due to 
resolution issues. Indeed, the band removed by each 
concerned window should not exceed 1 MHz (2 Mhz here 
as the two sided FFT is considered), looking at the DME 
PSD. Using only 16 samples in the FDAF does not seem 
to fit the application, as too many channels are removed. 
Then, the technique’s performance increases with the 
window size. 
 

 
Figure 7 : Window Size Influence on Interference 

Removal in case of High Interference Power 
 
Figure 7 represents the efficiency of the technique on 
removing the present interference as a function of the FFT 
window size. Apparently, the efficiency of the technique 
does not grow systematically with the window size. 
Indeed, when increasing the number of samples, the noise 
floor grows faster than the interference peak, so that 
detection becomes more and more difficult. Due to the 
high threshold choice, the left interference presents high 
energy. 
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In the next test, the same noise (noise floor density equals 
-205 dBW/Hz) and threshold have been used, but the 
interference power has been severely decreased (-126 
dBW). This is the minimal power observable over the hot 
spot. 
 

 
Figure 8: FDAF Performance Depending on the 

Window Size with Low Interference Power 
 
Figure 8 shows the efficiency of the technique depending 
on the window size. Using too small window will induce 
missed detections, and when the interference is 
detectable, the increase of the window size helps 
removing less signal. 
 

 
Figure 9 : Interference Power Removed by the 

Technique depending on the Window Size in case of 
Low Interference Power  

 
Figure 9 shows the power of the interference removed by 
the technique depending on the window size. The 
removed part of the pulse pair highly varies over the 
window size and in the shown range, the best option is to 
increase it as much as possible. 
 

AGC/ADC IMPLEMENTATION 
 
The quantization process is a source of additional error, 
often considered as an additive noise: 
 

QQ noisesignalsignal +=    (3) 
 
This noise is assumed to be white and Gaussian. It 
induces small SNR degradations, which can be calculated 
from the quantization law, the number of bits used, and 
the signal’s standard deviation, as shown in Figure 10 
(extracted from [Bastide, 2004]).  
 

 
Figure 10: SNR degradation at correlator output in 

presence of thermal noise only 
 
The presented results were obtained assuming thermal 
noise only enters the ADC. 
The SNR degradation is represented at correlator output 

and depends on a variable k. 
σ
Lk = , where L is the 

maximum quantization level (saturation level), and σ  is 
the input signal’s standard deviation.  
 
The degradation depends on the number of bits used in 
the converter, so that several curves obtained using 
various numbers of bits are presented on the figure. 
 
For each curve, there is an optimal k for which the 
quantization loss is minimal. As stated above, k depends 
on the maximum quantization level (L), which only 
depends on N (the number of bits) and the quantization 
step (Δ), and the input signal’s standard deviation (σ). The 
role of the AGC is to force the output signal’s standard 
deviation to a constant value, by multiplying it by a gain. 
This stage is primordial for optimal ADC functioning, as 
it will keep the signal’s standard deviation and so the 
variable k to the optimal value. 
The AGC gain is calculated by looking at the ADC output 
signal.  Analyzing its statistics or its power, the AGC 
applies the gain that optimizes quantization. Usually, this 
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is performed assuming that Gaussian noise only is present 
(GNSS signal is negligible at this stage). In presence of 
interference, three issues are raised: 

- The AGC functioning is disturbed. It estimates the 
standard deviation, which is corrupted by 
interference, 

- The ADC’s input signal does not follow a Gaussian 
distribution. Figure 10 results are not valid 
anymore. 

- The modification of the signal (notably 
interference) may worsen the IMT’s efficiency. 

 
To solve the AGC problem, the signal is observed at 
interference mitigation techniques’ output instead of 
ADC’s output. In this way, the observed signal can be 
assumed as interference free, so that the standard 
deviation estimation is valid. 
 

 
Figure 11: AGC Steering Mode 

 

In addition, Figure 10 results were obtained considering 
noise only at the ADC’s input, which is not the case when 
interference is present. The major concern is to avoid 
saturation, as interferences are assumed to present higher 
power than ambient noise. 

This problem can be solved by using a great number of 
bits and adapting the AGC functioning. It is set to 
regulate the signal to optimize a 3 bit quantizer. This is 
illustrated in Figure 12. 
 

 
Figure 12: AGC/ADC implementation 

 
Nevertheless, the number of bits used in the ADC is 
constrained by implementation. Increasing the number of 
bits implies better performances, but increases the ADC’s 
cost too. 

 
The last problem is the quantization impact on IMT’s 
functioning. Concerning the temporal blanker, it is 
supposed to be less accurate than considering continuous 
signal. Nevertheless, the technique has been studied to 
process digital and not analog signals. It does not 
fundamentally disturb the technique. 
FDAF does not suffer the implementation of a quantizer, 
as it preserves the interesting properties of the signal. 
Thanks to the model proposed by (3), the ADC’s output 
signal can be considered as the sum of the pre-existing 
signal (GNSS signal + interference + thermal noise) and 
quantization noise, which is white. It means that the 
FDAF input signal has the same properties, but the noise 
level is slightly higher. 
 

( ) ( )
( ) ( ) ( ) csignalFFTnoiseFFTsignalFFT

noisesignalFFTsignalFFT

Q

QQ

+=+=

+=  (4) 

 
Where c is a constant. 
 
IMT’S THRESHOLD DETERMINATION 
 
TEMPORAL BLANKER THRESHOLD 
 
In [Bastide, 2004] tests, the technique shows optimal 
performance using a threshold value equivalent to -117.1 
dBW. Indeed the observed signal is quantized, and thus 
the threshold is digital too. This means that the threshold 
is set to one of the quantization level. The equivalent 
analog threshold can then be calculated according to the 
AGC gain applied to the signal. 

In [Bastide, 2004], and in the simulations realized in this 
document, the noise density power level is supposed 
constant and equal to -205 dBW/Hz, and thus the AGC 
optimal gain can be calculated easily. Over the European 
hot spot, the best performance, represented by the 
minimal post-correlation C/N0 degradation, was reached 
by setting the threshold to 8 (digital domain – the 
equivalent value in the analog domain is given in Table 
2). Knowing the gain applied (assumed constant and 
optimal in these tests), it is possible to determine the 
equivalent analog threshold through: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
×=

G
Th

Th digital 1
log20 10analog  

 

However, in real case application, the noise floor is 
expected to slowly vary with time, and so is the gain. 
Then, a constant quantization level will not represent 
exactly the same power. 
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Table 2: Digital/Analog Threshold Conversion 
Digital 

Threshold Noise floor AGC Gain Analog 
Threshold 

-205 
dBW/Hz 4.88*1e6 -116.87 

dBW 
8 

-200 
dBW/Hz 2.74*1e6 -111.85 

dBW 

 

Table 2 shows that if the noise floor increases, the 
technique will let more interference pass. 

In this report, a slightly different case will be taken: the 
simulations will be run using an adaptive AGC. The 
threshold will be determined depending on the number of 
bits and the quantization law chosen in the ADC. 

 
FDAF THRESHOLD DETERMINATION 
 
In order to wisely choose the threshold, the observed 
estimator (FFT) can be expressed as a function of a Power 
Spectrum Density (PSD) estimator, the periodogram, 
which statistical properties are known. 
 

mPeriodograNFFT
N

FFT
mPeriodogra *

2

=⇒= (5) 

 
The objective is to distinguish pulsed interference from 
white noise. The characteristics of the white Gaussian 
noise periodogram are: 
 

42

2

noiseperio

noiseperio

σσ

σμ

=

=
   (6) 

 
For quantization losses optimization purpose, the 
AGC/ADC block outputs a signal with constant and 
known variance (considering no interference is present). 
So at the FDAF input, the noise variance is supposed to 
be equal to 3.39. Knowing the mean and the variance of 
the estimator, and assuming that the estimations follow a 
Gaussian law, it is possible to determine the range the 
PSD estimations lie in. It can be assumed that the 
estimator (the periodogram) will not exceed the following 
value: 
 

42 33 noisenoiseperioperio σσσμ ×+=×+    (7) 
  
This could be used as a threshold considering the 
periodogram. In the present case, the estimator is the FFT, 
which is linked to the periodogram by relation (5).  
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In the following tests, the threshold has been set using this 
expression. Even if it is not the optimal value, the chosen 
threshold should be a good trade-off between signal loss 
and interference detection, according to thermal noise 
statistical properties. 
 
SIMULATOR DESCRIPTION 
 
The performances of the techniques were obtained using a 
software simulator called PULSAR. The simulator is 
developed under Labview and is composed of: 

- A signal generation block. This block generates an 
E5a signal, thermal noise, and pulsed interferences. 

- A signal processing block composed of a front end 
filter, an AGC/ADC, different IMT and correlators. 

- A tracking loop. 
 
Then, a C/N0 estimator provides its value at correlation 
output. The carrier to noise density is calculated using the 
following formula : 
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Where: 

- PI are the prompt Inphase samples, 

- PDB is the PreDetection Bandwidth. 

 

The number of samples used to compute the mean and the 
variance of the signal are defined by the smothering 
length (user command). The predetection bandwidth is the 
inverse of the predetection integration time, which is the 
time required to output one correlator sample. 

Then, each carrier to noise density ratio is passed through 
an averaging filter using four values. 

 

SIMULATION SIGNAL ENVIRONMENT 
 
The simulations where run using a QPSK modulated L5 
code. Its reception power has been set to -155 dBW. The 
noise is a white Gaussian noise (Labview function) and its 
density equals -200 dBW/Hz. The pulsed interferences 
were generated using the theoretical expression given 
above. The objective being to test the techniques in worst 
cases scenarios, the simulation occurs over the European 
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hot spot. In the simulator, the hot spot is defined by a 
table of frequencies, pulse repetition rates and powers, 
which is extracted from the Galileo interim MOPS. Then, 
a Matlab routine generates the arrival times of the DME 
signals using a Poisson law. 
 
SIMULATION RESULTS 
 
Three tests were conducted: 

- A first one using the temporal blanking as a 
mitigation technique. It is used as a baseline of 
what is achievable today. 

- Two others using FDAF, with different settings. 
The first one used 128 samples for each Fourier 
Transform estimation, the second one only 64. The 
latter is expected to show worse performance than 
the previous one, but less complex too. 

 
Table 3: Simulation Results 

IMT Used 
Post Correlation SNR 

Degradation 

Temporal Blanker 10 dB 

FDAF 128 (1920 operations) 4 dB 

FDAF 64 (832 operations) 6.6 dB 

 
With the considered settings, FDAF shows better 
performance than the temporal  blanker. In addition, the 
128 samples FDAF performs better than the 64 samples 
FDAF, what was expected. The gain is of about 2.5 dBs, 
which may justify the increase of complexity. It is 
possible to use even more samples in the Fourier 
Transform estimation (256, 512…) but the corresponding 
performance increase may not be significant enough. A 
trade-off has to be done between performance and 
complexity. 
It is to be noticed that the degradation estimated using the 
Temporal Blanker is different from the one obtained in 
the reference [Bastide, 2004]. The simulator has been 
slightly modified: the front end filter was simplified while 
the quantization block and the sampling frequency were 
modified. This should justify the 1 dB difference between 
the upper tests and the reference ones. 
 
CONCLUSION 
 
The FDAF definitely shows better performance than the 
Temporal Blanker. It has been seen that the latter 
technique is costless compared to FDAF and already 
complies with ICAO requirements. Nevertheless, 
implementing FDAF with a 64 samples wide window 
results in a 6.6 dB C/N0 degradation compared to a 10 dB 
degradation over the European hot spot. Therefore FDAF 
brings an improvement of the signal’s quality, probably 
allowing reducing the complexity of further signal 
processing. Following work should be to compare the 

complexity gain brought by the technique to the 
additional calculation effort required to implement it. 
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