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ABSTRACT 
 

Ionosphere is a dispersive medium that can 
strongly affect GPS and GALILEO signals. 

Ionospheric delay affecting the GPS and 
GALILEO pseudorange measurements is the larger 
source of ranging error, if left uncorrected. In 
addition, this perturbation is difficult to model and 
thus difficult to predict. 

 
A multi-frequency receiver can identify and 

correct errors induced by the ionosphere, as in the 
nominal case, two frequencies are sufficient to 
determine precisely the ionospheric delay. 
However, if affected by radio frequency 
interference, a receiver can lose one or more 
frequencies leading to the use of only one 
frequency to estimate ionospheric code delay.  
Therefore, it is felt by the authors as an important 
task to investigate techniques aimed at sustaining 
multi-frequency performance when a multi-
constellation receiver installed in an aircraft is 
suddenly affected by radiofrequency interference, 
during critical phases of flight.  

The case of a loss of all but one frequency is 
studied in [Shau-Shiun Jan, 2003]. In this case, the 
usual code-carrier divergence technique is 
analyzed, consisting in computing the difference 
between the signal code and the carrier phase 
measurements. This difference is twice the 
ionospheric delay plus ambiguity plus errors, from 
which the ionospheric delay can be extracted. If a 
cycle slip occurs, the integer ambiguity appearing 
as a constant offset in the code-carrier difference 
causes this technique not to be valid. In the case of 
a single frequency receiver, a Kalman filter can be 
used to determine if a cycle slip occurs, introducing 
ambiguities of all satellites in view in the state 
vector as mentioned in [Lestarquit, 1995]. This 
Kalman filter can be initialized in the dual 
frequency mode, and left running when only one 
frequency is left. 

 
The aim of this paper is first to propose a 

method for single frequency ionospheric delay 
estimation after the loss of multiple frequency 
tracking, and also to analyse the performance of 
this method with regards to the civil aviation 
requirements. The proposed technique includes the 
detection of cycle slips.  
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INTRODUCTION  
 
         In a future civil aviation nominal case, dual 
frequency GPS measurements allow to directly 
estimate ionospheric code delay from pseudorange 
measurements. 

One can obtain ionospheric error via a linear 
combination of the pseudoranges at two different 
frequencies (defined by the index 1 and 2):  
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This « iono-free » combination allows 

suppressing ionosphere error term in pseudoranges 
or in phase expressions.  
 

However, in case of radiofrequency 
interference (RFI) for instance, the loss of one 
frequency may be a problem if one want to keep the 
same performance as in the nominal dual frequency 
case and so we need to use alternate techniques to 
estimate the ionospheric error.  
 

Carrier phase measurements are provided by 
carrier tracking loops. Measurements depend on the 
loop ability to give an approximate value close to 
the actual value of the carrier phase. 
 

In a nominal case, this loop is able to quickly 
follow the time evolution of the incoming phase, 
and measurement errors are small. However, the 
tracking loop may lose the signal during a short 
period and then re-acquire it just after the break. 
The phase ambiguity will therefore vary in this 
case. This problem, called cycle slip, occurs when 
the C/N0 is low (antenna gain, obstacle,…) or when 
the receiver has too important and unpredictable 
movements. Such a phenomenon causes a phase 
jump (cycle slip) and can be modelled by a rupture, 
a sudden change from one measurement to the next 
one. 
 

As we will see in the following part, a single 
frequency method can provide a good estimation of 
ionospheric error but it is not the case if cycle slips 
occur. 
 
1. GLOBAL STRATEGY  
 

In the dual frequency civil aviation case, 
smoothed iono-free range measurements are used. 
The ionospheric error is estimated and corrected 
thanks to the use of dual frequency. 

 
In the case of loss of one frequency (degraded 

mode), an estimation of the ionospheric delay may 

be provided either by the Klobuchar model for GPS 
or the NeQuick one in case of Galileo. But, they 
only estimate part of the ionospheric error 
(Klobuchar ~50% and NeQuick ~80%). This 
implies use of large 

UEREσ  values, that do not allow 

supporting flight operations that require vertical 
protection levels computation (degraded mode). 

 
But, in single frequency, can we keep the 

accuracy of the ionospheric delay estimation 
compatible with critical phases of flight (APV) just 
after the loss of dual frequency ? 

 
We have analyzed the feasibility of precisely 

estimating the ionospheric delay in single frequency 
mode. It appears that Code Minus Carrier 
divergence technique is the most promising 
technique that may be used as mentioned in [Nats, 
2003].  We describe this technique further in this 
paper. The characteristics of this technique are that 
it doesn’t need an ionospheric model but carrier 
phase ambiguities have to be removed from the 
estimation to get ionospheric delay. If a cycle slip 
occurs, phase measurements are biased in 
consequence and estimations must be corrected so 
as to provide a good estimation of ionospheric code 
delay. In the following parts, we will see how to 
improve Code Minus Carrier divergence technique. 
The challenge here is to detect and correct cycle 
slips with regards to ICAO requirements.   
 

Let’s first describe the Code Minus Carrier 
divergence technique. 
 
2. CODE MINUS CARRIER DIVERGENCE 

TECHNIQUE 
 

After a loss of several frequencies leading to a 
single frequency degraded mode, resulting from a 
perturbation like interference, a receiver can use 
code and carrier phase pseudoranges made on only 
one carrier frequency. To estimate ionospheric 
delay, we can use the difference between code and 
carrier phase measurements. This is modelled as (x 
frequency):  
 

xxxxxxx vwNIP ++−=− λφ 2  

where 
• P  is the code pseudorange measurement 

in meters 
• φ  is the phase measurement in meters 

• I  is the ionospheric delay in meters 
• N  is the integer ambiguity 
• λ  is the carrier wavelength in meters 
• w  is the code multipath and noise error 
• v  is the phase multipath and noise error 
Indeed the difference between code delay and 

phase advance provides us two times the shift 
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caused by the ionosphere propagation of the 
electromagnetic waves.  

The ionospheric delay can therefore be 
extracted from this difference assuming N is 
constant. This is the so-called code minus carrier 
divergence technique. 

We make the assumption that xv  and xw  only 

depend on noise and multipath i.e. that clock errors 
at the receiver and satellite levels, tropospheric 
errors get cancelled in the difference computation.  
 

The ionospheric delay can be extracted from 
that difference, provided the ambiguity is known 
and constant, i.e. no cycle slip occurs. 
 

If a cycle slip occurs, the code carrier 
divergence method is not adapted to this situation 
as phase measurements are biased differently. It is 
therefore necessary to be able to determine exactly 
when this type of phenomenon occurs, whatever 
atmospheric conditions.  
 

Cycle slips may have various causes, for 
instance multipath and ionospheric scintillation, or 
receiver dynamics as mentioned previously. 

 
Figure 1: Amplitude of L1 ionospheric delay for a 
receiver located at ENAC, Toulouse, France, on 

14/03/2006.  A cycle slip occurs for a low elevation 
angle of about 20 degrees, which may correspond 

to a multipath. 
 

Figure 1 shows the estimation of ionospheric 
code delay using single frequency CMC estimation 
on L1, we can note that a cycle slip occurs for a low 
elevation angle. 
 

Those examples are known to generate cycle 
slips, but the amplitudes of the generated ruptures 
strongly vary from case to case. It would be 
possible to detect high amplitude cycle slips but it 
is really hard to detect small ones that don’t allow 
estimating correctly ionosphere code delay with 
regards to civil aviation requirements in terms of 
integrity, for critical phases of flight.  

 
 

We will now focus on cycle slip detection 
probability at the receiver level and cycle slip 
behaviour.  
 

We use a Kalman filter in order to evaluate the 
ionosphere behavior and to follow the evolution of 
ambiguities of all satellites in view.  
 

We define a state vector as in [Nisner, 1995] or 
[Lestarquit, 1995]:   
 

[ ]T
nNNBAIX ...10=  

where  
• A and B are the linear gradients of 

ionospheric delay. A is constant within 
North-South axis and B is constant within 
East-West axis.  

• 0I is the ionospheric delay at the zenith of 

the receiver. 
The obliquity factor, function of the elevation 

of each satellite in view; allows passing from slant 
value to vertical value (zenith). The obliquity factor 
is: 
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where eR  is the Earth equatorial radius, h the 

altitude and E the elevation angle. 
So from each CMC, we use the obliquity factor 

to compute the 0I  value so as to have a zenithal 

estimation for each satellite in view. Then, we 
compute the mean value of all obtained zenith 
ionospheric code delays.  

The Kalman filter provides real time estimation 
of the ionospheric delay thanks to measurements 
from all satellites in view and of ambiguities for 
these satellites for the same frequency. 
 

The relation between observation vector Y and 
state vector X at the instant t will be: 

 

tttt VXHY +=  

where  
• tY  is the observation vector, composed of 

the difference between code and carrier 
phase measurements for all satellites in 
view. Note that the obliquity factor is 
multiplied by two in the algorithm for the 
construction of the matrix H so as to 

obtain two times the ionospheric code 
delay: 2*' ObOb = for each satellite. 

• tV  is the observation noise 
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• tH  is the observation matrix which takes 

into account spatial and temporal 
correlations of the system at the instant t.  
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The first column of this matrix corresponds to 

the obliquity factor, the second and third ones 
correspond to the difference between two 
consecutive positions in latitude and longitude, i.e. 

iλ∆  is the distance of the ionosphere piercing 

point from the receiver in the North-South direction 
and iµ∆ is the distance of the ionosphere piercing 

point from the receiver in the East-West direction, 
for the ith satellite. The index corresponds to the 
satellite index, n is the total number of satellites in 
view. 

 
The state transition equation is  

tttt WXFX +=+1  

For a first approach, F is taken equal to the 
identity (we suppose that in nominal case, no 
variations occur in state vector). 
 

W is a noise process, it is here to model 
random fluctuations in linear prediction model 
imperfections.  

 
The covariance matrix of W is Q:  
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The covariance matrix of the measurement 
noise V is: 
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where t∆ is the measurement interval, 3.5 is a 
multiplicative empirical term used in [Lestarquit, 
1995]. 
 

When the receiver loses track of one satellite 
signal, its corresponding state in the state vector of 

the Kalman filter is suppressed, its ambiguity is not 
kept in memory. When a new satellite signal 
appears, the state vector is redefined taking into 
account the corresponding ambiguity, that is to say, 
the ambiguity is added in the state vector and the 
Kalman filter is reinitialized, the initial state and 
covariance are redefined taking into account the 
new number of satellites, the previously defined 
matrix .  
 
3. CYCLE SLIPS OCCURRENCE RATE 
 

We focus on the occurrence of cycle slips in 
the phase data. We define a flow events which are 
cycle slips occurring successively and separated by 
random time intervals. This process has Poisson 
characteristics. 

So the probability of occurrence during t∆  
will be:  

)exp( tTPOCC ∆−=  where T is the cycle slip 

rate. 
The probability of having K cycle slips during 

t∆ :  
 

!
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T  is the mean time between two cycle slips. 

φσ  is the phase loop noise, its value depends on the 

type of loop employed:  
• For a Costas loop, 
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• For a classical PLL,  
 

0N
C

WL=φσ  

where 
• 0NC is the carrier to noise density ratio 

• DT  is the coherent integration time  

• LW  is the loop bandwidth 
 

We can note that this last value of φσ  does not 

depend on integration time for a classical PLL, but 
in reality, the integration will play a role for the 
normalization of the PLL discriminator.  
 

The cycle slip rate (or cycle slip mean time) is 
computed using the following formula: 
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where 
nI  are Bessel functions of order n.  

See [Holmes, 1990] for a complete demonstration. 
γ  represents the tracking error of the phase linked 
to the receiver dynamic (rad), that is to say when 
the receiver moves, for instance, in an aircraft. 

The rate of occurrence is then defined as the 
inverse of the cycle slip mean time T .        

For GNSS signals, we first compared the 
probabilities of occurrence of cycle slips using a 
Costas loop. This is shown in tables 1 and 2. 
 
 

Signal type Td Probability of occurence 
within 150s 

GPS L1 C/A 20 ms 5.3 e-004 

GPS L5 20 ms 8e-004 

GALILEO L1 100 ms 5.3e-004 

GALILEO E5b 100 ms 7.7e-004 

 
Signal type 

 
Td Probability of occurence 

within 150s 
GPS L1 C/A 10 ms 5.3e-004 

GPS L5 10 ms 8e-004 
GALILEO L1 10 ms 5.3e-004 

GALILEO E5b 10 ms 7.6e-004 
 
Tables 1 and 2: Probability of cycle slip occurrence 
for a Costas PLL, with  10 Hz bandwidth, jerk max 

of 0.74 g/s, as a function of coherent integration 
time Td. 

 
In tables 1 and 2, probability of occurrence of 

cycle slip is shown for different signals and 
integration times, for a Costas loop. During the 
same observation period (150 seconds), the 
probability of having a large number of cycle slips 
decreases exponentially.  

Table 1 provides the probabilities of 
occurrence using coherent integration time 
corresponding to one code period. The second table 
shows the same probabilities but with a minimum 
integration time of 10 ms. We can see that there is 
little difference when the integration time is 
decreased down to 10 ms. 

Note that future Galileo L1, E5a and E5b will 
include both dataless and pilot channels. In this 
case, no navigation data will modulate the pilot 
signal, so, the tracking loop will be sensitive to 180 

degrees phase jumps after pilot code removal, 
consequently, a traditional PLL can be employed. 
So, the value of  

φσ  won’t vary as a function of 

integration time in the probability of occurrence 
computation.  
 

Dynamics of the onboard receiver differs from 
case to case and depends on phases of flight. In 
order to be as exhaustive as possible, we will sweep 
all cases, choosing all possible dynamics 
parameters. Those values are provided by [MOPS, 
2006] white paper and are recalled below:  

Ground speed 800 Kt 

Horizontal 
acceleration 

0.58 g 

Vertical acceleration 0.5 g 

Total jerk 0.25 g/s 

Table 4: normal aircraft dynamics, [MOPS, 2006]. 

Ground speed 800 Kt 

Horizontal 
acceleration 

2.00 g 

Vertical acceleration 1.5 g 

Total jerk 0.74 g/s 

Table 5: abnormal manoeuvres, [MOPS, 2006].  

Where g = 9.81m/s² and Kt are Knots.  

 The probability of occurrence of cycle 
slips within 150 seconds (critical phase of flight 
duration) is computed using Holmes formula for 
maximum jerk from normal to abnormal 
manoeuvres. 

 

Figure 4: Probability of occurrence of cycle slip 
during 150 seconds. 

 
As a conclusion, the probability of a cycle slip 

to occur is low but not negligible for civil aviation 
purposes. It has a behaviour that follows Poisson 
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law. The probability of having K cycles slips within 
a given period is decreasing exponentially with K. 

 
Furthermore, the probability of a multipath to 

occur is dependent on the phase of flight for an 
aircraft and the environment geometry and 
structure. In addition, cycle slips occurrence 
depends on amplitude of multipaths but also other 
phenomena such as ionospheric scintillation, which 
amplitudes strongly vary. The probability of 
occurrence strongly depends on dynamics as shown 
in figure 4. 
 
4. CIVIL AVIATION REQUIREMENTS 
 

We define the integrity risk as the product of 
the probability of occurrence of cycle slips by the 
probability of missed detection of those jumps in 
carrier phase measurements. So, regarding civil 
aviation requirements for integrity, we must 
determine first the probability of occurrence of 
cycle slips, then, the probability of missed detection 
and finally, the smallest detectable cycle slip with 
the required computed probability of missed 
detection. Similarly, false alarm rate is determined 
from ICAO continuity requirements. 

In civil aviation, the integrity monitoring 
algorithm generally involves two functions which 
are anomaly detection and exclusion. Those 
functions allow GNSS navigation to continue 
without service interruption.  

This algorithm depends upon the desired 
missed detection and false alarm probabilities. 
Computation of protection levels are assured by the 
computation of those probabilities.   

We will focus on the transition from NPA to 
APV phases of flight.  
 

Below is presented ICAO requirements for 
those phases of flight. 
 

For APV I and APV II approaches, the value of 
the probability of missed detection is deduced from 
the integrity risk and the probability of occurrence 
of cycle slips. The integrity risk equals 2*10-7 

/approach. This value is the same for GPS or 
GALILEO standalone and GPS/GALILEO 
combined constellation see [MOPS, 2006]. 

 
Allowed false alarm probability is determined 

from continuity ICAO requirements. In [RTCA, 
2006], the false alert probabilities are set to 3.33 10-

7/sample and 1.6 10-5/sample for NPA and APV 
phases of flight, respectively. These values are 
higher than those assumed in simulations; they 
would lead to less continuity performance but 
improved availability. 

 
Here we recall the performances required by 

ICAO for APV phases of flight:  

 
 HAL VAL TTA 

APV I 40 m 50 m 10 s 
APV II 40 m 20 m 6 s 
Table 6: Integrity requirements, [MOPS, 2006].  

 
HAL stands for Horizontal Alert Limit, VAL 

for Vertical Alert Limit and TTA for Time To 
Alert. 

The smallest detectable cycle slip we will be 
able to detect will give us an idea of the amplitude 
of the undetectable error in positioning, but this 
error will depend upon the geometry defined by the 
positions of the satellites and the receiver.  
 
 
5. SMALLEST DETECTABLE CYCLE SLIP 
 

To determine the smallest detectable bias with 
the required Pmd, we launch simulations to 
determine the performance of some cycle slip 
detection algorithms. 

Different magnitudes of cycle slips must be 
simulated, and we have to compute non-detection 
probability and to determine whether the obtained 
values are acceptable as a function of magnitude of 
cycle slips.  

We generate code, phase and Doppler 
measurements. Phase measurements were generated 
taking into account dynamics:   
 

noiseatmospheremultipathb

tjtatvt

++++
××+××+×+=Φ 32

0 81.981.9)( ρ

noiseatmospheremultipathb

tjtatvtP

++++
××+××+×+= 32

0 81.981.9)( ρ

 
Where: 

• φ  is the phase measurement in meters 

• P  is the code pseudorange measurement 
in meters 

• 0ρ  is a typical constant range (ex: 20000 

km) 
• v  is the range rate, taken here to be 800 + 

70 m/s (worst case range rate due to 
satellite and aircraft movement during an 
approach). 

• a  is the acceleration. It is taken according 
to table 4 for normal maneuvers or table 5 
for abnormal maneuvers. 

• j  is the jerk. It is taken according to table 
4 for normal maneuvers or table 5 for 
abnormal maneuvers. 

• b  is the satellite clock bias generated as 
described in [Winkel, 2000]. 
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The Doppler measurements were generated as a 
first order derivative of the previously defined 
phase but the additive noise is provided by 
Gaussian random values multiplied by a FLL sigma 
value defined in [Kaplan, 1996] instead of a PLL 
sigma value:  
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The multipath is generated by drawing 

Gaussian random values with a sigma 
corresponding to the worst case sigma at 5° 
elevation using [SARPs, 2006] formula:  

10*53.013.0
E

multipath e
−

+=σ  

The atmosphere is generated by drawing 
Gaussian random values with sigmas (see [Shau-
Shiun Jan, 2003] corresponding to troposphere:  
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an elevation angle E of 5 degrees, and ionosphere:  
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The noise is generated as random gaussian 

values with a sigma corresponding the standard 
deviation of the tracking error due to noise. 

 
We propose to define the following 

performances criteria of the algorithms of detection 
(and estimation).  

First, the cycle slip detection and correction 
ability will be defined by the smallest cycle slip 
detectable with a required probability of missed 
detection, the false alarm rate. Other performance 
criteria are the robustness to carrier-to-noise ratio, 
multipath and receiver dynamics, the capability to 
dissociate several near slips and to correct those 
slips. Generally, those parameters have an influence 
on the performance of the technique of detection.  

Secondly, the accuracy of ionospheric 
delay has to be considered regards to carrier-to-
noise ratio and multipath.  

Finally, the time computation cost of the 
algorithms must be taken into account, for instance 
with regards to Time To Alert for critical phases of 
flight, but this point concerns the future GNSS 
receivers architecture.  
 

We won’t verify all those criteria in this study 
but only the most critical ones, like resistance to 

dynamics and smallest detectable cycle slip. If the 
technique is found interesting, further investigations 
may take into account all those criteria. 
 
6.  DETECTION USING PREDICTED PHASE 
MEASUREMENTS 
 

The first algorithm is based on a prediction of 
future phase measurements with Doppler 
measurements:  

( ) tttfttt d ∆×∆−+∆−= )()(ˆ φφ  

where df  is the Doppler frequency and t∆ is the 

time delay between the previous and the current 
measurement.  

Then the difference between phase 
measurements and predicted phase measurements is 
compared to a threshold which has to be fixed:  
 
 
 

The choice of a threshold is function of  false 
alarm probability with regards to APV phase of 
flight requirement and depends on the receiver 
dynamics.  

Figure 5 shows the results obtained for varying 
acceleration and jerk.  

 
Figure 5: Probability of False Alarm as a function 

of amplitude of cycle slips. 
 

For APV, maximum integrity risk equals 2.10-7 
per approach for GPS or GALILEO standalone or 
combined GPS/GALILEO. As the integrity risk is 
not only allocated to cycle slips, we choose to 
overbound the required probability of missed 
detection with a value of 10-5 for normal maneuvers 
and 10-6 for abnormal case. Now we have to 
determine the smallest detectable cycle slip with 
this required PMD, using detection algorithms. 
Those values are represented respectively in green 
and red in the following figure. 

( ) ( ) Thresholdtt >− φφ̂
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Figure 6: probability of Missed Detection with 
regards to integrity requirements for APV. 

 
As we can see from figure 6, the smallest 

detectable cycle slips have an amplitude of 13 
meters for normal dynamics and 16 meters for 
abnormal maneuvers, choosing a maximum jerk for 
those two cases.  

As we mentioned above, the phase 
measurements were generated considering 
maximum acceleration and jerk values for all types 
of maneuvers.  The inclusion of dynamics 
parameters (acceleration in 2t , jerk in 3t …) in 
pseudoranges implies that the detection is much 
more difficult  than for a static receiver (which 
minimum detectable cycle slip amplitude is under a 
meter as mentioned in [Hegarty, 1993]), this results 
here in a minimum detectable cycle slip of a few 
meters. 

These smallest detectable cycle slips imply a 
bias on position error depending on geometry. 
Availability of protection against cycle slip 
compatible with APV I and APV II depends on 
geometry and must be computed at every second. 
The ICAO requirements for those phases of flight 
are recalled in the section 4 of this paper. 
 
7. KALMAN FILTER + GLR 
 

A cycle slip induces a rupture in the innovation 
vector level, that is to say a sudden variation from 
one instant to another. Such a rupture may be 
detected only a posteriori.  

Let’s define 
tX  and 

tI  respectively as the state 

and innovation vectors at the instant t without any 
rupture. 

When a state parameter changes (for instance 
an ambiguity value), variations will be described by 
additive parameters in state and innovation vectors:   
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where r is the rupture instant and t the current 
instant.  
 

In order to determine events that could affect 
state in the Kalman filter, a technique used is the 
generalized likelihood ratio proposed by Willsky in 
[Willsky, 1976]. This technique has been developed 
for linear systems, but we can use it when the state 
is estimated by a Kalman filter or an extended 
Kalman filter.  
 

In order to apply the generalized likelihood 
ratio technique, let’s formulate the problem. 

A state break may be represented by an 
abnormal fluctuation of the innovation I  of the 
Kalman filter. This jump in the mean is a response 
to a state impulsion of the deterministic system 
defined by the matrix couple: (H, F) which are 
defined by the Kalman system.  

Let’s define a rupture as an additional term in 
the state vector:  
 

),(ˆ)(ˆ rtXrX Xtttt β+=  

XXX rtrt νµβ ),(),( =  
 
where k is the considered instant and r the instant of 
a potential rupture which occurred before k, 

)(ˆ rX tt is the estimation of the state vector with a 

rupture which occurred at r, ttX̂ is this estimation 

without rupture and ),( rtXβ is the additive 
perturbation at the instant t which occurred at r on 
the state vector X. ),( rtµ X will be defined further 
in this document. 
 Xν is the magnitude of a potential jump and µ 
defines the difference between state vector value in 
nominal case (without jump) and in case of  a jump 
which occurred and a previous instant r.  
We also write the effect of a potential rupture on 
the innovation vector: 
 

),()( rtIrI Xtt ρ+=  

X
T
XX rtrt νϕρ ),(),( =  

 
whereϕ is defined in the same manner than µ , we 
will further describe those terms.  
 

The GLR algorithm (Generalized Likelihood 
Ratio) allows estimating additive changes on a 
state.  
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The main interest in such an algorithm is that 
we can determine both the time when a rupture 
occurs and its magnitude. 

 
This algorithm has two main operations:  

• Detection: it is based on a multiple hypothesis 
test examining all the possible mean jumps on 
each instant k since the initial instant t0 (t0 = 1 
for instance). The hypothesis 

0H  corresponds 

to the case when no rupture occurs within [t0, 
k]. The other complementary hypothesis is 
when a rupture occurs. The statistic test is 
defined as the likelihood ratio. The best 
candidate for a selected rupture is the index of 
the maximum value of this ratio. However, as 
the magnitude of a rupture is unknown, it’s 
replaced by its estimation obtained with the 
maximum of likelihood computed under the 

1H  hypothesis. A decision is taken comparing 
the likelihood ratio for the chosen magnitude 
and time index with a defined threshold.  

• Compensation: if a rupture is detected, Kalman 
filter state vector is corrected to take into 
account the induced error. 

 
If we note tI  the innovation obtained with a 

Kalman filter at the instant t and r the instant of a 
potential structure, the estimations of magnitude 
and time index of this rupture are provided by:  
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where tI 1  represents the innovation sequence 
within [1, t].  

Let’s define ϕ and µ the regressive 
parameters as:  
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Innovation has a zero-centered normal 
distribution when no rupture occurs. This law is 
translated when a rupture occurs; it’s a ),( rtρ -
centered normal distribution.     
 
For a change test, in an innovation tI , 

( ) ( )rtIrI tt ,ρ+= , the log likelihood ratio is 

defined by:  
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where iΣ is the covariance of iI . 

All the factors are computed in a recursive 
manner within a M-sized window. 

The initialization of the algorithm is provided 
by: 
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We obtain another formulation of the previously 
defined likelihood ratio:  
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An error is then detected when 
))ˆ(ˆ,ˆ( rrl t ν is greater than a predefined 

threshold. 
 
 

The comparison between the likelihood ratio 
and a threshold λ  will allow to choice one of the 
two hypotheses. 

 
The parameters for the algorithm 

implementation are the decision threshold (to 
compare with the likelihood ratio) and the decision 
window size and its translation step. 

 
The choice of a good threshold could allow 

obtaining good performances so as to ensure 
detection process is both robust and accurate.  
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The decision threshold will depend on the 
cycle slip amplitude to signal ratio. This threshold 
has to be chosen in order to minimize false alarm 
probability and, at the same time, to minimize 
missed detection probability. 

 
The window size determination depends upon 

the magnitude of a cycle slip compared with the 
mean variations of the signal. The more the 
magnitude rupture is large, the smaller the windows 
can be chosen as in this case, it is easy to identify a 
rupture. Furthermore, the detection window size 
must be as small as possible. Indeed, in case of 
cycle slip, ionospheric error estimation is biased 
and it results an error in position estimation so alert 
limits may be reached. In this case, and particularly 
during critical phases of flight, compared to time to 
alert (10 seconds for APV I for instance) the 
window size have to be as low as possible. This is 
all the more important since the fact time 
computation and reparation must be taken into 
account. This last time computation is one of the 
performance criteria mentioned above. This point 
must be discussed while verifying civil aviation 
protection levels and integrity requirements. Note 
that the more detection are made, the higher will be 
the time cost of the algorithm because of 
actualisation of Kalman filter state vector. 

 
The previous algorithm using Doppler 

measurements is snapshot whereas this one is 
sequential so performance analysis needs to take 
into account the size of sliding window regards to 
Time To Alert which corresponds to 10 seconds for 
APV I and 6 seconds for APV II. 

The detection capability is similar to the 
previous technique, but this method needs to be 
refined. 

The problem is that the cycle slip estimation 
error increases with the magnitude of the cycle slip 
as shown in the following figure. 

 

 
Figure 7: Estimated amplitude (in meters) of 

generated cycle slips in blue compared to real 
amplitudes generated in red using GLR. 

8. CONCLUSION 
  

We have analyzed the performance of 
ionospheric delay estimation in single frequency 
mode for civil aviation application.  

The method used is the Code Minus Carrier 
divergence, and we are interested in accuracy of the 
method.  

Cycle slip detection capability using Doppler 
measurements is not always compatible with APV 
I, APV II integrity requirements (smallest 
detectable cycle slip is 13 meters for normal 
dynamics and 16 meters for abnormal manoeuvres).  
Cycle slip detection capability with proposed 
Kalman Filter and GLR is similar to detection 
capability with Doppler measurements.  

Future works include modifications in the 
proposed Kalman Filter in order to try and improve 
cycle slip detection capability or resistance to cycle 
slips (hybridization with Galileo NeQuick model, 
inclusion of dynamics). 
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