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ABSTRACT  
 
The control of EGNOS Ranging and Integrity Monitoring 
Stations (RIMS) is a constant task in order to verify the 
correct functioning of the RIMS network, and to detect or 
identify possible receiver malfunctioning. Each EGNOS 
station currently uses a minimum of two independent 
RIMS, to ensure a constant back up. The availability of 
different observables and quality parameters from these 
two receivers allows studying in details potential 
observed disturbances, to detect unnoticed behaviours, or 
to investigate accidents. Among the different tasks, the 
study of the quality of the code and phase measurements 
is very important to quantify any problems affecting the 
tracking process. 
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The errors affecting measurements are well known: 
unmodelled satellite clock and motion, receiver clock 
(static receiver), multipath, thermal noise, atmospheric 
delays, interference. RIMS code measurements are 
dominated by noise and multipath, while phase 
measurement will be more sensitive to smaller range 
variations such as the satellite and receiver clock, or 
ionosphere activity. Thus, a different analysis tool is 
necessary in these two cases. 
 
Because carrier-phase measurements are much more 
sensitive (in relative magnitude) to most of the sources of 
errors than to tracking errors, it is also more difficult to 
observe phase lock loop tracking errors compared to the 
code tracking case. It is then understandable that phase 
measurement quality assessment is more difficult. The 
manipulation of L1 and L2 measurements allows the 
cancellation or reduction of most of the non-tracking 
errors, but it might not allow isolating a specific error. 
Thus, it is preferable to work on each measurement 
separately. The goal of this paper is to present a 
methodology to assess code and carrier-phase 
measurement quality, as well as to show the tools used to 
define this methodology. 
 
The first part of the paper concentrates on the use of 
polynomial interpolation to model the measurements and 
thus study the corresponding residuals for quality control. 
It is seen how this method is suitable for pseudoranges, 
but not for phase measurements due to the 
aforementioned reasons. 
 
To understand exactly the errors preventing the use of 
polynomial interpolation for phase measurements, the 
second section of the paper shows a tool that was realized 
to allow the visualization of measurements variations over 
time. This is obtained by using models for most of the 
known components of the transmission time. This tool is 
particularly interesting to have a visual access to the 
residual phase error variations of different RIMS. It can 
then be used to isolate specific local errors, or to 
understand the source of these residuals, such as satellite 
clock variations, excited ionosphere, or tracking 
problems. 
 
INTRODUCTION 
 
EGNOS (European Geostationary Navigation Overlay 
System) is the European contribution to the augmentation 
of the currently operating GPS. Its aim is to complement 
the American system in order to be able to use it for 
critical applications, such as landing an aircraft. When 
such an augmentation is getting close to its operational 
phase, it is important to spend time assessing and 
checking the behavior of each component constituting the 
system. In particular checking the correct installation and 
performance of the ground stations is of main importance 

since they will constitute the core of the EGNOS 
monitoring system.  
 
The EGNOS ground stations are constituted of several 
Ranging and Integrity Monitoring Stations (RIMS) 
receivers in order to have a constant back-up and control 
in case of failure of one of the receiver. An unavoidable 
step to check the good behavior of these ground stations is 
the thorough check of the RIMS raw measurements. 
Within this frame, this study was undertaken targetting at 
analyzing and explaining (independently from receiver 
internal messages) anomalies encountered through the 
investigation of RIMS stations raw measurements. 
Different types of anomalies were looked for:  
• local ones (RIMS located in a severe multipath 

environment or vulnerable to surrounding 
interferers),  

• Unexpected receiver tracking (coming from hardware 
or software problems).  

 
The anomalies considered can be visible on several 
measurements (high multipath, presence of interferer, 
front-end problem, etc…) or on one code or phase 
measurement (hardware problem, tracking loop 
misbehavior, etc…). They can affect code and/or phase 
measurements. Thus, if a suspicious behavior is detected, 
each measurement (potentially of different RIMS stations) 
should be analyzed in a certain time-window. The 
detailed analysis of each measurement is a cumbersome 
process due to the high number of RIMS stations. Thus, a 
simple assessment tool would be useful in order to have a 
first glance at potential problems. 
 
A possible way to assess the RIMS measurements quality 
is to have a thorough measurement model that could be 
used as a reference to investigate the potential local 
divergence of the raw measurements with respect to that 
model. Monitoring stations have a very particular 
characteristic, which is to be fixed. This means that the 
measurements’ dynamic will mostly be affected by the 
satellite motion and should not be of a high order. 
Consequently, it seems that a simple model for the raw 
measurements can be obtained using a polynomial 
interpolation. The goal of this paper is thus to show how a 
polynomial fit can be used to model ground stations raw 
code and phase measurements and to detect the 
aforementioned anomalies.  
 
The first part of this paper studies the feasibility of this 
method as well as its short-coming when carrier-phase 
measurements are considered. The second part focuses on 
phase measurements in order to deeply understand the 
misbehavior of the polynomial interpolation method in 
this case. A more thorough measurement model, obtained 
from the exact computation of the true satellite-receiver 
range, is presented. It allows a sharper analysis of phase 
measurements contributors. They underline how satellite 
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and receiver oscillators prevent the use of polynomial 
interpolation to fit phase measurements analysis in our 
expected way. Finally, before concluding, the third part 
investigates methods that associate single or double 
differenced phase measurements with polynomial 
interpolation in order to still be able to assess in a simple 
way phase measurements quality. 
 
POLYNOMIAL INTERPOLATION OF RAW CODE 
AND PHASE MEASUREMENTS 
 
It is well known [Kaplan, 1996] that pseudorange and 
carrier-phase measurements can be modeled as: 

( ) P
P
MPRxSat TITTcdP εερρ ++++Δ−Δ++=  

( ) φ
φ εελρρφ +++−Δ−Δ+++= MPRxSat TITTcNd  

where 
ρ  is the satellite-receiver true range, 
ρd is the satellite ephemeris error, 

c  is the speed of light, 
SatTΔ  is the satellite clock offset wrt GPS time, 

RxTΔ  is the receiver clock offset wrt GPS time, 
I is the ionospheric delay, 
T is the tropospheric delay, 

P
MPε  and φεMP  are the multipath-induced errors on the 

code and phase measurements respectively, 
Pε  and φε  are the interference or noise-induced errors on 

the code and phase measurements respectively, 
N  is the ambiguity (integer) inherent to phase 
measurements, and 
λ  is the GPS L1 carrier wavelength. 
 
From a tracking point of view, the anomalies of interest 
are the ones linked with the local phenomenon inherent to 
the station environment affecting tracking (interference or 
multipath), or the receiver tracking performance. Ignoring 
the case of tracking divergence that could be easily 
noticed by other means, these cases can be incorporated in 
the last two terms of the previous two 
equations: P

MPε , φεMP , Pε , and φε . Thus, our measurement 
model should mostly allow the estimation of these 
components. 
 
The main parameters affecting polynomial interpolation 
(other than the measurements themselves!) are the 
window size and the interpolation order. Because the 
analysis aims at analyzing local errors (presence of local 
interferer for instance), as well as potential inherent 
tracking problem (high measurements error standard 
deviation for instance), it was decided, in the frame of this 
study, to run a polynomial interpolation over 2-hour 
periods. This means that local anomalies can be compared 
to normal behaviour, while still enabling the computation 
of relevant measurements statistics. The choice of the 
interpolation order will be discussed later. 

 
Considering the common code and phase measurements 
errors, unless in some extreme conditions, the ionospheric 
and tropospheric delays are usually slowly changing 
biases that will not imply fast range variations. Olynik 
(2003) showed that even during high atmospheric activity, 
the correlation of the ionospheric delay was of 90% after 
5 minutes and 90% after 10 minutes for the tropospheric 
delay. The same applies to ephemeris-induced errors. 
Finally, the true range variation is very smooth due to the 
static receiver. Thus, intuitively, it can expected that all 
these slow variations will be almost perfectly modeled by 
the polynomial interpolation (pending the right choice of 
its order). 
 
The satellites and RIMS receivers oscillators are based on 
atomic oscillators that are very stable. However, their 
short to mid-term stability might induce sudden range 
variations, but with a reduced amplitude (see [Julien 
2006; Rebeyrol et al. 2006] for examples). According to 
the part of these variations in the measurements error 
budget, it can be detrimental to the polynomial model. In 
particular, it will have a different impact on pseudorange 
and phase. 
 
Pseudorange Measurements 
Raw pseudorange measurements are shown in Figure 1. 
Although not visible, its noise-, multipath- and 
interference-induced errors are significant factors in the 
GPS tracking error budget. In particular, they 
significantly dominate atomic clock instabilities. 
Moreover, they have irregular variations compared to the 
errors mentioned above (although multipath error might 
vary slowly in static cases, it has a correlation time lower 
than the other errors most of the time). Thus, it means that 
apart from the true range variation, the dominating local 
pseudorange variation is due to noise, multipath and 
interference errors that can be assumed to be Gaussian (in 
a first approximation). Therefore, polynomial 
interpolation, optimal for Gaussian errors, should be an 
excellent candidate to model everything but the errors of 
interest. Note that even if there is a loss of lock, this 
should not be a problem for polynomial interpolation due 
to the ‘continuity’ of the measurements. 
 
In order to confirm the potential use of polynomial 
interpolation, a reference estimated noise and multipath-
induced error was created using Code-Minus-Carrier 
(CMC) measurements: 

φ
φ εεεελφ +++++−=−= PMP

P
MPCMC INPP 2  

 
Knowing that code multipath and noise errors are 
significantly greater than their phase counter part, it gives: 

P
P
MPCMC INP εελ +++−≈ 2  
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Figure 1 – Example of Pseudorange Measurements 

Finally, assuming a slow variation of the ionosphere over 
the 2-hour period, it can be accepted that: 

[ ] P
P
MPCMCCMC PEP εε +≈−  

 
Thus, this gives a good reference to check if the 
polynomial interpolation produces good results. The last 
unknown now is the order of the polynomial function to 
use to model the pseurdorange measurements in a relevant 
way. Indeed, a low order might not allow modeling the 
slowly varying atmospheric delays. On the other hand, an 
order too high could result in modeling the slowly varying 
multipath error. Figure 2 shows the residuals (polynomial 
model minus raw pseudorange) standard deviation 
obtained using different interpolation order for a 2-hour 
window with different satellites from different RIMS. It 
can be seen that the residuals standard deviation usually 
decreases as the interpolation order increases, meaning 
that the interpolation fits better and better the 
pseudoranges, and then it levels before becoming chaotic 
due to a close-to-singular matrix operation that provokes 
instabilities. 

 
Figure 2 – Residual Standard Deviation Obtained 
Using Different Interpolation Order for Different 

Satellites and RIMS Stations 

Comparing the pseudorange residuals obtained from the 
interpolation process against the CMC residuals, an 
interpolation order of 24 was considered relevant for most 
of the cases. Indeed, intuitively, a too high order is useless 
since it will only consist in modeling slowly changing 
multipath errors. Obviously, another order could be 
chosen, but for comparison purpose, this order was 
always used and was deemed relevant for the examples 
taken. Figure 3 shows the residuals obtained from the 
polynomial interpolation and from the CMC operation for 
two different RIMS stations at two different locations 
using a 24th-order polynomial function. They seem to 
have very close behaviour and multipath-induced errors 
and thus model the same errors. Thus, for fast assessment 
of the pseudorange quality and to ensure correct tracking, 
polynomial interpolation is a very simple and powerful 
tool. Compared to CMC measurements, the polynomial 
interpolation method does not rely on phase 
measurements and thus provides an independent analysis. 
Note that it would allow quick detection of: 
• Biases due to biased tracking, oscillator jump, or 

hardware problem, 
• Abnormal noise (or interference-induced) levels, 
• High multipath environment 
 

 
Figure 3 – Comparison of Pseudorange Residuals 
Obtained Through Polynomial Interpolation and 

CMC 

Phase Measurements 
When considering phase measurements, the interpolation 
approach is different for several reasons: 
• Tracking losses induce phase jumps due to cycle 

slipping, as shown in Figure 4. This means that the 
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data set has to be split into pieces in order to work on 
sections without any phase jump. 

• Multipath-induced errors and noise are not 
dominating the tracking error budget. Thus, the errors 
considered negligible for the pseudoranges 
(oscillators instabilities, atmospheric effects) might 
now be dominating. Since these errors (especially 
oscillator-induced variations) cannot be considered as 
Gaussian, the result from polynomial interpolation is 
not guaranteed, especially in order to assess phase 
measurements’ multipath and noise errors. 
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Figure 4 – Example of Carrier-Phase Measurements 

After isolating a 2-hour time-window with continuous 
phase tracking on several satellites and several RIMS far 
geographically, a first test of the polynomial interpolation 
method was realized with an interpolation order of 24 and 
is shown in Figure 5. Several remarks can be extracted 
from these plots: 
• The magnitude of the residuals reaches values close 

or greater than 5 cms. It is well known that multipath-
induced errors on phase measurements cannot be 
greater than a quarter of the wavelength. In real 
conditions, this extreme case is extremely rare and 
thus, such a magnitude for the phase residuals has to 
come from another origin. 

• It seems that there is a common trend for PRN 24. 
This however is less obvious for PRN 7. Since the 
two stations tested are geographically far, it cannot 
come from atmospheric effects, and since different 
RIMS were used, it cannot come from one type of 
receiver. Thus, it seems that the satellite clock and/or 
polynomial interpolation limitations for phase 
measurements should be responsible for this common 
behaviour.  

 
Figure 5 – Phase Residuals Obtained Through 

Polynomial Interpolation 

It is now important to understand why it seems that 
certain measurements are more perturbed than other ones 
(PRN 24 vs PRN 7 in Figure 7). The remaining 
possibilities for the residuals variation are: 
• atmospheric delay variation, but since the same 

behaviour is encountered on two different stations 
and not on PRN 7, this is very unlikely, 

• the receiver clock error, but it should not be 
correlated between different RIMS receivers from 
different stations, 

• the ephemeris error and the satellite oscillator 
instabilities, which are the last options. 

 
A test using a known environment was realized. A Spirent 
4500 simulator was used to generate GPS signals and a 
Septentrio PolaRX receiver was used to process the 
signal. No errors were simulated in order to have a 
perfectly clean signal. In this configuration, only thermal 
noise as well as the simulator and receiver clocks drifts 
can affect the measurements. Although the oscillator of 
these instruments cannot be compared with atomic clocks, 
it can still show how the clock can affect code and phase 
measurements. Two tests were run.  
• A test was realized with a common oscillator (the 

simulator oscillator fed the receiver), and 
• A test was realized keeping each separate clock.  
 
A polynomial interpolation was then conducted to analyze 
the residuals. The results are shown in Figure 6. It can be 
seen that when the same oscillator is used, only noise is 
present in the phase residuals and thus the interpolation 
works perfectly. However, when different oscillators are 
used, residuals reaching the meter-level are observed, 
with a signature similar to that observed with the RIMS 
phase measurements (but with a different magnitude due 
to the different oscillator grades used).  
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It thus seems like the extreme variations of phase 
residuals fit with clock instabilities. Thus, now, it has to 
be figured out why phase measurements issued from 
different GPS satellites result in different interpolation 
residuals. 
 
To better understand the issue, it was decided to design a 
more accurate model of the measurements in order to 
visualize the phase variations, trying to leave out as many 
known errors as possible. 
 

 

 
Figure 6 – Interpolation Residuals Obtained Using a 

Common Oscillator (Top) and Separate Ones 
(Bottom) 

ENHANCED MEASUREMENT MODEL FOR 
PHASE ANALYSIS 
 
The idea here is to try to reproduce as accurately as 
possible the true satellite-receiver range to compare it 
against raw measurements. As already explained, the 
RIMS stations coordinates are precisely known. Thus, by 
determining the satellite position and its clock bias, it 
should be possible to model the true signal transit time.  
An approach similar to [IS-GPS-200D] to compute the 
measurements. To do so, the first step is to use .sp3 files 
provided by the International GNSS Service (IGS). These 
files are created after post-processing of code and phase 
measurements by a network of ground stations and 
provide precise satellite position and clock offset. The 
accuracy of these satellite parameters is a few 
centimetres, which is enough for our analysis. However, 
the sampling rate of these data is 15 minutes. Thus over-
sampling is realized to obtain a 1-second rate. the 
resulting data set is ( )SatSatSatSat Tzyx ˆ,ˆ,ˆ,ˆ Δ . 

 
The estimated satellite clock offset has then to be 
corrected from the relativity effect (computed from the 
raw measurements assessing the satellite elevation and 
azimuth) and the time group delay inherent to the satellite 
payload. This gives the new estimated satellite clock 

offset SatT̂̂Δ  fitting with the reference GPS time. For a 
typical GPS satellite-receiver link, the propagation time is 
around 70 ms. It can then be concluded that, due to the 
high quality of atomic clocks, the satellite oscillator offset 

SatT̂̂Δ  does not change during the transmission time. 
Consequently, the satellite estimated transmit time tt̂  can 
be obtained through: 

c

TcP
tt

Sat

rt

⎟
⎠
⎞⎜

⎝
⎛ Δ+

−≈

ˆ̂

ˆ  

where rt  is the signal received time. 
 
Having an estimated transmit time, it is now possible to 
compute the true range between the satellite and the 
receiver at each epoch. For that, the rotation of the Earth 
during the signal propagation has to be taken into account. 
The solution is recursive in order to converge toward the 
true solution [Dong, 2003].  
 
This estimated range is then subtracted to the raw phase 
measurements to obtain the residuals. To refine the 
accurate measurement model, a Saastamonien 
tropospheric model is used in order to remove most of the 
dry tropospheric delay from the measurements (using the 
satellite elevation and azimuth information already 
calculated). The resulting residuals are then averaged in 
order to remove the phase ambiguity effect.  
 
Finally, applying this to several satellites, the receiver 
clock should be visible and should affect the residuals in 
the same way. Thus, a simple bias/drift model is used to 
reproduce the receiver clock error and clean the phase 
residuals from this effect. An example of residuals is 
given in Figure 7 for the same satellites, RIMS and time 
window as in Figure 5. It can be observed that the phase 
measurements residuals variations are well contained 
within ±50 cms, which allows their thorough 
visualization, differently from what is shown in Figure 4. 
As in the case of the polynomial interpolation residuals, 
one satellite seems to lead to stronger variations, and this 
is true for both RIMS.  
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Figure 7 – Example of the Phase Measurement 

Refined Model Residuals 

In order to validate the previous refined model, a 
polynomial interpolation was run on the refined model 
residuals, and on the raw measurements, both with the 
same order. The residuals obtained from these two 
interpolations were then subtracted to be compared. The 
result is shown in Figure 8. It can be seen that the 
difference is on the order of a few millimetres which 
confirms that the refined model allows visualizing the 
local variations disturbing the interpolation process that 
was applied to the raw phase measurements.  

 
Figure 8 – Difference between Residuals Obtained 
from Polynomial Interpolation using Raw Phase 
Measurement and Refined Measurement Model  

The sudden variations observed are thus the phenomenons 
limiting the attractiveness of polynomial interpolation 
since this type of model does not work well with this type 
of behaviour. 
 
Separately from the context of measurements quality 
check through polynomial interpolation, this refined 
model is a very powerful tool to inspect phase 
measurements. Indeed, it allows the actual observation of 
the remaining errors, including oscillators offset, 

ionosphere variation, multipath, noise, interference 
impact. This means that it allows a different view on the 
measurements anomaly. In Figure 4 for instance, the level 
of information is different from the residuals obtained in 
Figure 5. 
 
Looking at Figure 7, it is noticeable how the variations 
disturbing the use of a direct polynomial interpolation are 
sudden (tens of centimetres within a few hundredth of 
seconds). It was previously mentioned that the satellite 
oscillator and the satellite trajectory might be the main 
contributor to these variations for PRN 24 (then meaning 
a deviation from the .sp3 model during the 15-minute-
length gap between 2 IGS data samples). The chaotic 
behaviour of the refined model residuals seen in Figure 7 
does not fit with an expected smooth satellite trajectory. 
The last option is then the satellite clock instabilities as 
the main contributor to sudden local phase variations. 
 
Looking at the GPS constellation status shown in Figure 
9, it can be seen that PRN 24 uses a Rubidium atomic 
clock while PRN 7 uses a Caesium clock. To confirm that 
this oscillator type could be the reason looked for, an 
analysis of the residuals, using the polynomial 
interpolation method, was conducted for all the visible 
satellites over one day. The results are shown in Figure 
10. Although probably not completely representative of 
the true oscillator quality of each satellite (other residuals 
errors are present such as the receiver clock that is 
common to all the analysis, but might different according 
to the time in the day the satellite was visible, …), it can 
be seen that the residuals associated with Caesium 
oscillators have a higher standard deviation compared to 
the ones associated with Rubidium clocks. This probably 
explains why all the new satellites use Rubidium 
oscillators. 
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Figure 9 – GPS Constellation status as of October 31, 

2005 

 
Figure 10 – Phase Residuals Standard Deviation 

Obtained from Polynomial Interpolation 

This result is very interesting because it underlines how 
different high quality oscillator can perform differently. It 
is also extremely interesting to be able to observe that 
behaviour through the refined measurement model. 
 

If the attention is only on very local measurement 
behaviour, it is possible to use polynomial interpolation 
on raw phase measurements over a short time window. 
However, as the time window of interest increases, it is 
likely that the oscillators irregularities will affect more 
and more the polynomial model. 
 
In order to cancel the clock offset that impairs the proper 
use of polynomial interpolation, a simple phase 
manipulation, such a single or double differencing can be 
used.  
 
PHASE COMBINATIONS FOR PHASE 
MEASUREMENTS QUALITY ANALYSIS 
 
Figure 11 shows the use of between-receivers single 
differenced phase measurements for the PRN 24, as well 
as double differenced phase measurements. The same 
interpolation process (24th order interpolation) is used in 
all the cases. It can be observed that the single difference 
combination reduces the variation of the residuals 
observed on raw phase measurements. However, it still 
suffers greatly from the receiver oscillator instabilities. 
The double difference combination completely cancels 
that effect, and residuals on the order of a centimetre are 
now observed. Assuming slow variations of the 
ionospheric and troposheric biases, it can be assessed that 
the residuals are mostly composed of double differenced 
multipath-induced errors, double-differenced noise error.  
 
The objective of the study was to have an independent 
assessment of each measurement. The fact that several 
phase measurement are necessary does not fit with this 
objective. However, it has to be reminded that the 
redundancy of RIMS in one ground station and the high 
number of stations constituting the EGNOS network can 
be used to isolate misbehaviour on one of the phase 
measurements. The use of two RIMS receivers located on 
the same ground stations would result in a better 
cancellation of atmospheric effect and thus a more 
relevant interpolation, especially since the variation of 
slowly varying multipath and atmospheric activity could 
be, in certain cases, of the same order. 
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Figure 11 – Polynomial Interpolation Residuals for 
Raw, Single-Differenced and Double-Differenced 

Phase Measurements 

In order to limit as much as possible the increase in the 
noise and multipath-induced errors due to measurements 
combination, a test was realized using a common external 
oscillator for two of the RIMS present in one ground 
station. By doing so, a single difference between the raw 
measurements of both RIMS receivers realized on a same 
satellite result in the cancellation of both the satellite and 
receiver clock offset at the same time, and a minimization 
of the atmospheric delays (since although not sharing the 
same antenna, the two RIMS of a same site have very 
similar locations). The result is shown in Figure 12. It can 
be seen that the residuals of each raw measurements are 
very similar. Assessing the single differenced phase 
residuals, it can be seen that they are contained within 1 
cm, which represents expected values for multipath and 
noise errors in phase measurements. However, note that in 
this case, the single difference increases the multipath and 
noise errors since they are not correlated from one 
receiver to the next. 
 
The use of only one measurement from two different 
RIMS, though, cancels the risk of unseen tracking errors 
(that could disappear when differencing between satellites 
with the same receiver). Indeed, the two receivers use 
different tracking algorithms, and it is unlikely that local 
tracking errors could happen at the same with the same 
signature on both phase measurements. Thus, it is 
possible to isolate local errors from that analysis, a 
potential more thorough investigation using the more 
accurate measurement model could then be used to find 
the receiver that delivered the anomaly. 

 

 
Figure 12 – Polynomial Interpolation of Raw 
Measurements and Single Differenced Phase 

Measurements Using RIMS Sharing a Common 
Oscillator (Zoom on the Bottom)  

 
CONCLUSIONS 
 
This study showed several interesting points applied to 
the study of RIMS receivers raw measurements in the 
context of quality control:  

• The good behaviour of polynomial interpolation in 
order to independently (from any manipulation) study 
the pseudorange measurements quality. This can be 
used to check correct tracking error standard 
deviation, as well as local anomalies such as presence 
of interferers. 

• For the same objective, polynomial interpolation 
cannot be used on raw phase measurements. It has 
been seen how mainly satellite and RIMS receivers 
variations dominate the noise and multipath errors. 
However, polynomial interpolation can be used after 
single or double differencing of phase measurements. 
In particular, the use of two RIMS on the same 
ground station allows removing almost entirely 
atmospheric delays and thus really focus on tracking 
misbehaviour. However, in case of anomaly, it then 
requires the thorough analysis of each measurement 
separately to find the one actually carrying the 
defaults.   

• In order to study each phase measurements 
accurately, a refined measurement model was built 
that allows the observation of the phase variations 
without the true range variations. Consequently, it is 
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possible to isolate certain anomalies visible on the 
phase measurements. 
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