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ABSTRACT  
 

Recently the GPSIIR-M and the experimental Galileo 
satellites (GIOVE-A) were launched making the first step 
in the orbit-validation of the GPS modernization system 
and of the Galileo system. The new signals generated by 
the GPSIIR-M satellite and the Galileo system require 
modulations which are more complex than the QPSK 
modulation used in the current GPS system. These new 
modulations could be a source of distortions for the 
received signal and require analyses and optimisation. 
 

Indeed, in the Galileo system, the Alternate Binary 
Offset Carrier modulation (ALTBOC) is an innovative 
8



modulation proposed for the transmission of the E5 band 
signal and the Composite Binary Coded Symbol (CBCS) 
is an innovative signal proposed to optimize the L1 Open 
service (OS) signal. All the Galileo signals have a 
constant envelope modulation, thereby allowing the use of 
saturated power amplifiers with limited signal distortion. 
However the signals have 8 phase “scattered” plots in the 
modulation diagram and a deviation of the modulation 
plots, with respect to the nominal constellation, could 
reduce the performance of the tracking loops in the 
receiver. This deviation of modulation plots constellation 
could be induced by the Amplitude-Modulation to Phase-
Modulation (AM/PM) distortions of the amplifier in the 
payload. But it could also be resulting from the phase 
noise created by the instabilities of the payload and 
receiver clocks. 
 

The aim of this paper is to evaluate the impact of the 
phase noise due to the SSPA (Solid State Power 
Amplifier) and to the payload and receiver clocks 
instabilities, on the receiver tracking performance. The 
case of the Galileo E5 signal will be studied considering a 
classical payload scheme.  

 
The transmission scheme can be described as follows. 

In the payload unit, the signals are first digitally 
generated, then converted by a digital-to-analog device, 
up-converted, and then amplified by the SSPA before 
being transmitted in their respective frequency bands. In 
the receiver part, the signals are down-converted, then go 
through the analog-to-digital converter, and are finally 
tracked by the Phase Lock Loop and the Delay Lock 
Loop. The evaluation of the performance in reception is 
based on the phase error estimated in the Phase Lock 
Loop. 
 

In a first part the way the phase noise affects the 
signals through the payload assuming a typical 
performance of the on-board clock generation unit is 
studied. In this part the phase noise introduced by the 
SSPA is also investigated and compared to the phase 
noise introduced by the atomic clock instabilities. Then, 
the power spectral density of the phase noise due to the 
receiver clock and its effects on the received signal during 
the down-conversion and the analog-to-digital conversion 
are presented. The effect of the incoming signal phase 
noise on the phase estimation in the Phase Lock Loop is 
also studied. Finally, to conclude, the impact of the SSPA 
phase noise and payload/receiver clocks phase noise on 
the receiver performance are summarized. 

 
 
I. INTRODUCTION 
 

With the development of the Galileo system and the 
modernization of the GPS, the phase noise contribution is 
an essential factor in the characterization of the signals 
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because it limits the absolute precision of satellite 
positioning.  

 
The phase noise can be introduced by the satellite and 

receiver clocks oscillators. At the satellite level, very 
stable clocks such as Rubidium and Hydrogen Maser 
atomic clocks are used to reduce the phase noise as much 
as possible. However, these clocks are disturbed by 
unavoidable processes such as random noise. The receiver 
clocks are usually less stable than the satellite clocks and 
they depend greatly on the receiver design and cost. 

 
But the phase noise could also be induced by the non-

linear payload amplifier which entails distortions because 
of a non-constant Amplitude-Modulation to Phase-
Modulation (AM/PM) curve. This phase noise could 
affect the modulation constellation plot and thus lead to 
errors on the pseudo-range measurement. 
 

The aim of this paper is to analyze the phase noise due 
to payload amplifier, payload and receiver clocks 
instabilities and evaluate its impact on the receiver 
performance, particularly on the phase error estimation in 
the receiver Phase Lock Loop (PLL). In the first part we 
will present in details a description of the phase noise and 
its frequency and time domain characterization. The 
second part will first examine the phase noise generated 
in the payload and then the phase noise generated in the 
receiver. To conclude Matlab simulations results which 
permit to evaluate the phase error estimation in the 
receiver PLL for a Galileo E5 Alternate Binary Offset 
Carrier (ALTBOC) signal will be presented. 

 
 
II. PHASE NOISE CHARACTERIZATION 
 

The output signal of real oscillators, if we assume 
negligible amplitude noise, can be expressed thanks to the 
following model which permits to study the random phase 
and frequency fluctuations ([Rutman and Walls, 1991]): 

 
( )( ) (1)                   2sin)( 0 ttAtV φπν +⋅=    

 
The frequency noise is a random process defined by: 
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where  �(t) is the random process of interest, the phase 

noise, 
�0 the nominal carrier frequency, and  
v(t) is the time dependent instantaneous 
frequency of the oscillator defined by: 
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We can also define the dimensionless frequency 
fluctuations: 
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From these expressions two sets of parameters which are 
used to characterize the oscillators can be introduced: 

- the spectral densities of phase and frequency 
fluctuations, in the Fourier frequency domain 

- the variance (or standard deviation) of the 
averaged frequency fluctuations in the time 
domain 

 
Frequency Domain 
 

In the Fourier frequency domain, phase and frequency 
fluctuations can be characterized by the respective one-
sided spectral densities, S�(f) and S��(f) which are related 
by the simple law: 
 

)()( 2 fSffS φν ⋅=∆                                (5) 

 
which corresponds to the time derivative relationship 
between �(t) and �v(t). The spectral density Sy(f) is also 
widely used and is very simply related to S�(f) and S��(f)  
by: 
 

)(
)(

)( 2
0

2

2
0

fS
ffS

fS y φ
ν

νν
⋅== ∆             (6) 

 
The most common engineering characteristic used to 

specify the phase noise is the Single Side Band (SSB) 
Phase Noise £(f) defined by: 
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£(f) represents the ratio of power in one sideband due to 
noise (for a 1 Hz bandwidth) to the total signal power 
(carrier plus sidebands). 
 

In several articles [IEEE Std. 1139-1988] it has been 
shown by theoretical considerations and experimental 
measurements, that the spectral densities due to random 
noise can be modeled using a power law model where the 
spectral densities vary as a power of f. Sy(f) can then be 
written as: 
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where fh is an upper cut-off frequency. Each term is 
related to a given noise source in the oscillator. These 
sources are given in table 1: 
 

Sy(f) S�(f) Designation 

h -2 f -2 �0
2 h -2 f -4 

Random walk frequency 
noise 

h -1 f -1 �0
2 h -1 f -3 Flicker frequency noise 

h0 f 0 �0
2 h0 f -2 White frequency noise 

h1 f 1 �0
2 h1 f -1 Flicker phase noise 

h2 f 2 �0
2 h2 f 0 White phase noise 

 
Table 1: Frequency and phase noises 

 
The random walk frequency noise usually relates to 

the oscillator environment (temperature, vibrations, 
shocks...). The flicker frequency noise sources are thought 
to be related to electronics and environment in atomic 
frequency standards. The White frequency noise arises 
from additive white noise sources internal to the oscillator 
loop, such as thermal noise. The Flicker phase noise is 
usually added by noisy electronics. The White Phase 
noise is usually due to additive white noise sources 
external to the oscillator loop. 
 
Figure 1 is a representation of the power law model. 
 

 
 

Figure 1: Phase Noise Spectral Density Model 
 
 
Time Domain: The Allan Variance 
 

In the time domain the frequency instability is defined 
by the two sample variance �y

2(�) or the two sample 
deviation �y(�). This variance is called the Allan variance. 
For the sampling time �, we have ([IEEE Std. 1139-
1988]): 
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The following diagram shows the relationship 
between the Allan variance and the noise processes if the 
power spectral density of the phase noise can be defined 
by the power law model. 

 

 
 

Figure 2:  Allan Variance Model 
 

Now that the parameters used to describe the phase 
noise have been presented, the following section will 
present the different units which add phase noise to the 
signal. 
 
 
III. PHASE NOISE IN THE PAYLOAD 
 

A navigation payload is composed of different units: 
- a clock unit which is composed of the atomic clocks, 
- a signal generation unit, which generates the 

navigation signal, 
- a frequency generation unit, which permits to up-

convert the signal to the L-band, and 
- an amplifier unit. 
 

As already mentioned the phase noise is due to the 
clock instabilities or the amplifier non-linearities. So it is 
created in the clock unit and in the amplifier unit. But it 
can also appear in units which use the frequency reference 
generated by the clock unit. 
 
Clock Unit 
 

The navigation satellites carry two types of clocks: 
Rubidium atomic clocks and Hydrogen Maser atomic 
clocks. The excellent stability of the Rubidium clock 
allows only a 3 second drift in 1 million years. The 
Hydrogen Maser is even more stable and it would drift 
only by 1 second in 3 million years.  
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As presented in [Moreno Carrillo et al., 2005], the 
Galileo satellite navigation system employs, as a master 
navigation signal, a 10.23 MHz tone generated from the 
10 MHz atomic clocks presented above. The Clock 
Monitoring and Control Unit (CMCU) synthesizes this 
navigation signal from one of the four atomic clocks.  
 

Figure 3 represents the power spectral density of the 
inherent phase noise of the 10.23 MHz signal at the 
output of the CMCU ([Moreno Carrillo et al., 2005]): 
 

Power Spectral Density of the CMCU phase noise
 [Moreno Carrillo, 2005]
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Figure 3: Power Spectral Density of the clock unit phase 

noise 
 

Hereafter, this phase noise model will be considered 
as the reference phase noise both for the Galileo system 
and the GPS system because the CMCU phase noise 
presented is suitable both for the rubidium and hydrogen 
maser clocks. 
 
Frequency generation unit 
 

The frequency generation unit delivers the clock 
frequencies to the signal generation unit, which generates 
the navigation message and modulates it.  It also converts 
the navigation signals to the L-band for broadcast to 
users. The Digital-to-Analog Conversion is also made in 
this unit.  
 

The frequency generation unit is composed of several 
frequency synthesizers which use the reference frequency 
generated in the clock unit to generate the intermediate 
frequencies and to up-convert the signals to L-band. In the 
present study the frequency synthesizers’ structure has 
been considered similar to the structure of a PLL 
synthesizer. It has also been considered that each 
frequency is generated using a distinct frequency 
synthesizer. 
 

So for example, the scheme for the Galileo frequency 
generation unit is shown in Figure 4: 

 



 
 

Figure 4: Frequency Generation Unit 
 
First of all, the phase noise introduced by the D/A 

converter is studied. The phase noise considered here is 
the phase variations on the analog signal induced by the 
D/A sampling clock instability. The time jitter tj(t) on the 
sampling clock can be related to the reference clock phase 
noise �(t) as presented in [Da Dalt et al., 2002]: 
 

( ) ( )
(10)                                                

2
T

t
tt j ⋅=

π
ϕ           

 
Note that this relationship is only valid if tj << T, the 
sampling period. 
 

Due to the jitter tj, the instants of sampling are moved 
away from their ideal location. The digital kth sample will 
not be outputted exactly at time kT, but at kT+ tj(kT).  

 
The phase noise introduces by the D/A converter on 

the signal is represented in the time domain on the next 
curve: 

 

 
 

Figure 5: D/A converter phase noise 
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Let now consider the phase noise introduced by the 
frequency synthesizers. As already mentioned, the 
frequency synthesizers used in the navigation satellite 
payload, are assumed similar to the commonly used 
synthesizer based on the simple single-loop PLL. A PLL 
frequency synthesizer consists of two oscillators (a 
reference oscillator and a Voltage Control Oscillator 
(VCO)), a phase detector, a loop filter and a frequency 
divider. Figure 6 represents the block diagram of the 
single loop PLL frequency synthesizer: 
 

 
 

Figure 6: PLL frequency synthesizer 
 

The reference clock is the clock that was considered in 
the clock unit. The phase detector is capable of comparing 
the phase of two signals and producing a control signal 
proportional to that phase difference. The VCO is tuned 
by the PLL to deliver a tone whose frequency is a 
multiple of a reference frequency. A crystal oscillator is 
generally employed for the reference due to its low phase 
noise as well as its high accuracy. Consequently, a crystal 
oscillator VCO is considered whose inherent phase noise 
power spectral density is represented in Figure 7 (Rakon 
website): 
 

 Power Spectral Density of VCO phase noise (www,rakon,com)
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Figure 7: Power Spectral Density of VCO phase noise 
 

The loop filter is used to set the appropriate robustness 
and guarantee stability when the other parts of the system 
have been specified (phase detector gain, VCO gain, 
divider ratio, etc…). 
 

We are interested in the calculation of the signal phase 
noise at the output of the different PLL frequency 
synthesizers. At the PLL output, the VCO phase noise is 
changed by the action of the loop. In addition, the 
reference input has its own phase noise spectrum and the 



output phase noise depends on this contribution as well. 
The next scheme represents the equivalent linear model 
for the PLL. It shows the modification of the reference 
signal phase during the frequency synthesis: 

 
 

Figure 8: PLL phase model 
 
The total output phase noise for a PLL can be 

expressed as: 
 

( ) ( ) ( ) ( ) ( ) 222 1 fHfSfHNfSfS vcoCUout −⋅+⋅⋅=    (11) 

 
where  SCU(f) is the power spectrum density of the 

reference clock phase noise,  
SVCO(f) is the power spectrum density of the 
VCO phase noise, and  
H(f) is the PLL closed loop transfer function 
equal to:  
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where  F(s) the transfer function of the loop filter,  

KVCO and KPD are the gains of the VCO and the 
phase detector. 

 
The equation 11 shows that the phase noise at the PLL 
output depends on the value of the frequency divider N. 
 

Considering the Galileo frequency generation unit 
represented on Figure 4, the power spectrum densities of 
the phase noise at the output of the three frequency 
synthesizers in the payload can then be represented as 
shown in Figure 9: 
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Figure 9: Power Spectral Density of frequency 
synthesizers phase noise 

 
Non-linear Amplifier 
 

After being up-converted by the frequency generation 
unit, the signal is filtered and then amplified thanks to a 
non-linear amplifier. Currently two main types of power 
amplifiers may be used on a satellite: the Traveling Wave 
Tube Amplifiers (TWTA) and the Solid State Power 
Amplifier (SSPA). It has been chosen herein to study the 
phase noise introduced by an SSPA. To describe a non-
linear amplifier as the SSPA, we use the AM/AM and 
AM/PM curves (AM: amplitude modulation, PM: phase 
modulation). They are represented in Figure 10 
([Armengou-Miret, 2003]): 

 

 
 

Figure 10: SSPA AM/AM and AM/PM curves 
 
 

Assuming that s(t) is the signal at the input of the 
amplifier and z(t) the signal at its output, it can be written: 
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where  a(r) is the AM/AM conversion, and represents 
the evolution of the signal output power 
according to the signal input power, 
�(r) is the AM/PM conversion, and represents 
the output phase difference according to the 
signal input power. 

 
It can be noticed on Figure 10 that the amplifier phase 

output is not constant and consequently the different 
points of the signal will not be amplified in the same way. 
So a phase noise is also introduced in the signal by the 
non-linear power amplifier. 
 
Conclusion 
 

It has been seen that considering a signal s(t) 
generated by the signal generation unit, this signal will be 
affected by phase noises introduced by: 

- the D/A converter, �D/A(t) 
- the up-conversion, �up(t) 
- the amplifier, �SSPA(t) 

 
So the power spectrum density of the signal phase 

noise at the payload output can be written as: 
 

)()()()( / fSfSfSfS SSPAupADpayload ++=  (14) 

 
where  SD/A(f) is the power spectrum density of �D/A(t), 

Sup(f) is the power spectrum density of �up(t), 
and 
SSSPA(f) is the power spectrum density of 
�SSPA(t). 

  
Thanks to Equation 11, it can be written that: 
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IV. PHASE NOISE IN THE RECEIVER 
 

Figure 11 represents the generic receiver functional 
block diagram considered: 
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Figure 11: Receiver scheme 

 
As for the payload the phase noise introduced in the 

receiver is due to the receiver clock short-term 
instabilities. As noticed in Figure 11 the frequency 
synthesizers use the receiver clock oscillators as the 
reference frequency to down-convert and digitize the 
signal that comes from the satellite. Consequently at 
reception the phase noise created by the receiver clock 
instabilities will affect the signal during the down-
conversion and the A/D conversion. 
 
Reference oscillator 
 

Two categories of receivers, which use two different 
reference clocks, are considered herein. The first one is 
found in most commercial applications, its reference 
oscillator is a 10 MHz TCXO and the second one needs a 
very good clock stability for its applications, so its 
oscillator is a 10 MHz rubidium atomic clock.  
 

The power spectral density of TCXO and rubidium 
phase noise was found in (Rakon website). The two 
power spectral densities are plotted in Figure 12: 
  

Power Spectral Density of phase noise
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Figure 12: Power Spectral Density of TCXO and 
rubidium receiver clocks 

 
 
Frequency synthesizer 
 

The frequency synthesizer is required to generate local 
oscillator signals for the down-conversion and local 
clocks for the A/D conversion and the signal processing. 
We will consider that the frequency synthesizer used in 
4



the receiver is a common synthesizer based on the simple 
single-loop PLL.  
 

It has been seen in section III how to evaluate the 
phase noise at the output of a PLL synthesizer. However, 
the VCO used is less stable than the VCO used in the 
satellite payload PLL synthesizer and has, consequently, a 
higher phase noise than the payload VCO. The power 
spectral density of its inherent phase noise is plotted in 
Figure 13 (Rakon Website): 
 

Power Spectral Density of VCO phase noise in the receiver
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Figure 13: VCO phase noise power spectral density 
 

To calculate the power spectrum density of the phase 
noise at the output of the local oscillator in the receiver, 
the Equation 11 will be used. 
 

The next graph shows the power spectral densities of 
the local oscillator phase noise with the two reference 
oscillators: TCXO and rubidium. To plot the curves we 
have chosen N=100 to be close to a E5 band signal case. 

 
 

 
 

Figure 14: PLL frequency synthesizers  phase noise 
power spectrum density 
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Down-conversion 
 

The down-conversion of the signal is not made in one 
stage. But all the local oscillators frequencies used for this 
down-conversion are derived from the local oscillator 
generated thanks to the frequency synthesizer presented in 
the previous section. So the phase noise of the other local 
oscillators can be deduced from the phase noise calculated 
previously. 
 

Finally the power spectral density of the phase noise 
introduced on the signal at the end of the down-
conversion is equal to: 

22
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fS

fSfSfS LOLO
LOpayloadDC +++=  (17) 

 
where  Spayload(f) is the phase noise power spectral 

density of the signal incoming from the satellite 
and arriving at the antenna, 
A and B depend on the signal frequency carrier 
and represent the down-conversion stages. 

 
Equation 17 can be simplified because SLO predominates 
due to the classical values of A and B (Zarlink website): 
 

)()()( fSfSfS LOpayloadDC +≈              (18) 

 
A/D converter 
 

The influence of the time jitter introduced by the A/D 
converter is taken into account in the same way as for the 
D/A converter (Equation 10). 
 
 
V. RESULTS 
 

To quantify the influence of the phase noise 
introduced by the GNSS transmitter and receiver on the 
signal, the phase error estimation in the tracking receiver 
PLL has to be analyzed. The generic tracking loop block 
diagram is represented on the next scheme: 
 

 
 

Figure 15: Tracking PLL scheme 
 
 

The linear equivalent model of the tracking loop 
represented above is: 
 



 
 

Figure 16: Tracking PLL phase model 
 

The phase of the incoming signal � is affected by the 
phase noise introduced in the payload and in the receiver 
during the down-conversion and the A/D conversion, so 
an error e on the initial phase (excluding thermal noise) 
has been added. Moreover, the NCO of the PLL is driven 
by the reference oscillator of the receiver, so the phase 
noise of the reference oscillator creates also an error 

��NCO on the estimated phaseθ̂ . However, the phase 
noise introduced by the NCO is negligible in front of the 
incoming signal phase noise because its frequency is low 
in front of the down-conversion frequency. 
 

The objective of the PLL is to generate a local signal 
that has the same phase as the incoming signal. So we 

want that θ̂  is as close as possible to the value of �+e. To 
evaluate the error made on the estimation, the following 
expression has to be calculated: 
 

NCOe δθθθεθ −−+= ˆ  

 
It can also be written as 
 

eN+−= θθεθ
ˆ    with   eeN NCOe ≈−= δθ    (19) 

 
since e >> ��NCO.  
 

So the present model can be simplified by introducing 
the effect of the phase noise only on the incoming signal: 
 

 
 

Figure 17: Simplified Tracking PLL phase model 
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Moreover according to [Parkinson and Spilker, 1996], we 
have: 
 

(20)                                ˆ HNH e ⋅+⋅= θθ  

 
where H the PLL transfer function . 
 
So, 

[ ] [ ] e

e

NHH

N

⋅−+⋅−=
−+=

11

ˆ

θε
θθε

θ

θ           (21) 

 
Thus, the mean-square error of a PLL due to the payload 
and receiver clocks phase noise, in radians, is given as: 
 

( )�
∞

⋅−⋅=
0

22 1)( dfjfHfS
eNσ    (22) 

 
where  SNe (f) is the single-sideband power spectrum 

density of the incoming phase noise and,  
H is the transfer function of the PLL. 

 
Considering a 3rd order PLL, the following model can be 
used [Parkinson and Spilker, 1996]: 

 

66

6
2

)(1
ff

f
jfH

L +
=−  

 
where  fL=2	*1.2*BL, 

BL is the loop noise bandwidth. 
 

To present the Matlab simulation results a payload 
representative of a GNSS payload and receiver working at 
the E5 band have been considered. The signal generated 
in the payload is an ALTBOC(15,10) with a constant 
envelope ([Rebeyrol et al., 2005]). 
 

In this case the power spectrum density of the signal 
phase noise at the payload output is shown in Figure 18: 

 
 



 
 

Figure 18: Payload Phase Noise Power Spectrum Density 
 

 
The power spectrum density of the signal phase noise 

at the tracking PLL input is shown in Figure 19: 
 

 
 
Figure 19: Global Phase Noise Power Spectrum Density 

 
In the following table the values of the PLL error are 
given. We have chosen a loop noise bandwidth equal to 
10 Hz. 
 

Receiver clock TCXO Rubidium 

PLL jitter (°) 2.86 0.5 

 
Table 2: PLL phase error due to GNSS payload and 

receiver. 
 

As foreseen the error made in the tracking PLL is 
worse for the TCXO than for the rubidium clock. We 
clearly see on Figure 19 that the level of the power 
spectrum density is effectively higher for the low 
frequencies in the case of the TCXO. For high frequencies 
the level of the power spectrum density is similar for both 
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cases because for high frequencies it is the frequency 
synthesizers VCO phase noise which predominates and 
we have considered the same VCO for the both receivers. 

It can also be noticed, by comparing Figure 18 and 
Figure 19 that it is the phase noise introduced by the 
receiver which predominates. Indeed calculating the PLL 
phase error, and considering that the payload does not 
introduce phase noise, a rubidium receiver has a phase 
error standard deviation equal to 0.45°.  

 
To evaluate the influence of the phase noise on the 

signal, we have plotted the modulation constellation of 
the ALTBOC(15,10) through the payload and the 
receiver. Figure 20 summarizes the curves obtained. For 
all the curves a rubidium clock receiver is considered and 
the filters are not taken into account. 
 

 
 

 
 

Figure 20: Influence of the payload and receiver phase 
noise on the ALTBOC modulation constellation 

 
The top graphs represent the modulation constellation 

after the payload up-conversion. We could notice on the 
zoom graph that phase noise was introduced on the signal 
because the plots are spread. 

The down left side graph represents the modulation 
constellation after the amplification at the payload output. 
The amplifier introduces an offset for all the modulation 
plots. The last graph represents the modulation 
constellation after the A/D conversion in the receiver and 
we clearly notice that phase noise is being introduced by 
the receiver because the modulation plots are spread. 

Initial ALTBOC signal plots 

Signal plots after the D/A conversion 
and the up-conversion in the payload 

Signal plots at the payload output 

Signal plots at the receiver output 



 
 

As already demonstrated by the calculation of the PLL 
jitter, the modulation constellation graphs show that the 
phase noise introduced by the receiver predominates. 

However the phase noise introduced by the satellite 
payload could not be neglected during the design of the 
payload itself. 
 
 
VI. CONCLUSION 
 

This paper has presented a detailed analysis of the 
phase noise appearing in navigation systems. First a 
definition of the phase noise is given. Second all the 
different signal phase noise contributors of navigation 
payload and receiver are characterized. Then simulation 
results are shown. On the one hand they show that the 
phase noise introduced by the receiver predominates but 
on the other hand the phase noise introduced by the 
satellite payload is not negligible. 
However further studies should be done to consolidate 
these results. A particular attention should be taken to 
investigate the influence of the filter in reception. 
Moreover it would be interesting to study more deeply the 
exact influence of the amplifier. The study of its best 
working point would be particularly interesting such as 
the influence of the amplifier non-linearities on the 
modulation constellation. Finally, it could also be 
interesting to realize the same study for the Galileo L1 
signals to determine the payload influence on its 
generation. 
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