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ABSTRACT  
 
 Because of the limited availability of the spectrum 
allocated for navigation systems, the numerous navigation 
signals broadcast by Modernized GPS and Galileo system 
will have to be combined and employ bandwidth-efficient 
modulations. 
 

Indeed, the GPS modernization scheme entails the 
addition of the new military signal (M-code) to the 
established C/A and P(Y) codes at the same carrier 
frequency. One of the most important questions is how to 
combine this new signal with the legacy ones at the 
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payload level, while maintaining good performance at 
reception. This problem also exists for Galileo since: 

- in the L1 band, the Open Service (OS) signal 
(two channels) and the Public Regulated Service 
(PRS) signal must be transmitted on the same 
carrier.  

- in the E6 band, the Commercial Service (CS) 
signal must be transmitted with the PRS signal.  

 
The Interplex modulation, a particular phase-shifted-

keyed/phase modulation (PSK/PM), was chosen to 
transmit all these signals because it is a constant-envelope 
modulation, thereby allowing the use of saturated power 
amplifiers with limited signal distortion ([STF, 2002; 
Rajan and Irvine, 2005]). 
 

The main objective of this paper is to study the 
Interplex modulation, as it is used for the GPS and 
Galileo signals. In a first part we will present the Interplex 
modulation, its general formulation and its application for 
the multiplexing of three signals. Then, we will be 
interested in the application of this modulation to the GPS 
L1 signals and the Galileo L1 signals. We will give the 
general expression of the GPS L1 Interplex signal and 
show the modification which must be made on the general 
expression of the Interplex modulation to apply it to the 
case of the combination of the C/A and P(Y) codes with 
the new M-code. With regards to the Galileo signals we 
will study two different cases. In the first case we will 
consider that the OS signal is a classical BOC(1,1). In the 
second case we will make the study, assuming that the OS 
signal is the new signal called Composite Binary Coded 
Symbol (CBCS), recently published ([Hein et al., 2005]). 
To conclude, the theoretical formula of the power 
spectrum densities of the GPS L1 Interplex signals and of 
the Galileo L1 Interplex signal are given. 
 
 
I. INTRODUCTION  
 
 The modernization of GPS and the development of the 
GALILEO system have led to the study of different 
modulation techniques in the L1 band in order to obtain 
the best performance at the reception level. Several 
techniques were proposed to solve this problem: (1) the 
Coherent Adaptive Subcarrier Modulation (CASM), 
which is mathematically equivalent to the Interplex 
modulation, presented in [Butman and Timor, 1972], was 
proposed by Dafesh et al (1999); (2) the Quadrature 
Product Subcarrier Modulation (QPSM) method which 
was developed for general quadrature-multiplexed 
communication systems [Dafesh, 1999]; and (3) the so-
called majority vote logic technique explored by Spilker 
and Orr (1998). 
 
 The Interplex modulation was eventually preferred 
([Wang et al., 2004; STF, 2002]) because it provides the 
best overall satellite power efficiencies by combining 
multiple signals into a phase modulated composite signal 
that keeps a constant envelope. Thanks to this modulation, 
the satellite’s high-power amplifier may be operated into 
saturation with limited undesirable Amplitude-
Modulation to Amplitude-Modulation (AM/AM) and 
Amplitude-Modulation to Phase-Modulation (AM/PM) 
distortions. However its main disadvantage is that it 
implies intermodulation (IM) terms in order to obtain a 
constant envelope, and thus wastes part of the transmitted 
power through this IM component.  
 
 For GNSS, this waste of useful power should be 
carefully analyzed because it is an element for the system 
optimization. The Interplex modulation, proposed for 
each “new signals”, should be studied because the IM 
product could consume more or less power and therefore 
induce worse or better performance. 
 
 This paper proposes a review of the Interplex 
modulation. First a general formulation of this modulating 
technique will be presented. Then, we will show which 
modulation index may be chosen in the case of the GPS 
system and the Galileo system at the L1 band. For the 
Galileo system we will study two different cases, whether 
the OS signal is a classical BOC(1,1) or the OS signal is a 
CBCS (Composite Binary Coded Symbol). For both 
navigation systems, the phase diagram of the Interplex 
modulation will be presented. Finally we will give the 
expression of the power spectrum densities for the GPS 
L1 Interplex signal, and for the Galileo L1 Interplex 
signal.  
 
 
II. FORMULATION 
 
 As already mentioned, the Interplex modulation is a 
particular phase-shifted-keyed/phase modulation 
(PSK/PM), combining multiple signals into a phase 
modulated composite signal. 
 

The general form of the Interplex phase-modulated 
signal, as presented in [Butman and Timor, 1972], is: 
 

( )( ) (1)                    2cos2)( ϕθπ ++⋅= ttfPts c  

 
where: 

� P is the total average power 
� fc is the carrier frequency 
� �(t) is the phase modulation 
� � is a random phase 

 
In the case of GNSS applications the phase 

modulation can be defined as: 
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� ( ) ( ) 12)()( ±=⋅⋅= tfsqtdtcts nnnn π  
 
where 

sq(t) is a square-wave sub-carrier, 
dn(t) is the materialization of the data message 
cn(t) is the materialization of the spreading code 
 

� N is the number of components, and 
� �n is the modulation angle or modulation index 

which choice determines the power allocation for 
each signal component. 

 
The most common case for future GNSS signal 

configuration is the transmission of three signals on the 
same carrier: 

� one signal in the quadrature channel: s1 
� two signals in the in-phase channel: s2 and s3 

 
The Interplex signal can then be expressed as: 
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Note that �1 is taken equal to - �/2 because the signal s1 is 
in quadrature with the two others signals. 
 
Such a signal can be generated thanks to the following 
scheme, presented in Figure 1 [US Patent, 2002]. 
 

 
Figure 1: Interplex generator scheme 

 
By developing Equation 3, it can be shown that: 
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and finally, 
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Thanks to Equation 6, it can be noticed that the first 

three terms correspond to the desired useful signal terms 
s1, s2, s3; the fourth term is the undesired intermodulation 
term. This IM term is equal to the product of the three 
desired signals balanced by the modulation indexes �2 and 
�3. It consumes some of the total transmitted power that 
could be available for the three desired signals. Indeed, 
with the Interplex modulation, the power of each 
component is equal to: 
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Equation 7 shows that the power of each signal 

component only depends on two variables �2 and �3. Thus 
the expression of the equivalent baseband Interplex signal 
can be re-written as: 
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where 
( ){ }ϕπ +⋅= tfjtsts c2exp)(ˆRe)(  

 
 
Figure 2 represents the power of the different signals as a 
function of the values of the modulation indexes. The first 
graph represents the power of each signal component in 
function of �2 with �3=�/3 and the second graph represents 
the power of each signal component in function of �3 with 
�2=�/3. 
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Figure 2: Variation of signals powers as a  function of 

Interplex modulation indexes 
 
 
The Figure 2 shows that the choice of �2 and �3 

depends on the power that we want to give to each signal. 
A trade-off must be made to have sufficient power on the 
desired signals and non-disadvantageous power on the IM 
signal. An accurate study must be made to find the most 
suitable values for �2 and �3. 
 

The different states of the Interplex signal can be 
represented on a phase diagram whose x-axis is the in-
phase component and whose y-axis is the quadrature 
component. For the present case, the diagram of the 
modulation constellation is shown in Figure 3: 

 
 

 
 

 

 
 

Figure 3:Interplex modulation constellation 
 
Note that if � = �/2, we have the same figure but with the 
complementary angles. 
 

This diagram shows that even if the introduction of the 
IM product consumes some of the available power, the 
Interplex modulation keeps the magnitude of the 
composite signal envelope constant, which facilitates the 
use of saturated amplifier in the payload. 
 
 
III. APPLICATION TO THE NAVIGATION 
SYSTEM AT THE L1 BAND 
 
GPS Case 
 

In the L1 band, modernized GPS satellites will 
transmit three signals: 

� the C/A code signal component, s1. 
� the P code signal component, s2. 
� the new military signal M-code, s3. 

 
The signal s1 is a C/A-code at 1.023 Mchips per 

second code chipping rate in Non-Return to Zero (NRZ) 
format. The signal s2 is a P-code at 10.23 Mchips/s code 
chipping rate in NRZ format. The M-code signal s3 is the 
product of a code formed with NRZ symbols running at 
5*1.023 Mchips/s and a square-wave sub-carrier running 
at 10*1.023 MHz. It is a Binary Offset Carrier, a 
BOC(10,5).  
 

In [Dafesh et al., 1999; Dafesh et al., 2000], the 
Coherent Adaptive Subcarrier Modulation (CASM) is 
proposed as a specific solution for transmitting the three 
GPS signals present in the L1 band. This modulation 
could be considered as a three components Interplex 
modulation with a particular and optimal choice of the 
modulation indexes. The CASM proposes to put the P-
code signal and the M-code in the in-phase component 
and the C/A code in the quadrature component with the 
IM product. We will take this signals layout as reference 
but others cases have been studied, particularly in [Wang 
et al., 2004], where the P-code and the C/A code signals 
are in the in-phase component and the M-code in the 
quadrature component.  
 

Signal s2 

Signal s3 

Signal s1 

Signal IM 

In-phase signal 

Quadrature 
signal 

Points of modulation constellation 
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In the present case, �2 is defined thanks to the two 
following equations, proposed in [Dafesh et al., 2000]: 

 

( ) ( ) (9)                    sin               cos 22 P
P

P

P
IQ == ββ    

 
where  PI  is the power of the initial signal in phase 

PQ is the power of the initial signal in quadrature 
P is the total average power.  

 
The only modulation index, which is not set, is �3. It is 

renamed m. Consequently, the power of each signal 
depends only on m and is equal to: 
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Note that the total average power is maintained constant: 
 

QIIM PPPPPPP +=+++= 321                     (11) 

 
The GPS signal transmitted with the CASM modulation 
can be written as: 
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As already seen in the previous section, the 

intermodulation product is the product of the signals s1, s2 
10
and s3. In this case, the product of the three GPS signals is 
a BOC(10,10) sub-carrier, so the IM product is a 
BOC(10,10). 
 
The modulation constellation of the GPS Interplex 
modulation is presented in Figure 4: 
 

 
 

Figure 4:GPS Interplex modulation constellation 
 

As previously the envelope of the signal is constant 
even if some of the available power is wasted in the IM 
product. 

 
GALILEO System 
 

The modulation scheme used to transmit the L1 
Galileo signal and proposed in [GJU, 2005] is similar to 
the modulation scheme proposed, previously, for the GPS 
case. 
 

Let’s assume that in the case of the Galileo system the 
signals that will be broadcast in the L1 band are: 

� the PRS signal. It is a cosine-phased 
BOC(15,2.5) signal, s1. 

� the data OS signal. It is a BOC(1,1) signal s2. 
� the pilot OS signal. It is a BOC(1,1) signal s3. 

 
The only difference between the signals s2 and s3 is 

their codes, which don’t have the same values even if they 
have the same code rate. 
 

In the present case, as referred in [GJU, 2005], the 
total power should be equally divided into the in-phase 
component and the quadrature component. Moreover the 
power of the data OS component should be equal to the 
power of the pilot OS component. Consequently, the 
parameters 2β  and �3 are set by the following 
relationships: 
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This system leads to �2=-�3=m=0.6155 rad. 
 
Consequently, the expression of the signal transmitted is: 
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In this case, the power of each component is equal to: 
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The diagram of the modulation constellation is shown in 
Figure 5: 
 

 
 

Figure 5: Galileo Interplex modulation constellation 
 

The Figure 5 shows that the modulation constellation 
is only composed of 6 plots. This is due to the fact that the 
signals s2 and s3 are both BOC(1,1) sub-carrier and by the 
way the constellation goes through the points 2 and 5 
twice. 

Currently, other studies are made to transmit a Galileo 
L1 signal which performance is better than the one 
obtained with a BOC(1,1). [Hein et al., 2005] proposes to 

1 

2 

3 

6 

5 

4 
 

10
transmit a linear combination of a BOC(1,1) sub-carrier 
and a Binary Coded Signal (BCS) sub-carrier instead of a 
classical BOC(1,1) sub-carrier. Following these 
assumptions, the signals transmitted on Galileo L1 would 
be: 

� A data OS signal that can be represented as:  
( ) ( ) )1,(cos)1,1(cos 21 nBCSBOC ⋅+⋅ θθ  

� A pilot OS signal that can be represented as: 
( ) ( ) )1,(cos)1,1(cos 21 nBCSBOC ⋅−⋅ θθ  

� the PRS signal already described earlier. 
 

To transmit these signals with the Interplex 
modulation we must, in fact, consider separately the 
BOC(1,1) and the BCS. So the signals transmitted with 
the Interplex modulation are: 

� s1, the BOC(15,2.5) (including the PRS PRN 
code). 

� s2, the BOC(1,1) sub-carrier only. 
� s3, the BCS sub-carrier only. 

 
The expression of the Interplex signal transmitted is then: 
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where CA is the OS data channel code (spreading code 
and data) and CB is the OS pilot channel code (spreading 
code only).  
 

Equation 20 shows that the values of the modulation 
indexes are expressed as a function of the angles �1 and 
�2, which depend on the percentage of power that is put 
on the BCS component. 
 

It can be noticed that the model used for the  
optimized Galileo L1 signal is in fact an Interplex 
modulation model with 5 signal components and not only 
three as the previous ones. 
 
Developing the equation (20) gives: 
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This expression is the expression of the optimized 
signal which is proposed to transmit the OS signal and the 
PRS signal in the L1 band and presented in [Hein et al., 
2005]. 

In this case the IM product signal shape depends only 
on the PRS signal, CA and CB. It does not depend on the 
BOC(1,1) sub-carrier or on the BCS sub-carrier. 
 
As confirmed in [Hein et al., 2005], the power of each 
component is equal to: 
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We can also notice that: 
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⋅= PPBCS
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Consequently the values of �1 and �2 allow to set the 
percentage of desired BCS or BOC(1,1) powers. 
 
The phase diagram of the modulation constellation is 
similar, as the other examples, to the phase diagram of a 
8-PSK modulation: 
 

 
 

Figure 6: Optimized Galileo Interplex modulation 
constellation 

 
If we compare the power of the IM product of the 

BOC(1,1) signal and of the CBCS signal: 
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we notice that for the case of the BOC(1,1) signal the 
power depends on only one modulation index, whereas 
for the case of the CBCS signal the IM power depends on 
two modulation indexes. So the setting of the IM power 
seems to be easier with the optimized signal. The 
comparison of both IM products will be more precisely 
analyzed in the next part with the study of their power 
spectrum densities. 
 
 
IV. POWER SPECTRUM DENSITIES 
 

In order to study the impact of the IM signal on the 
spectrum of the L1 GPS and Galileo signals, we will give, 
in this part, the theoretical expression of the power 
spectrum densities of the Interplex signals presented 
previously. 
 
GPS Case 
 

The GPS signal in the L1 band could be written as: 
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So the autocorrelation function of such a signal is: 
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The different codes which compose the signals s1, s2 

and s3 have a very low cross-correlation, so the cross-
correlation between the different codes is herein assumed 
to be equal to zero. Consequently, 
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The power spectrum density of the GPS Interplex 

signal is the Fourier Transform of the autocorrelation 
function: 
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If n=2p/q is even and if the sub-carrier is sine-phased, 

the power spectrum density of a BOC(p,q) signal, is equal 
to ([Betz, 2001]): 
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with Tc the code period. 
 
So the power spectrum density of the BOC(10,5) M-code 
signal is : 
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with Tc=1/1.023e6 s. 
 
And in the case of the BOC(10,10) IM signal: 
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The power spectrum density of a NRZ modulation is: 
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with Tc the code period. 
 
Consequently, the power spectrum density of the C/A 
code signal component is: 
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and the power spectrum density of the P-code signal 
component is : 
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with Tc=1/1.023e6 s. 
 

The next graph represents the curve obtained with 
simulations and the curve obtained thanks to the 
theoretical expression of the power spectrum density. We 
consider that P1=0.5 dB, P2=0 dB and P3=-3 dB [Fan et 
al., 2005] and the curve which correspond to the 
simulation case is normalized by its sample number. 
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Figure 7: Power Spectrum Density of the L1 GPS Signal 

 
 
GALILEO System 
 

If the case of a BOC(1,1) signal is considered, the 
Galileo L1 signal could be written : 
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The calculation of the power spectrum densities of this 

signal is similar to the calculation of the power spectrum 
densities of the GPS signal, so: 
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The power spectrum density of the signal s2 and the signal 
s3 are equal. Their expression is: 
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The signal s1 is a cosine-phased BOC(15,2.5), so the 
power spectrum density of this signal is: 
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The IM term is the product of the signals s1, s2 and s3, 

so it is a BOC(15,2.5) as the PRS signal. Its power 
spectrum density is therefore similar to the equation (43). 
 
So, the power spectrum density of the Galileo L1 signal 
is: 
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Now the case of the Galileo L1 optimized signal is 

considered, the expression of the signal transmitted in the 
Galileo L1 band is: 
 

( ){ }ϕπ +⋅= tfjtsts c2exp)(ˆRe)(  
 
with 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )( )

(45)   

sinsin
2

)(
2

sinsin
)(

coscos
2

)(

coscos
2

)(

)(ˆ

12

21
1

3221

3221

�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�

	




�
�
�
�

�




−−

+
⋅

⋅+

�
�
�
�

	




�
�
�
�

�




⋅−⋅⋅+

⋅⋅+⋅⋅

=

θθ

θθ

θθ

θθ

tIM

ts
j

tsts
tc

tsts
tc

Pts

B

A

 
 
The signal � could also be written: 
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where SOSA and SOSB represent the data Open Service 
signal and the pilot Open Service signal, including 
respectively the code A and the code B and the weighted 
factor depending on �1 and �2. 
 
As previously, we have: 
 

( )tf css πττ 2cos
2
1

)()( ˆ ⋅ℜ=ℜ  

with 
( ) ( )[ ]ττ −⋅=ℜ tstsEs ˆˆ)(ˆ  

 

108



The crosscorrelation between the different codes is again 
assumed to be equal to zero. Consequently, 
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The power spectrum densities of the optimized Galileo 

signal is the Fourier Transform of the autocorrelation 
function: 
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The calculation of the power spectrum densities of the 

OSA and OSB signals are presented in [Hein et al., 2005]. 
 
So we have: 
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with SBOC(1,1) and SBCS the power spectrum densities of the 
BOC(1,1) and the BCS modulations. 
 

The signals s1 and the IM product are both cosine-
phased BOC(15,2.5) modulation. So, the power spectrum 
density of the signal � is: 
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where n refers to the number of symbols in one chip. The 
power spectrum density of a BCS([s1 … sn],fc) was 
presented in [Hein et al., 2005]. 
 

The Galileo optimized signal the BCS, investigated by 
[Hein et al., 2005], is the BCS([1 -1 1 -1 1 -1 1 -1 1 1],1). 
It is proposed that the percentage of BCS power 
represents 20% of the total OS power. This condition 
involves �1=0.51 rad and �2=1.12 rad, considering that the 
OS power should be equal to the PRS power. 
 

 
 

Figure 8: Power Spectrum Density of the optimized L1 
Galileo  Signal 

 
Now that the power spectrum densities of the IM 

product for the two Galileo signal cases were calculated, 
we can notice that in both cases the IM product is a 
BOC(15,2.5) sub-carrier, only the power of the two IM 
product is different. As already mentioned, we have: 
 

( ) ( ) 2
12

_ 2
sinsin

�
�

�
�
�

� −
⋅=

θθ
PP CBCSIM

  , ( )mPP BOCIM
4

)1,1(_ sin⋅=  



 

Considering the optimal value for the modulation 
indexes in each case and that the total power is equal to 1, 
we have: 
 

- for the BOC(1,1) case, [STF, 2002] proposes 
m=0.6155 so PIM = -9.54 dB. 

- For the CBCS case, [Hein et al., 2005] proposes 
20% of BCS, so PIM = -13.72 dB. 

 
Therefore the power wasted in the IM product is more 

important in the case of the classical BOC(1,1) signal. 
 

To conclude, in the next graph the GPS signal and the 
optimized Galileo signal power spectrum densities 
envelopes have been plotted: 
 

 
 

Figure 9:Power Spectrum Densities of the L1 band 
signals 

 
 
V. CONCLUSION 
 

This paper has provided two main points. First it has 
been shown that the expression of the combined L1 GPS 
signal and the expression of the combined L1 Galileo 
signal could be linked to a unique formula considered as 
the definition of the Interplex modulation. It was also 
shown that the optimized Galileo L1 signal could be 
linked to this formula. For the different cases the phase 
diagram of the modulation was presented. 

Secondly the expression of the power spectrum 
densities of all the navigation L1 signals have been 
theoretically calculated and a particular attention is made 
on the intermodulation term. Indeed the Interplex 
modulation guarantees a constant envelope for the 
navigation signals by creating an intermodulation term 
which is useless for the navigation but must be taken into 
account for a signal power optimization. Besides it has 
been shown that the IM product power of the optimized 
Galileo signal is weaker than the IM product power of the 
classical Galileo signal. 
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