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ABSTRACT 

 
  The European satellite navigation system GALILEO will 
provide radionavigation signals for a variety of 
applications. Safety Of Life users will get a safe 
navigation service through ranging signals carrying 
integrity information. 
 
  The Galileo Integrity Baseline algorithm includes the 
transmission of three parameters allowing users to monitor 
their integrity level. These parameters are the Signal-In-
Space Accuracy (SISA: prediction of the minimum 
standard deviation of a Gaussian distribution 
overbounding the Signal-In-Space error in the fault-free 
case), the Signal-In-Space Monitoring Accuracy (SISMA: 

minimum standard deviation of a Gaussian distribution 
overbounding the difference between Signal-In-Space 
error and its estimation by ground control stations) and the 
Integrity Flag, which accounts for satellite status (it can be 
set to “OK”, “DON’T USE” or “NOT MONITORED”). 
These parameters are part of the input of the user integrity 
algorithm, which computes user integrity risk at the alert 
limit and compares it to the Integrity Risk requirement 
corresponding to user’s phase of flight.  
 
  The work presented in this paper studies the influence of 
the algorithm used for computation of SISMA on user 
integrity and system availability. The algorithms used to 
compute SISMA are the reference Least-Squares and 
several robust methods, designed to reject wrong 
measurements and decrease ground system False Alarm 
rate (fault-free satellites flagged “DON’T USE”). 

I INTRODUCTION 

 
  This article presents results on the influence of the 
computation of SISMA over user integrity. Indeed, the 
GALILEO integrity concept consists in providing users 
with information concerning the system contribution to 
the final user position error, in order to allow them to 
autonomously check their integrity level. That information 
is in fact a quantification of the quality of the SIS (Signal 
In Space). The SIS is the signal emitted by a satellite in 
the constellation as received by a fault-free receiver. In the 
present Integrity Check algorithm, propagation errors are 
not considered, only the contribution of the satellite 
payload will be included in the broadcast information. 
 
  The error induced by the ground and space segments on 
the determination of the user’s position and clock bias is 
assumed to be essentially due to the difference between 
the satellite true position and clock bias and the values 
provided by the OD&TS (Orbit Determination and Time 
Synchronisation) through the broadcast ephemeris data. 
The projection of these position and clock errors on the 
satellite user axis is called the SISE (Signal In Space 
Error): it is in fact the equivalent measurement error due 
to OD&TS errors. Thus, the integrity information to be 
provided by GALILEO to the users only concerns 
OD&TS errors: propagation errors or local errors such as 
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multipath or jamming are not taken into account in the 
broadcast integrity parameters. 
 
  The integrity information broadcast in the navigation 
message is composed of three parameters: 
Signal-In-Space accuracy (SISA): predicted smallest 
standard deviation of a Gaussian distribution 
overbounding the SISE distribution in fault-free mode for 
any user in the service area. 
Signal-In-Space Monitoring Accuracy (SISMA): smallest 
standard deviation of a Gaussian distribution 
overbounding the difference between SISE and SISEest, its 
estimation by the ground segment (GALILEO satellites 
are monitored by a network of 40 GALILEO Sensor 
Stations (GSS), whose pseudorange measurements are 
used to compute SISEest). 
Integrity Flag (IF): depending on the results of the 
monitoring system, this flag can be set to one of the three 
following values: “USE”, “DON’T USE” or “NOT 
MONITORED” 
 
  These parameters are then used in the User Integrity 
algorithm, which computes directly computes user’s 
current Integrity Risk (as a function of the phase of flight). 
System availability is obtained by comparing the output to 
the Integrity Risk (IR) requirement of the current phase of 
flight. 
 
  However, the use, in the process of computing SISMA 
and SISEest, of a least-squares algorithm implies that all 
input residuals are considered fault-free and Gaussian. In 
the case of a transient propagation problem or of an 
undetected GSS malfunction, biased measurements may 
be included in a fault-free satellite’s set of pseudorange 
measurements, thus leading to the overestimation of 
SISEest and possibly causing a fault-free satellite to be 
flagged “DON’T USE”. 
 
  Therefore a previous study was performed (presented in 
[6]), in order to assess the possibility of replacing the LS 
algorithm by a robust one. 
 
  Thus, the present paper studies the possibility of 
replacing the Least-Squares by a robust estimation 
algorithm in the Integrity check performed by Galileo 
ground segment in the baseline. The term “robust” refers 
here to the ability of such algorithms to estimate correct 
statistical parameters in the presence of some corrupted 
samples: while a single biased sample (called an outlier, a 
measurement not belonging to the same distribution as the 
other samples from the set) may lead a non-robust 
algorithm (e.g. Least-Squares) to provide an estimate far 
away from the underlying distribution of the sample 
space, a robust estimator (M-estimator, Least-Trimmed-
Squares…) will resist such a small change and be able to 
provide an estimate close to the true distribution. 
Typically, one biased measurement in a set of otherwise 
Gaussian distributed ones will be either discarded (in the 
case of the LTS, for instance) or weighted down so as not 
to influence the estimation process (e.g. in the case of the 

M-estimator). The cost of this ability to detect and discard 
outliers is twofold: first, the loss of the optimality in the 
case of a truly Gaussian distributed sample set, and 
second, an additional computational cost (most robust 
algorithms are based on iterative residual computation 
ranking). 
 
  The performance analysis of the robust algorithm on the 
computation of the SISMA is performed in this paper with 
simulated data (with and without satellite or station 
failure), taking into account the steps of the pre-processing 
that impact most on the shape of the input signal (carrier-
phase smoothing, ionospheric and tropospheric 
corrections). 
 
  Thus the paper will be structured as follows: the first 
section describes the input signal simulator, the second 
section presents the Integrity Check algorithm. Section 3 
gives the definition of overbounding used throughout the 
article.  Then sections 4 to 8 introduce the notion of 
statistical robustness, the methods that were used, how 
they were optimized and the gains that could be expected 
from them. Section 9 presents the results obtained through 
simulation and finally conclusions are derived on the 
feasibility of introducing a robust algorithm in the 
Integrity Check. 

II INTEGRITY CHECK ALGORITM 

 
  At a given instant, each satellite i is seen by N GSS, 
which all perform pseudorange measurements based on 

satellite i signal. Let ( )ssss tzyx ∆,,,  be the satellite 

true position in the WGS-84 reference frame and clock 
bias: these 4 values are the unknowns of the problem. Let 

( )n

r

n

r

n

r zyx ,,  be the coordinates of the GSS of index n. 

The GSS coordinates are precisely known. The GSS clock 
biases will be determined through common view 
techniques, using a specific GSS as a reference station 
connected to the Galileo Time. Therefore, the relation 
between the residuals for GSS n and the coordinates of 
satellite i can be expressed as follows: 

iEXHr +∆⋅=  

where H is a (3xN) matrix, defined as follows 
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( )XhYr ˆ−=   is the residual vector, ∆X is the satellite 

ephemeris error. Indeed, in the present case, a 3-parameter 
model is used rather than the usual 4-parameter one. This 
can be justified by projecting the measurement equation in 
the local referential of the GSS (north east down), in 
which the down component of the observation matrix is 
almost equal to 1. Thus, it is the sum of the down and 
clock parameters that are estimated. This causes no 
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problem since ∆X is estimated only to be projected on the 
Worst User Location axis (see [6]). 
 

  Let X̂∆  be the estimation of ∆X and ( )X̂cov ∆  its 

covariance matrix. To obtain an estimation of SISE, the 
current method consists in forming a user grid on the 

surface of the Earth. X̂∆  and ( )X̂cov ∆  are projected on 

each satellite-user axis. Let ( )0000 ,, zyxX =  be the 

OD&TS coordinates of satellite i and 

( )
gggg zyxX ,,=  the coordinates of a user on the grid.  

 
  The relation between the pseudorange measurement 
performed by the ground user, user position and satellite 
position is the same as the relation between the 
pseudorange measurement performed by the GSS, GSS 
position and satellite position. Therefore, the projection 

vector hu for the ( )
gXX 0  axis is obtained by replacing 

the coordinates of the GSS by the user’s in a line vector of 
the observation matrix H: 
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  Thus, for a given user u, the estimations of the SISE and 
its standard deviation are: 

( ) [ ] u

tt

uu

t

uucheck

t

uuest

hHRHhhXh

XhSISE

⋅⋅⋅⋅=⋅∆⋅=

∆⋅=
−1

,

,

ˆcov

ˆ

σ
where ( )iER cov=  

The maximum values of SISEest,u and σcheck,u are called 
SISEest and SISMA: 
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  It appears that the standard deviation of SISEest depends 
on the observation time-span. Indeed, if SISEest is 
observed for a short time, SISE (projection of ∆X) will be 
considered a constant. SISEest will therefore follow a 
normal distribution centred on SISE, with a standard 
deviation equal to SISMA. If, on the other hand, SISEest is  
observed for a long time, the variations of SISE will have 
to be taken into account: SISEest will follow a centred 
normal distribution, with standard deviation equal to 

22 SISMASISA + . 
 

  The integrity flag is raised when the observed SISEest 
departs significantly from this statistics. The decision 
threshold is tuned using the specified false alarm rate, so 
the integrity flag is raised when 

22 SISMASISAkSISE FAest +×>  

where FAk =4.34 as per the design false alarm rate 1.5 x 

10-5 per independent sample.  
 

  Thus, estSISE  is computed from the residuals provided 

by the pre-processing algorithms, while SISMA is only 
computed from assumptions on the standard deviation of 
the measurement noise and geometrical data. If one of the 
input residuals does not respect the assumption on its 
standard deviation (because of a propagation problem or a 
reception problem in the vicinity of the GSS), then there is 

risk that estSISE  will exceed the decision threshold 

despite the fact that the satellite is not malfunctioning. In 
this case, a robust algorithm, able to reject input data that 
do not respect the assumptions made on them, might help 
in not flagging unduly a satellite. 
 

III USER INTEGRITY ALGORITHM 

 
  The user integrity algorithm which is planned to be used 
for users of the Safety-of-Life service of GALILEO is 
significantly different from usual integrity monitoring 
methods (such as RAIM), in particular because it will not 
provide users with horizontal or vertical protection levels 
(HPL and VPL) to be compared with corresponding alert 
limits.  The method proposed in [5] consists in directly 
computing the user integrity risk at the alert limit (as a 
function of HAL, VAL, PFA, PMD, SISA, SISMA, etc.),  
and comparing it to the Integrity Risk value.  
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The parameters FFVu ,,σ  and FMVu ,,σ  are the standard 

deviations of the vertical position error respectively in 

fault free and failure mode. The parameters 
FF

ξ  and FMξ  

are the radius of the circle bounding the error ellipse in the 
horizontal mode respectively in fault-free and failure 
mode.  

FFVu ,,σ  and 
FF

ξ  depend on satellite SISA, on the 

standard deviation of the propagation errors, and on the 
constellation geometry. 
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FMVu ,,σ  and FMξ  depend on the same parameters and on 

the SISMA that helps determining the size of the 

maximum unflagged error. Vu ,µ  is precisely the 

maximum unflagged vertical position error. 

IV PRINCIPLE OF ROBUST ALGORITHMS 

 
 The aim of robust statistics is to construct estimation and 
regression algorithms able to provide reliable results when 
all the assumptions made on the observation data are not 
met in full. Indeed, it is generally assumed that all 
variables are normally distributed: it is the case for which 
the classical Least-Squares algorithm is optimal. When the 
underlying Gaussian model does not hold for every 
sample, for instance when a feared event causes one 
pseudorange measurement to deviate (such a measurement 
is called an outlier), the results provided by the Least-
Squares may actually be far away from the true data 
distribution. The whole point of robustness can be 
expressed in terms of continuity of the estimator: a small 
variation in the sample space (either a small change on the 
whole sample space, or great change on a small fraction of 
the sample space) must bring only small variations to the 
estimated distribution. 
 
  In order to underline the differences between Least-
Squares and robust algorithms, we will use the example of 
linear regression (which is the type of problem solved to 
obtain a position with satellite positioning systems):  

iippii exxy ++++= βββ K110  for Ni ,,1K= , 

where iy  is the response variable (e.g. a pseudorange 

measurement), ipi xx ,,1 K  are the regressors (e.g. 

elements of the user-satellite direction vector) and ie  is a 

zero-mean normal noise with σ  standard deviation. The 

aim is to obtain ( )pββ ˆ,,ˆ0 K , estimate of the set 

( )
pββ ,,0 K  of regression coefficients (which are user 

coordinates and clock bias in the case of satellite 
positioning). The regression residuals may be expressed as 
follows: 

( )ippiii xxyr βββ ˆˆˆ
110 +++−= K . 

  The estimate ( )pββ ˆ,,ˆ0 K  computed by LS is the one 

which minimizes the sum of squared residuals: 

( )∑=

N

i

ir
p 1

2

ˆ,,ˆ0
min

ββ K

 

 

Figure 1: Example of the influence of a single outlier 

 

  The LS criterion brings optimal results when ie  is 

Gaussian. But there is no guarantee of reliability of the 

algorithm’s results when ie  is not Gaussian (which is 

generally the case). Indeed, figure 1 illustrates the fact that 
one single outlying sample may cause a two-dimensional 
LS regression to break down. 
 
  This example may be used to introduce the notions of 
breakdown value and breakdown bound, as described by 
Huber in [1]: the breakdown value is the smallest fraction 
of contamination in the sample space that can cause the 
regression method to run arbitrarily far from the 
distribution of the majority of the samples. For instance, it 
can be seen from the preceding figure that the breakdown 

value of the LS algorithm is N1 . The breakdown bound 

is the limiting value (for ∞→N ) of the breakdown 
value. It is thus equal to 0 for the LS. Estimators with a 
breakdown bound strictly superior to 0 are called positive-
breakdown methods (as will be seen in the following, 
robust methods do not systematically have positive 
breakdown bounds). 
 
  The methods that were used for this study are M-
estimation, Least-Trimmed-Squares (LTS) and Minimum 
Covariance Determinant (MCD). M-estimation consists in 

minimizing ( )∑
=

N

i

ir
1

ρ  rather than∑
=

N

i

ir
1

2 , where ρ is a 

symmetric, positive definite function with a unique 
minimum located at zero, so as to limit the influence of 
high-residual samples on the final output. Three different 
ρ  functions were used: the Huber and Tukey functions, 
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and a custom function, designed to combine the qualities 
of the two preceding functions. Both MCD and LTS rely 
on the selection of a sample subset from which they 
compute the final output; they differ on the type of 
criterion to apply to select the subset: LTS selects the h  

samples for which ∑
=

h

i

ir
1

2  is minimum, while MCD 

selects the h  input iy for which the vector [ ]hyy ,,1 K  

has the smallest standard deviation. More information will 
be found in [6].  

V RESULTS ON SISMA COMPUTATION 

 
  We briefly recall here the results of the preceding study, 
concerning the computation of SISMA. Results are 
presented in three ways. 
  In the fault-free case: LS is optimal when inputs are truly 
Gaussian. Thus using other (robust) methods implies a 
degradation of the overall results. The degradation is 
quantized in table 1, as the percentage of SISMA values 
inferior to 0.70 m (the SISMA maximum value in fault-
free mode) 
  In the case where each sample set contains a biased 
measurement: in this test, there is no faulty satellite (and 
thus no “DON’T USE” must be issued), however, a bias 
(ranging from 10cm to 10m) has been added to one of the 
measurements corresponding to each satellite. Robust 
methods are expected to detect this bias and reject the 
corresponding measurement, and thus to raise false alarms 
(a “DON’T USE” flag set on a fault-free SV) less often 
than the LS. The false alarm rate is illustrated in the top 
figure of figure 9.  
  In the case of a true failure, robust methods are expected 
not to increase the missed detection probability: the 
detection rate in the true failure case (simulated by an 
additional bias on all PR measurements of a given 
satellite) is illustrated in the bottom figure of figure 9. 
 
 
 Max SISMA (m) Percentage of 

SISMA < 0.7m 
LS 0.9388 77.9278 
M Huber 0.9760 74.9155 
M Tukey 1.2638 70.4186 
M custom 0.9931 77.5716 
LTS 1.7262 64.5722 
MCD 1.9752 63.9085 

Table 1: SISMA distribution for all estimation 

methods 
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Figure 2: False alarm and true fault detection rates 

 
  The final results are summarized in table 2. 
 
 M-

estimators 
LTS MCD 

False alarm 
rate 

Good Excellent Excellent 

SISMA 
distribution 

Slightly 
Degraded 

Degraded Degraded 

True fault 
detection rate 

Lowered Increased Increased 

Overbounding 
capability 

Comparable 
to LS 

Degraded Increased 

Table 2: Results of robust methods 

 

VI RESULTS IN USER INTEGRITY 

 
  The main test in user integrity consisted in creating a 
world user map (composed of 1369 points) and computing 
user integrity over 24 hours using the SISMA data 
obtained with the different methods in fault-free mode. 
The considered navigation requirements were those of 
APV-II, which are recalled in table 3. For each user 
position, the comparison of the computed Integrity Risk 
values with the IR requirement resulted in a system 
availability percentage over 24 hours. These availability 
results are illustrated in the following maps. However, 
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readers should be warned against interpreting the figures 
as the illustrations of the future performances of 
GALILEO, since the simulated data that was used cannot 
be considered as a realistic test-bed. On the other hand, 
they show the expected degradation in system availability 
in fault-free mode due to the use of robust methods. 
 
Accuracy 95% H 16 m 

V 8 m 
Time to alert 6 s 
Alert limit H 40 m 

V 20 m 

Integrity 

Integrity risk 2.10-7/app 
Availability 0.99 to 0.99999 
Continuity 8.10−6 / 15s 
PFA 1/15000 
PMD 1. 10−3 

Table 3: Operational requirements in APV-II 

  Figure 3 represents the map of system availability over 
24 hours, computed with the Least-Squares. It will be used 
as a reference. The availability holes are due to the 
geometry of the constellation and of the GSS network. In 
most cases however, the availability is 100% in our 
simulation. Figure 4, 5 and 6 represent the availability 
map obtained with SISMA computed with M-estimation 
methods. Finally, figure 7 and 8 correspond to LTS and 
MCD, the methods which performed best in terms of false 
alarm and false detection rates and worst in terms of 
SISMA distribution. 

 

Figure 3: System availability over 24 hours, with LS 

algorithm 

 
 

 

Figure 4: System availability over 24 hours, with M-

Huber algorithm 

 

 

Figure 5: System availability over 24 hours, with M-

Tukey algorithm 

 

 

Figure 6: System availability over 24 hours, with M-

custom algorithm 
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Figure 7: System availability over 24 hours, with LTS 

algorithm 

 

Figure 8: System availability over 24 hours, with MCD 

algorithm 

  The preceding availability maps can be summarized by 
figure 9, which gives, for each method, the Cumulative 
Density Function of system availability. For clarity, the 
probability values corresponding to a 100% availability, 
being much higher than the others, have been omitted. 
 
  It appears from the final results that the degradation in 
availability is moderate. However, it corresponds to the 
results in SISMA computation: M-estimation, which 
induces small degradation of the SISMA distribution, 
provides availability results close to the LS output; in 
particular, when performed by the custom function, it has 
a minimum availability that is not lower than that of LS. 
On the other hand, the methods that did not perform well 
in SISMA distribution (LTS and MCD) cause a more 
serious degradation, thus providing an illustration of the 
direct impact of SISMA on user integrity. 

 

Figure 9: Availability Cumulative Density Function  

for all methods 

VII CONCLUSION 

 
  The following table compares the performance in system 
availability achieved through LS with the other 
procedures: 
 
 Minimum 

availability 
(%) 

Percentage 
of  positions 
with 
availability 
inferior to 
100 % 

Percentage 
of  positions 
with 
availability 
inferior to 
LS 

LS 99.06 9.42 N/A 
M Huber 98.68 10.08 8.54 
M Tukey 98.71 17.75 17.02 
M custom 99.06 10.01 6.14 
LTS 97.72 24.54 23.88 
MCD 97.84 24.25 23.81 

Table 4: Results in system availability 

  This demonstrates the feasibility of replacing LS by 
robust methods. The gain in false alarm rates and SISMA 
values reliability would cause little degradation since 
minimum availability remains correct. 
  However, there clearly is a trade-off to make between 
false detection rate and user availability.  
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